THE EXPERT’S VOICE® IN ORACLE

SECOND EDITION

— 1////////////////)'/ : ////4

Pro

Oracle

EXPLOIT THE FULL POWER OF SQL
IN THE ORACLE DATABASE

Karen Morton, Kerry Osborne, Robyn Sands,
Riyaj Shamsudeen, and Jared Still

QL /e
APress:

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress’

Contents at a Glance

About the AUtROLS.......cccuisrimsmimsms s ——————————=————_ xvii
About the Technical REVIEWETccuusssesssssasssssansssssnsssssnssssansssssnssssansssssnsssssnsssssnsssssnnssssnnnsss Xix
ACKNOWIEAYMENLEScceuriiririisssssnnnnnnnnrsssssssssssssnsssesssssssssnssnsnsssssssssssnnnnnnnsessssssssnnnnnnnnssssssssns Xxi
Chapter 1: Core SQL.......cccuieemmmmisannnmmssssssmmmssssssnmsssssssnssssssnssesssssnsnssssssnnnsssssnnnnsssssnnnsssssnnns 1
Chapter 2: SQL EXECULION ...uucvviiisssemmesnnnmmssssssssssssssssssssssssssssssnsssssssssssssnssnsssssssssssnsnnnnnnnnnss 25
Chapter 3: Access and Join Methodsccuseerrmnsssennsmssssssnmmmssssssmessssssssessssssssesssssnssenss 57
Chapter 4: SQL Is about Setsccccinminnmmmmmmssnnnmmmssssnmmmssssmmmmssssnmssss——————— 95
Chapter 5: It’s about the Questioncccccunmmmmniemmmmmsssss——————————————— 115
Chapter 6: SQL Execution Plans.........ccuscummmisssnnnmmsssssnnmmssnssssans 131
Chapter 7: Advanced GroupPiNgccccuusssesnmssssssssmsssssnssssssssnssssssssnssssssssnsssssssnnsssssssannanssns 169
Chapter 8: Analytic FUNCHIONSccccviisemmmmnissssmmmmssssssmmsssssssmnsssssssnssssssssssssssnsnsnssssnnnnnssns 199
Chapter 9: The MODEL ClausSe......uuueetuiimmmmmmssnssssssmmsssssssssssssssssssssssssssnsssssssssssssssnnnnssssnnsss 231
Chapter 10: Subquery Factoring..........uccccimmisemnmmmsssesnmmmssssnmmmssssnmmsssssmssssssssnsssssnneans 261
Chapter 11: Semijoins and AntijOiNSccciussseenmmmsssnnnmmssssssnmsssssssnmsssssnsnssssssnsnsssssnnnnssssss 299
Chapter 12: INUeXEeS...uuueeutummmmmmsssnnnnsssnssssssssssnnsssssssssssssssnnssssssssssssssssnnnnsssssssssssssnnnnnnssnnsss 341
Chapter 13: Beyond the SELECT........c.cccccmmmmssmmnmmmsssnsnmmssssssnmsssssssnssssssssnssssssssssssssnnsnnnssss 369
Chapter 14: Transaction ProCesSing......cccussrrssesmmssensssssssssssssssssssssssssssssansssssnssssnnsessannes 397
Chapter 15: Testing and Quality ASSUFraANCe......cccurrsssmmnrmssssensnnsssssnsnssssssnssesssssnnssssssnnnnnss 425

iii

CONTENTS AT A GLANCE

Chapter 16: Plan Stability.......ccccusscnmmmmsnnnnmmssssnmmsssssssmssssssssssssssssssssssssssssssssnssssssssnnnssss 453
Chapter 17: Plan Controlocceeemenmmmmmmmmmsssssssmmmmmmmssssssssssssssmssssssssssssessssssssssssssnns 477
Chapter 18: Miscellaneous SQL ConsStructs........ccuuemmmmmsssnmmmmmsssssmmsssssssnsssssssssesssssssnssns 523
1T L 545

iv

CHAPTER 1

Core SQL

Whether you're relatively new to writing SQL or you've been writing it for years, learning to write “good” SQL is a
process that requires a strong knowledge foundation of core syntax and concepts. This chapter provides a review of
the core concepts of the SQL language and its capabilities, along with descriptions of the common SQL commands
with which you should already be familiar. For those of you who have worked with SQL previously and have a good
grasp on the basics, this chapter will be a brief refresher to prepare you for the more detailed treatment of SQL we
examine in later chapters. If you're a new SQL user, you may want to read Beginning Oracle SQL first to make sure
you're comfortable with the basics. Either way, Chapter 1 “level sets” you with a whirlwind tour of the five core SQL
statements and provides a quick review of the tool we’ll be using to execute SQL: SQL*Plus.

The SQL Language

The SQL language was originally developed during the 1970s by IBM and was called Structured English Query
Language, or SEQUEL. The language was based on the model for relational database management systems (RDBMSs)
developed by E. E. Codd in 1969. The acronym was later shortened to SQL as a result of a trademark dispute. In 1986, the
American National Standards Institute (ANSI) adopted SQL as a standard, and in 1987, the International Organization
for Standardization (otherwise known as the ISO) did so as well. A piece of not-so-common knowledge is that the
official pronunciation of the language was declared to be “ess queue ell” by ANSI. Most people, including me, still use
the “see-qwell” pronunciation just because it flows a bit easier linguistically.

The purpose of SQL is simply to provide an interface to a database—in our case, Oracle. Every SQL statement
is a command, or instruction, to the database. SQL differs from other programming languages such as C and Java
in that it is intended to process data in sets, not individual rows. The language also doesn’t require that you provide
instructions on how to navigate to the data; this happens transparently, under the covers. But, as you'll see in the
chapters ahead, knowing about your data and how and where they are stored is very important if you want to write
efficient SQL in Oracle.

Although there are minor differences in how vendors (such as Oracle, IBM, and Microsoft) implement the
core functionality of SQL, the skills you learn in one database transfer to another. Basically, you can use the same
SQL statements to query, insert, update, and delete data and create, alter, and drop objects regardless of the
database vendor.

Although SQL is the standard for use with various RDBMSs, it is not particularly relational in practice
(I expand on this a bit later in the book). I recommend that you read C. J. Date’s book SQL and Relational Theory
(O’Reilly Media, 2011) for a detailed review of how SQL and relational theory intersect. Keep in mind that the
SQL language doesn’t always follow the relational model precisely; it doesn’t implement some elements of the
relational model at all, and it implements other elements improperly. The fact remains that because SQL is based
on this model, you must understand SQL and the relational model as well as know how to write SQL as correctly
and efficiently as possible.

CHAPTER 1 © CORE SQL

Interfacing to the Database

Numerous ways have been developed throughout the years for transmitting SQL to a database and getting results
back. The native interface to the Oracle database is the Oracle Call Interface (OCI). The OCI powers the queries
that are sent internally by the Oracle kernel to the database. You use the OCI any time you use one of Oracle’s
tools, such as SQL*Plus or SQL Developer. Various other Oracle tools, including SQL*Loader, Data Pump, and Real
Application Testing (RAT), use OCI as well as language-specific interfaces, such as Oracle JDBC-OCI, ODP.Net, Oracle
Precompilers, Oracle ODBC, and the Oracle C++ Call Interface (OCCI) drivers.

When you use programming languages such as COBOL or C, the statements you write are known as embedded
SQL statements and are preprocessed by a SQL preprocessor before the application program is compiled. Listing 1-1
shows an example of a SQL statement that could be used within a C/C++ block.

Listing 1-1. Embedded SQL Statement Used within a C/C++ Block

{
int a;
VAR
EXEC SQL SELECT salary INTO :a
FROM hr.employees
WHERE employee id = 108;

VALY

printf("The salary is %d\n", a);
VA

}

Other tools, such as SQL*Plus and SQL Developer, are interactive tools. You enter and execute commands, and
the output is displayed back to you. Interactive tools don’t require you to compile your code explicitly before running
it; you simply enter the command you wish to execute. Listing 1-2 shows an example of using SQL*Plus to execute a
statement.

Listing 1-2. Using SQL*Plus to Execute a SQL Statement

SOL> select salary
2 from hr.employees
3 where employee id = 108;

SALARY

In this book, we’ll use SQL*Plus for our example listings for consistency’s sake, but keep in mind that whichever
method or tool you use to enter and execute SQL statements, everything ultimately goes through the OCI. The bottom
line is that the tool you use doesn’t matter; the native interface is the same for all.

Review of SQL*Plus

SQL*Plus is a command-line tool provided with every Oracle installation regardless of platform (Windows, Unix).

Itis used to enter and execute SQL commands and to display the resulting output in a text-only environment. The tool
allows you to enter and edit commands, save and execute commands individually or via script files, and display the
output in nicely formatted report form. To start SQL*Plus you simply start sqlplus from your host’s command prompt.

CHAPTER 1 © CORE SQL

Connect to a Database

There are multiple ways to connect to a database from SQL*Plus. Before you can connect, however, you likely need to
have entries for the databases to which you need to connect entered in the $ORACLE_HOME /network/admin/tnsnames.ora file.
Two common ways to supply your connection information when you start SQL*Plus are shown in Listing 1-3; another
is to use the SQL*Plus connect command after SQL*Plus starts, as shown in Listing 1-4.

Listing 1-3. Connecting to SQL*Plus from the Windows Command Prompt

$ sqlplus hr@oral2c
SQL*Plus: Release 12.1.0.1.0 Production on Tue May 7 12:32:36 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.
Enter password:

Last Successful login time: Tue May 07 2013 12:29:09 -04:00

Connected to:

Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production

With the Partitioning, OLAP, Advanced Analytics and Real Application Testing options

SoL>

Listing 1-4. Connecting to SQL*Plus and Logging in to the Database from the SQL> Prompt

$ sqlplus /nolog
SOL*Plus: Release 12.1.0.1.0 Production on Tue May 7 12:34:21 2013
Copyright (c) 1982, 2013, Oracle. All rights reserved.

SQL> connect hr@oral2c
Enter password:
Connected.

SQL>

When starting SQL*Plus using the 12c version, you will notice a new feature that displays your last login time by
default. If you don’t want this to appear, simply use the option -nologintime.
To start SQL*Plus without being prompted to log in to a database, start SQL*Plus with the /nolog option.

Configuring the SQL*Plus Environment

SQL*Plus has numerous commands that allow you to customize the working environment and display options. The
SQL*Plus help data must be installed by the database administrator or it may not be available. There are three help
script files found in $0RACLE_HOME/SQLPLUS/ADMIN/HELP/ that drop, create, and populate the SQL*Plus help tables:
HLPBLD.SQL, HELPDROP. SQL, and HELPUS.SQL. Listing 1-5 shows the SQL*Plus commands available after entering the
SQL*Plus help index command at the SQL> prompt.

CHAPTER 1 © CORE SQL

Listing 1-5. SQL*Plus Command List
SQL> help index

Enter Help [topic] for help.

@ copy

@@ DEFINE

/ DEL
ACCEPT DESCRIBE
APPEND DISCONNECT
ARCHIVE LOG EDIT
ATTRIBUTE EXECUTE
BREAK EXIT
BTITLE GET
CHANGE HELP
CLEAR HOST
COLUMN INPUT
COMPUTE LIST
CONNECT PASSWORD

PAUSE
PRINT

PROMPT

QUIT

RECOVER

REMARK

REPFOOTER

REPHEADER

RESERVED WORDS (SOL)
RESERVED WORDS (PL/SOL)
RUN

SAVE

SET

SHOW

SHUTDOWN
SPOOL

SQLPLUS

START

STARTUP

STORE

TIMING

TTITLE

UNDEFINE

VARIABLE

WHENEVER OSERROR
WHENEVER SQLERROR
XQUERY

The set command is the primary command used for customizing your environment settings. Listing 1-6 shows
the help text for the set command.

Listing 1-6. SQL*Plus SET Command
SOL> help set

SET

Sets a system variable to alter the SQL*Plus environment settings
for your current session. For example, to:

- set the display width for data

- customize HTML formatting

- enable or disable printing of column headings

- set the number of lines per page

SET system_variable value
where system_variable and value represent one of the following clauses:

APPI[NFO]{OFF |ON|text}

ARRAY[SIZE] {15]|n}

AUTO[COMMIT] {OFF|ON|IMM[EDIATE]|n}
AUTOP[RINT] {OFF|ON}

NEWP[AGE] {1|n|NONE}
NULL text

NUMF[ORMAT] format

NUM[WIDTH] {10|n}

AUTORECOVERY {OFF |ON}
AUTOT[RACE] {OFF |ON| TRACE[ONLY]}
[EXP[LAIN]] [STAT[ISTICS]]
BLO[CKTERMINATOR] {.|c|ON|OFF}
CMDS[EP] {;|c|OFF|ON}
COLSEP {_|text}
CON[CAT] {.|c|ON|OFF}
COPYC[OMMIT] {0|n}
COPYTYPECHECK {ON|OFF}
DEF[INE] {&|c|ON|OFF}
DESCRIBE [DEPTH {1|n|ALL}]
[LINENUM {OFF|ON}] [INDENT {OFF|ON}]
ECHO {OFF|ON}
EDITF[ILE] file name[.ext]
EMB[EDDED] {OFF |ON}
ERRORL[OGGING] {ON|OFF}
[TABLE [schema.]tablename]
[TRUNCATE] [IDENTIFIER identifier]

ESC[APE] {\|c|OFF|ON}
ESCCHAR {@|?|%]|$|OFF}
EXITC[OMMIT] {ON|OFF}
FEED[BACK] {6|n|ON|OFF}
FLAGGER {OFF |ENTRY|INTERMED[IATE]|FULL}
FLU[SH] {ON|OFF}
HEA[DING] {ON|OFF}
HEADS[EP] {||c|ON|OFF}
INSTANCE [instance path|LOCAL]
LIN[ESIZE] {80|n}
LOBOF[FSET] {1|n}
LOGSOURCE [pathname]
LONG {80|n}
LONGC[HUNKSIZE] {80|n}
MARK[UP] HTML [OFF|ON]
[HEAD text] [BODY text] [TABLE text]
[ENTMAP {ON|OFF}]
[SPOOL {OFF|ON}]
[PRE[FORMAT] {OFF|ON}]
SoL>

CHAPTER 1 © CORE SQL

PAGES[IZE] {14|n}
PAU[SE] {OFF|ON|text}
RECSEP {WR[APPED]|EA[CH]|OFF}
RECSEPCHAR {_|c}
SERVEROUT[PUT] {ON|OFF}
[SIZE {n | UNLIMITED}]
[FOR[MAT] {WRA[PPED] |
WOR[D_WRAPPED] |
TRU[NCATED]}]
SHIFT[INOUT] {VIS[IBLE] |
INV[ISIBLE]}
SHOW[MODE] {OFF|ON}
SOLBL[ANKLINES] {OFF|ON}
SOLC[ASE] {MIX[ED] |
LO[WER] | UP[PER]}
SOLCO[NTINUE] {> | text}
SOLN[UMBER] {ON|OFF}
SOLPLUSCOMPAT[IBILITY]
{x.y[.z]}
SOLPRE[FIX] {#|c}
SOLP[ROMPT] {SOL>|text}
SOLT[ERMINATOR] {;|c|ON|OFF}
SUF[FIX] {SOL|text}
TAB {ON|OFF}
TERM[OUT] {ON|OFF}
TI[ME] {OFF|ON}
TIMI[NG] {OFF|ON}
TRIM[OUT] {ON|OFF}
TRIMS[POOL] {OFF|ON}
UND[ERLINE] {-|c|ON|OFF}
VER[IFY] {ON|OFF}
WRA[P] {ON|OFF}
XQUERY {BASEURI text|
ORDERING{UNORDERED |
ORDERED | DEFAULT} |
NODE{BYVALUE | BYREFERENCE |
DEFAULT}|
CONTEXT text}

Given the number of commands available, you can customize your environment easily to suit you best. One thing
to keep in mind is that the set commands aren’t retained by SQL*Plus when you exit/close the tool. Instead of typing
in each of the set commands you want to apply each time you use SQL*Plus, you can create a file named login.sql.
There are actually two files that SQL*Plus reads by default each time you start it. The first is glogin.sql and it can
be found in the directory $ORACLE_HOME/sqlplus/admin. If this file is found, it is read and the statements it contains
are executed. This allows you to store the SQL*Plus commands and SQL statements that customize your experience

across SQL*Plus sessions.

After reading glogin.sql, SQL*Plus looks for the login.sql file. This file must exist in either the directory
from which SQL*Plus was started or in a directory included in the path to which the environment variable SQLPATH
points. Any commands in login. sql will take precedence over those in glogin.sql. Since version 10g, Oracle reads
both glogin.sql and login.sql each time you either start SQL*Plus or execute the connect command from within

CHAPTER 1 © CORE SQL

SQL*Plus. Prior to 10g, the 1login.sql script was only executed when SQL*Plus started. The contents of a common
login.sql file are shown in Listing 1-7.

Listing 1-7. A Common login.sql File

SET LINES 3000

--Sets width of display line (default 80 characters)
SET PAGES 1000

-Sets number of lines per page (default 14 lines)

SET TIMING ON

--Sets display of elapsed time (default OFF)

SET NULL <null>

--Sets display of nulls to show <null> (default empty)
SET SQLPROMPT '& user@®& connect_identifier> '

--Sets the prompt to show connected user and instance

Note the use of the variables _user and connect_identifier in the SET SQLPROMPT command. These are two
examples of predefined variables. You may use any of the following predefined variables in your login.sql file or in
any other script file you may create:

e _connect_identifier (connection identifier used to make the database connection)

_date (current date)

_editor (the editor that is started when you use the EDIT command)

e o _version (current version of the installed Oracle database)

_o_release (full release number of the installed Oracle database)

_privilege (privilege level of the current connection)

_sqlplus_release (full release number of the installed SQL*Plus component)

_user (username used to make the connection)

Executing Commands

There are two types of commands that can be executed within SQL*Plus: SQL statements and SQL*Plus commands.
The SQL*Plus commands shown in Listings 1-5 and 1-6 are specific to SQL*Plus and can be used for customizing

the environment and executing commands that are specific to SQL*Plus, such as DESCRIBE and CONNECT. Executing

a SQL*Plus command requires only that you type the command at the prompt and press Enter. The command is
executed automatically. On the other hand, to execute SQL statements, you must use a special character to indicate
you wish to execute the entered command. You may use either a semicolon or a forward slash to do this. A semicolon
may be placed directly at the end of the typed command or on a following blank line. The forward slash must be
placed on a blank line to be recognized. Listing 1-8 shows how these two execution characters are used.

Listing 1-8. Execution Character Usage

SQL>select empno, deptno from scott.emp where ename = 'SMITH' ;
EMPNO DEPTNO

CHAPTER 1 © CORE SQL

SQL>select empno, deptno from scott.emp where ename = 'SMITH'
2
EMPNO DEPTNO
7369 20
SQL>select empno, deptno from scott.emp where ename = 'SMITH'
2/
EMPNO DEPTNO
7369 20
SQL>select empno, deptno from scott.emp where ename = 'SMITH'
2
SQL>/
EMPNO DEPTNO
7369 20
SQL>select empno, deptno from scott.emp where ename = 'SMITH'/
2
SoL>1
1* select empno, deptno from scott.emp where ename = 'SMITH'/
SQL>/
select empno, deptno from scott.emp where ename = 'SMITH'/
*

ERROR at line 1:
ORA-00936: missing expression

Notice the fifth example that puts / at the end of the statement. The cursor moves to a new line instead of
executing the command immediately. Then, if you press Enter again, the statement is entered into the SQL*Plus buffer
but is not executed. To view the contents of the SQL*Plus buffer, the 1ist command is used (abbreviated to 1). If you
then attempt to execute the statement in the buffer using /, which is how the / command is intended to be used, you
get an error because, originally, you placed / at the end of the SQL statement line. The forward slash is not a valid SQL
command and thus causes an error when the statement attempts to execute.

Another way to execute commands is to place them in a file. You can produce these files with the text editor of
your choice outside of SQL*Plus or you may invoke an editor directly from SQL*Plus using the EDIT command. The
EDIT command either opens a named file or creates a file if it doesn’t exist. The file must be in the default directory
or you must specify the full path of the file. To set the editor to one of your choice, simply set the predefined editor
variable using the following command: define _editor='/<full path>/myeditor.exe'. Files with the extension
.sql will execute without having to include the extension and can be run using either the @ or START command.
Listing 1-9 shows the use of both commands.

Listing 1-9. Executing .sql Script Files

SOL> @list_depts
DEPTNO DNAME LoC
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON
SQL>

CHAPTER 1 © CORE SQL

SOL> start list_depts
DEPTNO DNAME LocC

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON
SoL>
SQL>1
1* select * from scott.dept
SOL>

SQL*Plus has many features and options—far too many to cover here. For what we need in this book, the
previous overview should suffice. However, the Oracle documentation provides guides for SQL*Plus use and there are
numerous books, including Beginning Oracle SQL (as mentioned earlier), that go in to more depth if you're interested.

The Five Core SQL Statements

The SQL language contains many different statements. In your professional career you may end up using just a

small percentage of what is available to you. But isn’t that the case with almost any product you use? I once heard a
statistic that most people use 20 percent or less of the functionality available in the software products or programming
languages they use regularly. I don’t know whether this is actually true, but in my experience, it seems fairly accurate.
I have found the same basic SQL statement formats in use within most applications for almost 20 years. Very few
people ever use everything SQL has to offer—and they often implement improperly those features they do use
frequently. Obviously, we will not be able to cover all the statements and their options found in the SQL language.
This book is intended to provide you with deeper insight into the most commonly used statements and to help you
understand how to apply them more effectively.

In this book, we will examine five of the most frequently used SQL statements. These statements are SELECT,
INSERT, UPDATE, DELETE, and MERGE. Although we’ll address each of these core statements in some fashion, our focus
is primarily on the SELECT statement. Developing a good command of these five statements will provide a strong
foundation for your day-to-day work with the SQL language.

The SELECT Statement

The SELECT statement is used to retrieve data from one or more tables or other database objects. You should already
be familiar with the basics of the SELECT statement, so instead of reviewing the statement from the beginner’s point of
view, I want to review how a SELECT statement processes logically. You should have already learned the basic clauses
that form a common SELECT statement, but to build the foundation mind-set you need to write well-formed and
efficient SQL consistently, you need to understand how SQL processes.

How a query statement is processed logically may be quite different from its actual physical processing. The
Oracle cost-based optimizer (CBO) is responsible for generating the actual execution plan for a query, and we will
examine what the optimizer does, and how it does it and why. For now, note that the optimizer determines how to
access tables and the order in which to process them, and how to join multiple tables and apply filters. The logical
order of query processing occurs in a very specific order. However, the steps the optimizer chooses for the physical
execution plan can end up actually processing the query in a very different order. Listing 1-10 shows a query stub
that contains the main clauses of a SELECT statement with step numbers assigned to each clause in the order it is
processed logically.

CHAPTER 1 © CORE SQL

Listing 1-10. Logical Query Processing Order

5 SELECT <column list>
1 FROM <source object list>
1.1 FROM <left source object> <join type>
JOIN <right source object> ON <on predicates>
2 WHERE <where predicates>
3 GROUP BY <group by expression(s)>
4 HAVING <having predicates>
6 ORDER BY <order by list>

You should notice right away that SQL differs from other programming languages in that the first written
statement (SELECT) is not the first line of code that is processed; the FROM clause is processed first. Note that I show
two different FROM clauses in this listing. The one marked 1.1 is provided to show the difference when ANSI syntax is
used. It may be helpful to imagine that each step in the processing order creates a temporary dataset. As each step is
processed, the dataset is manipulated until a final result is formulated. It is this final result set of data that the query
returns to the caller.

To walk through each part of the SELECT statement in more detail, you need to use the query in Listing 1-11 that
returns a result set that contains a list of female customers that have placed more than four orders.

Listing 1-11. Female Customers Who Have Placed More Than Four Orders

SQL> select c.customer_id, count(o.order id) as orders ct
2 from oe.customers c

join oe.orders o

on c.customer_id = o.customer id

where c.gender = 'F'

group by c.customer_id

having count(o.order id) > 4

order by orders ct, c.customer_id
9 /

CUSTOMER_ID ORDERS_CT

o ~N OV bW

146 5
147 5
The FROM Clause

The FROM clause lists the source objects from which data are selected. This clause can contain tables, views,
materialized views, partitions, or subpartitions, or may specify a subquery that identifies objects. If multiple source
objects are used, this logical processing phase also applies to each join type and ON predicate. We explore join types in
more detail later, but note that, as joins are processed, they occur in the following order:

1. Crossjoin, also called a Cartesian product
2. Innerjoin

3. Outerjoin

CHAPTER 1 © CORE SQL

In the example query in Listing 1-11, the FROM clause lists two tables: customers and orders. They are joined
on the customer_id column. So, when this information is processed, the initial dataset that is produced by the FROM
clause includes rows in which customer_id matches in both tables. The result set contains 105 rows at this point. To
verify this is true, simply execute only the first four lines of the example query, as shown in Listing 1-12.

Listing 1-12. Partial Query Execution through the FROM Clause Only

SQL> select c.customer_id cust_id, o.order_id ord_id, c.gender
2 from oe.customers c
3 join oe.orders o
4 on c.customer_id = o.customer_id;

CUST ID ORD_ID G CUST_ID ORD_ID G CUST ID ORD_ID

()

147 2450 F 101 2430 M 109 2394 M
147 2425 F 101 2413 M 116 2453 M
147 2385 F 101 2447 M 116 2428 M
147 2366 F 101 2458 M 116 2369 M
147 2396 F 102 2431 M 116 2436 M
148 2451 M 102 2414 M 117 2456 M
148 2426 M 102 2432 M 117 2429 M
148 2386 M 102 2397 M 117 2370 M
148 2367 M 103 2437 F 117 2446 M
148 2406 M 103 2415 F 118 2457 M
149 2452 M 103 2433 F 118 2371 M
149 2427 M 103 2454 F 120 2373 M
149 2387 M 104 2438 F 121 2374 M
149 2368 M 104 2416 F 122 2375 M
149 2434 M 104 2355 F 123 2376 F
150 2388 M 104 2354 F 141 2377 M
151 2389 M 105 2439 F 143 2380 M
152 2390 M 105 2417 F 144 2445 M
153 2391 M 105 2356 F 144 2422 M
154 2392 F 105 2358 F 144 2382 M
155 2393 M 106 2441 M 144 2363 M
156 2395 F 106 2418 M 144 2435 M
157 2398 M 106 2359 M 145 2448 M
158 2399 M 106 2381 M 145 2423 M
159 2400 M 107 2442 F 145 2383 M
160 2401 M 107 2419 F 145 2364 M
161 2402 M 107 2360 F 145 2455 M
162 2403 M 107 2440 F 119 2372 M
163 2404 M 108 2443 M 142 2378 M
164 2405 M 108 2420 M 146 2449 F
165 2407 M 108 2361 M 146 2424 F
166 2408 F 108 2357 M 146 2384 F
167 2409 M 109 2444 M 146 2365 F
169 2411 F 109 2421 M 146 2379 F
170 2412 M 109 2362 M 168 2410 M

105 rows selected.

10

CHAPTER 1 © CORE SQL

Note | formatted the result of this output manually to make it fit nicely on the page. The actual output was displayed
over 105 separate lines.

The WHERE Clause

The WHERE clause provides a way to limit conditionally the rows emitted to the query’s final result set. Each condition,
or predicate, is entered as a comparison of two values or expressions. The comparison matches (evaluates to TRUE) or
does not match (evaluates to FALSE). If the comparison is FALSE, then the row is not included in the final result set.

Ineed to digress just a bit to cover an important aspect of SQL related to this step. Actually, the possible values
of a logical comparison in SQL are TRUE, FALSE, and UNKNOWN. The UNKNOWN value occurs when a null is involved.
Nulls compared with anything or nulls used in expressions evaluate to null, or UNKNOWN. A null represents a missing
value and can be confusing because of inconsistencies in how nulls are treated within different elements of the SQL
language. I address how nulls affect the execution of SQL statements throughout the book, although I mention the
topic only briefly at this point. What I stated previously is still basically true; comparisons return either TRUE or FALSE.
What you'll find is that when a null is involved in a filter comparison, it is treated as if it is FALSE.

In our example, there is a single predicate used to limit the result only to females who have placed orders. If you
review the intermediate result after the FROM clause was processed (see Listing 1-12), you'll note that only 31 of the
105 rows were placed by female customers (gender = ‘F’). Therefore, after the WHERE clause is applied, the
intermediate result set is reduced from 105 rows to 31 rows.

After the WHERE clause is applied, the detailed result set is ready. Note that I use the phrase detailed result set.
What I mean is the rows that satisfy the query requirements are now available. Other clauses may be applied
(GROUP BY, HAVING) that aggregate and limit the final result set further that the caller receives, but it is important to
note that, at this point, all the data your query needs to compute the final answer are available.

The WHERE clause is intended to restrict, or reduce, the result set. The less restrictions you include, the more data
your final result set contains. The more data you need to return, the longer the query takes to execute.

The GROUP BY Clause

The GROUP BY clause aggregates the filtered result set available after processing the FROM and WHERE clauses. The
selected rows are grouped by the expression(s) listed in this clause to produce a single row of summary information
for each group. You may group by any column of any object listed in the FROM clause, even if you don’t intend to
display that column in the list of output columns. Conversely, any nonaggregate column in the select list must be
included in the GROUP BY expression.

There are two additional operations that can be included in a GROUP BY clause: ROLLUP and CUBE. The ROLLUP
operation is used to produce subtotal values. The CUBE operation is used to produce cross-tabulation values. If you use
either of these operations, you get more than one row of summary information. Both these operations are discussed
in detail in Chapter 7.

In the example query, the requested grouping is customer_id. This means that there is only one row for each
distinct customer_id. Of the 31 rows that represent the females who placed orders that made it through the WHERE
clause processing, there are 11 distinct customer_id values, as shown in Listing 1-13.

11

CHAPTER 1 © CORE SQL

Listing 1-13. Partial Query Execution through the GROUP BY Clause

SQL> select c.customer_id, count(o.order id) as orders ct
2 from oe.customers c
3 join oe.orders o
4 on c.customer_id = o.customer_id
5 where gender = 'F'
6 group by c.customer_id;

CUSTOMER_ID ORDERS_CT

147
146
11 rows selected.

H
o
vt

(O, T T S N NG T S =Y

Notice that the output from the query, although grouped, is not ordered. The display makes it appear as though
the rows are ordered by order_ct, but this is more coincidence and not guaranteed behavior. This is an important
item to remember; the GROUP BY clause does not ensure ordering of data. If you want the list to display in a specific
order, you have to specify an ORDER BY clause.

The HAVING Clause

The HAVING clause restricts the grouped summary rows to those for which the condition(s) in the clause are TRUE.
Unless you include a HAVING clause, all summary rows are returned. The GROUP BY and HAVING clauses are actually
interchangeable positionally (it doesn’t matter which one comes first). However, it seems to make more sense to code
them with the GROUP BY clause first, because GROUP BY is processed logically first. Essentially, the HAVING clause is
a second WHERE clause that is evaluated after GROUP BY occurs, and is used to filter on grouped values. Because the
WHERE clause is applied before the GROUP BY occurs, you cannot filter grouped results in the WHERE clause; you must
use the HAVING clause instead.

In our example query, the HAVING clause, HAVING COUNT (o.order id) > 4, limits the grouped result data of
11 rows down to two rows. You can confirm this by reviewing the list of rows returned after GROUP BY is applied,
as shown in Listing 1-13. Note that only customers 146 and 147 have placed more than four orders. The two rows that
make up the final result set are now ready.

The SELECT List

The SELECT list is where the columns included in the final result set from your query are provided. A column can be an
actual column from a table, an expression, or even the result of a SELECT statement, as shown in Listing 1-14.

12

CHAPTER 1 © CORE SQL

Listing 1-14. Example Query Showing SELECT List Alternatives

SQL> select c.customer_id, c.cust first name||' '||c.cust _last name,
2 (select e.last name from hr.employees e where e.employee id = c.account mgr id) acct mgr)
3 from oe.customers c;

CUSTOMER_ID CUST NAME ACCT_MGR
147 Ishwarya Roberts Russell
148 Gustav Steenburgen Russell
931 Buster Edwards Cambrault
981 Daniel Gueney Cambrault

319 rows selected.

When another SELECT statement is used to produce the value of a column, the query must return only one row
and one column value. These types of subqueries are referred to as scalar subqueries. Although this can be very useful
syntax, keep in mind that the scalar subquery is executed once for each row in the result set. There are optimizations
available that may eliminate some duplicate executions of the subquery, but the worst-case scenario is that each row
requires this scalar subquery to be executed. Imagine the possible overhead involved if your result set had thousands,
or millions, of rows! I review scalar subqueries later in the book and discuss how to use them optimally.

Another option you may need to use in the SELECT list is the DISTINCT clause. The example provided here doesn’t
use it, but I want to mention it briefly. The DISTINCT clause causes duplicate rows to be removed from the dataset
produced after the other clauses have been processed.

After the SELECT list is processed, you now have the final result set for your query. The only thing that remains to
be done, if it is included, is to sort the result set into a desired order.

The ORDER BY Clause

The ORDER BY clause is used to order the final set of rows returned by the statement. In this case, the requested sort
order was to be by orders_ct and customer_id. The orders_ct column is the value computed using the COUNT
aggregate function in the GROUP BY clause. As shown in Listing 1-13, there are two customers that each placed more
than four orders. Because each customer placed five orders, the order_ct is the same, so the second ordering column
determines the final display order. As shown in Listing 1-15, the final sorted output of the query is a two-row dataset
ordered by customer_id.

Listing 1-15. Example Query Final Output

SOL> select c.customer_id, count(o.order_id) as orders ct
2 from oe.customers c

join oe.orders o

on c.customer_id = o.customer_id

where c.gender = 'F'

group by c.customer_id

having count(o.order id) > 4

order by orders ct, c.customer_id
9 /

CUSTOMER_ID ORDERS_CT

co~N YU B~ W

13

CHAPTER 1 © CORE SQL

When ordered output is requested, Oracle must take the final set of data after all other clauses have been
processed and sort them as specified. The size of the data that needs to be sorted is important. When I say size, | mean
total bytes of data in the result set. To estimate the size of the dataset, multiply the number of rows by the number of
bytes per row. The bytes per row are determined by summing the average column lengths of each of the columns in
the SELECT list.

The example query requests only the customer id and orders_ct column values in the SELECT list. Let’s use ten
as our estimated bytes-per-row value. In Chapter 6, I show you where to find the optimizer’s estimate for this value.
So, given that we only have two rows in the result set, the sort size is actually quite small, approximately 20 bytes.
Remember, this is only an estimate, but the estimate is an important one.

Small sorts should be accomplished entirely in memory whereas large sorts may have to use temporary disk
space to complete the sort. As you may likely deduce, a sort that occurs in memory is faster than a sort that must use
disk. Therefore, when the optimizer estimates the effect of sorting data, it has to consider how big the sort is to adjust
how to accomplish getting the query result in the most efficient way. In general, consider sorts as a fairly expensive
overhead to your query processing time, particularly if the size of your result set is large.

The INSERT Statement

The INSERT statement is used to add rows to a table, partition, or view. Rows can be inserted in either a single-table
or multitable method. A single-table insert inserts values into one row of one table either by specifying the values
explicitly or by retrieving the values using a subquery. The multitable insert inserts rows into one or more tables and
computes the row values it inserts by retrieving the values using a subquery.

Single-Table Inserts

The first example in Listing 1-16 illustrates a single-table insert using the VALUES clause. Each column value is entered
explicitly. The column list is optional if you include values for each column defined in the table. However, if you only
want to provide values for a subset of the columns, you must specify the column names in the column list. A good
practice is to include the column list regardless of whether you specify values for all the columns. Doing so acts to
self-document the statement and also helps reduce possible errors that might occur in the future should someone add
anew column to the table.

Listing 1-16. Single-Table Insert

SQL> insert into hr.jobs (job_id, job title, min_salary, max_salary)
2 values ('IT PM', 'Project Manager', 5000, 11000) ;
1 row created.

SQL> insert into scott.bonus (ename, job, sal)
2 select ename, job, sal * .10
3 from scott.emp;

14 rows created.

The second example in Listing 1-16 illustrates an insert using a subquery, which is a very flexible option for
inserting rows. The subquery can be written to return one or more rows. Each row returned is used to supply column
values for the new rows to be inserted. The subquery can be as simple or as complex as needed to satisfy your needs.
In this example, we use the subquery to compute a 10 percent bonus for each employee based on his or her current
salary. The bonus table actually has four columns, but we only populate three of them with this insert. The comm
column isn’t populated with a value from the subquery and we do not include it in the column list. Because we don’t
include this column, the value for it is null. Note that if the comm column had a NOT NULL constraint, you would get a
constraint error and the statement would fail.

14

CHAPTER 1 © CORE SQL

Multitable Inserts

The multitable insert example in Listing 1-17 illustrates how rows returned from a single subquery can be used to insert
rows into more than one table. We start with three tables: small_customers, medium_customers, and large customers.
Let’s populate these tables with customer data based on the total amount of orders a customer has placed. The subquery
sums the order_total column for each customer, and then the insert places a row conditionally in the proper table based
on whether the customer is considered to be small (less than $10,000 of total orders), medium (between $10,000 and
$99,999.99), or large (greater than or equal to $100,000).

Listing 1-17. Multitable Insert

SOL> select * from small_customers ;
no rows selected
SOL> select * from medium_customers ;
no rows selected
SOL> select * from large_customers ;
no rows selected

SQL> insert all
2 when sum_orders < 10000 then
into small_customers
when sum_orders >= 10000 and sum_orders < 100000 then
into medium_customers
else
into large customers
select customer id, sum(order total) sum orders
from oe.orders
group by customer_id ;

O W ooNOUV b~ W

=

47 rows created.
SOL> select * from small_customers ;

CUSTOMER_ID SUM_ORDERS

120 416
121 4797
152 7616.8
157 7110.3
160 969.2
161 600
162 220
163 510
164 1233
165 2519
166 309
167 48

12 rows selected.

15

CHAPTER 1 © CORE SQL

SOL> select * from medium_customers ;
CUSTOMER _ID SUM_ORDERS

102 69211.4

103 20591.4

105 61376.5
106 36199.5
116 32307
119 16447.2
123 11006.2
141 38017.8
142 25691.3
143 27132.6
145 71717.9
146 88462.6
151 17620
153 48070.6
154 26632
155 23431.9
156 68501
158 25270.3
159 69286.4
168 45175
169 15760.5
170 66816

22 rows selected.
SOL> select * from large customers ;

CUSTOMER _ID SUM_ORDERS

101 190395.1
104 146605.5
107 155613.2
108 213399.7
109 265255.6
117 157808.7
118 100991.8
122 103834.4
144 160284.6
147 371278.2
148 185700.5
149 403119.7
150 282694.3

13 rows selected.

16

CHAPTER 1 © CORE SQL

Note the use of the ALL clause after the INSERT keyword. When ALL is specified, the statement performs unconditional
multitable inserts, which means that each WHEN clause is evaluated for each row returned by the subquery regardless of
the outcome of a previous condition. Therefore, you need to be careful about how you specify each condition. For example,
ifThad used WHEN sum orders < 100000 instead of the range I specified, the medium_customers table would have
included the rows that were also inserted into small_customers.

Specify the FIRST option to cause each WHEN to be evaluated in the order it appears in the statement and to skip
subsequent WHEN clause evaluations for a given subquery row. The key is to remember which option, ALL or FIRST,
best meets your needs, then use the one most suitable.

The UPDATE Statement

The UPDATE statement is used to change the column values of existing rows in a table. The syntax for this statement is
composed of three parts: UPDATE, SET, and WHERE. The UPDATE clause specifies the table to update. The SET clause specifies
which columns are changed and the modified values. The WHERE clause is used to filter conditionally which rows are
updated. This clause is optional; if it is omitted, the update operation is applied to all rows of the specified table.

Listing 1-18 demonstrates several different ways an UPDATE statement can be written. First, I create a duplicate of
the employees table called employees2, then I execute several different updates that accomplish basically the same
task: the employees in department 90 are updated to have a 10 percent salary increase and, in the case of example 5,
the commission_pct column is also updated. The following list includes the different approaches taken:

Example 1: Update a single column value using an expression.
Example 2: Update a single column value using a subquery.

Example 3: Update a single column using a subquery in the WHERE clause to determine
which rows to update.

Example 4: Update a table using a SELECT statement to define the table and the
column values.

Example 5: Update multiple columns using a subquery.

Listing 1-18. UPDATE Statement Examples

SOL> -- create a duplicate employees table
SQL> create table employees2 as select * from employees ;
Table created.

SOL> -- add a primary key
SQL> alter table employees2
1 add constraint emp2_emp_id pk primary key (employee id) ;

Table altered.

SOL> -- retrieve list of employees in department 90
SOL> select employee id, last name, salary
2 from employees where department_id = 90 ;

EMPLOYEE_ID LAST_NAME SALARY
100 King 24000
101 Kochhar 17000
102 De Haan 17000

3 rows selected.

17

CHAPTER 1 © CORE SQL

SOL> -- Example 1: Update a single column value using an expression
SOL> update employees2
2 set salary = salary * 1.10 -- increase salary by 10%
3 where department_id = 90 ;
3 rows updated.
SQL> commit ;

Commit complete.

SOL> select employee id, last_name, salary
2 from employees2 where department id = 90 ;

EMPLOYEE_ID LAST_NAME SALARY

100 King 26400 -- previous value 24000
101 Kochhar 18700 -- previous value 17000
102 De Haan 18700 -- previous value 17000

3 rows selected.
SQL> -- Example 2: Update a single column value using a subquery

SOL> update employees
2 set salary = (select employees2.salary
3 from employees2
4 where employees2.employee_id = employees.employee id
5 and employees.salary != employees2.salary)
6 where department id = 90 ;

3 rows updated.

SQL> select employee_id, last_name, salary
2 from employees where department_id = 90 ;

EMPLOYEE_ID LAST_NAME SALARY
100 King 26400
101 Kochhar 18700
102 De Haan 18700

3 rows selected.
SQL> rollback ;
Rollback complete.

SOL> -- Example 3: Update single column using subquery in
SOL> -- WHERE clause to determine which rows to update

18

CHAPTER 1

SOL> update employees
2 set salary = salary * 1.10
3 where department _id in (select department id
4 from departments

5 where department name = 'Executive') ;

3 rows updated.
SOL> select employee id, last name, salary
2 from employees
3 where department_id in (select department id

4 from departments
5 where department name = 'Executive') ;
EMPLOYEE_ID LAST NAME SALARY
100 King 26400
101 Kochhar 18700
102 De Haan 18700

3 rows selected.
SQL> rollback ;
Rollback complete.

SQL> -- Example 4: Update a table using a SELECT statement
SQL> -- to define the table and column values

SOL> update (select eil.salary, e2.salary new_sal

2 from employees el, employees2 e2
3 where el.employee id = e2.employee_id
4 and el.department_id = 90)

5 set salary = new_sal;
3 rows updated.

SOL> select employee id, last name, salary, commission_pct
2 from employees where department id = 90 ;

EMPLOYEE_ID LAST_NAME SALARY COMMISSION_PCT
100 King 26400
101 Kochhar 18700
102 De Haan 18700

3 rows selected.
SQL> rollback ;
Rollback complete.

SQL> -- Example 5: Update multiple columns using a subquery

CORE SQL

19

CHAPTER 1 © CORE SQL

SOL> update employees
2 set (salary, commission pct) = (select employees2.salary, .10 comm pct
3 from employees2
4 where employees2.employee id = employees.employee id
5 and employees.salary != employees2.salary)
6 where department_id = 90 ;

3 rows updated.
SOL> select employee id, last name, salary, commission pct
2 from employees where department_id = 90 ;

EMPLOYEE_ID LAST_NAME SALARY COMMISSION_PCT
100 King 26400 .1
101 Kochhar 18700 .1
102 De Haan 18700 .1

3 rows selected.
SQL> rollback ;
Rollback complete.

SQL>

The DELETE Statement

The DELETE statement is used to remove rows from a table. The syntax for this statement is composed of three parts:
DELETE, FROM, and WHERE. The DELETE keyword stands alone. Unless you decide to use a hint, which we examine later,
there are no other options associated with the DELETE keyword. The FROM clause identifies the table from which rows
are to be deleted. As the examples in Listing 1-19 demonstrate, the table can be specified directly or via a subquery.
The WHERE clause provides any filter conditions to help determine which rows are deleted. If the WHERE clause is
omitted, the DELETE operation deletes all rows in the specified table.

Listing 1-19. DELETE Statement Examples

SQL> select employee_id, department_id, last_name, salary
2 from employees2
3 where department_id = 90;

EMPLOYEE_ID DEPARTMENT_ID LAST_NAME SALARY
100 90 King 26400
101 90 Kochhar 18700
102 90 De Haan 18700

3 rows selected.
SOL> -- Example 1: Delete rows from specified table using
SQL> -- a filter condition in the WHERE clause
SOL> delete from employees2
2 where department_id = 90;

20

CHAPTER 1 © CORE SQL

3 rows deleted.

SQL> select employee id, department_id, last name, salary
2 from employees2
3 where department_id = 90;

no rows selected

SQL> rollback;

Rollback complete.

SOL> select employee id, department_id, last _name, salary

2 from employees2
3 where department_id = 90;

EMPLOYEE_ID DEPARTMENT ID LAST_NAME SALARY
100 90 King 26400
101 90 Kochhar 18700
102 90 De Haan 18700

3 rows selected.

SOL> -- Example 2: Delete rows using a subquery in the FROM clause
SOL> delete from (select * from employees2 where department_id = 90);

3 rows deleted.

SOL> select employee id, department_id, last _name, salary
2 from employees2
3 where department_id = 90;

no rows selected

SQL> rollback;

Rollback complete.

SQL> select employee_id, department_id, last_name, salary

2 from employees2
3 where department_id = 90;

EMPLOYEE_ID DEPARTMENT ID LAST_NAME SALARY
100 90 King 26400
101 90 Kochhar 18700
102 90 De Haan 18700

3 rows selected.

21

CHAPTER 1 © CORE SQL

SOL> -- Example 3: Delete rows from specified table using
SOL> -- a subquery in the WHERE clause
SOL> delete from employees2

2 where department_id in (select department id

3 from departments

4 where department_name = 'Executive');

3 rows deleted.

SOL> select employee id, department_id, last_name, salary
2 from employees2
3 where department_id = 90;

no rows selected
SQL> rollback;
Rollback complete.
SoL>

Listing 1-19 demonstrates several different ways a DELETE statement can be written. Note that I am using the
employees2 table created in Listing 1-18 for these examples. The following are the different delete methods that you
can use:

Example 1: Delete rows from a specified table using a filter condition in the WHERE clause.
Example 2: Delete rows using a subquery in the FROM clause.

Example 3: Delete rows from a specified table using a subquery in the WHERE clause.

The MERGE Statement

The MERGE statement is a single command that combines the ability to update or insert rows into a table by deriving
conditionally the rows to be updated or inserted from one or more sources. It is used most frequently in data
warehouses to move large amounts of data, but its use is not limited only to data warehouse environments. The big
value-add this statement provides is that you have a convenient way to combine multiple operations into one, which
allows you to avoid issuing multiple INSERT, UPDATE, and DELETE statements. And, as you'll see later in the book, if you
can avoid doing work you really don’t have to do, your response times will likely improve.

The syntax for the MERGE statement is as follows:

MERGE <hint>

INTO <table_name>

USING <table_view_or_query>

ON (<conditiony)

WHEN MATCHED THEN <update_ clause>

DELETE <where_clause>

WHEN NOT MATCHED THEN <insert clause>

[LOG ERRORS <log errors clause> <reject limit <integer | unlimited>];

To demonstrate the use of the MERGE statement, Listing 1-20 shows how to create a test table and then insert or
update rows appropriately into that table based on the MERGE conditions.

22

Listing 1-20. MERGE Statement Example
SOL> create table dept60 bonuses
2 (employee id number
3 ,bonus_amt number);
Table created.
SQL> insert into dept60 bonuses values (103, 0);
1 row created.
SQL> insert into dept60_bonuses values (104, 100);
1 row created.
SQL> insert into dept60_bonuses values (105, 0);
1 row created.
SQL> commit;
Commit complete.
SOL> select employee_id, last_name, salary
2 from employees
3 where department_id = 60 ;
EMPLOYEE_ID LAST_NAME
103 Hunold
104 Ernst
105 Austin
106 Pataballa
107 Lorentz

5 rows selected.

SOL> select * from dept60_bonuses;

EMPLOYEE_ID BONUS_AMT
103 0
104 100
105 0

3 rows selected.

SOL> merge into dept60 bonuses b
2 using (
3 select employee id, salary, department id
4 from employees

SALARY

CHAPTER 1

CORE SQL

23

CHAPTER 1 © CORE SQL

where department_id = 60) e
on (b.employee id = e.employee id)
when matched then
update set b.bonus_amt = e.salary * 0.2
where b.bonus_amt = 0
10 delete where (e.salary > 7500)
11 when not matched then
12 insert (b.employee id, b.bonus_amt)
13 values (e.employee id, e.salary * 0.1)
14 where (e.salary < 7500);

O 0o ~N O WU

4 rows merged.

SOL> select * from dept60_bonuses;

EMPLOYEE_ID BONUS_AMT
104 100
105 960
106 480
107 420

4 rows selected.
SQL> rollback;
Rollback complete.
SoL>

The MERGE accomplished the following:
e Two rows were inserted (employee_ids 106 and 107).
e Onerow was updated (employee_id 105).
e Onerow was deleted (employee id 103).
e One rowremained unchanged (employee_id 104).

Without the MERGE statement, you would have had to write at least three different statements to complete the
same work.

Summary

Asyou can tell from the examples shown so far, the SQL language offers many alternatives that can produce the same
result set. What you may have also noticed is that each of the five core statements can use similar constructs, such as
subqueries. The key is to learn which constructs are the most efficient under various circumstances. We look at how to
do this later.

If you had any trouble following the examples in this chapter, make sure to take the time to review either
Beginning Oracle SQL (mentioned earlier) or The SQL Reference Guide in the Oracle documentation. The rest of this
book assumes you are comfortable with the basic constructs for each of the five core SQL statements: SELECT, INSERT,
UPDATE, DELETE, and MERGE.

24

CHAPTER 2

SQL Execution

You likely learned the mechanics of writing basic SQL in a relatively short period of time. Throughout the course of a
few weeks or few months, you became comfortable with the general statement structure and syntax, how to filter, how
to join tables, and how to group and order data. But, how far beyond that initial level of proficiency have you traveled?
Writing complex SQL that executes efficiently is a skill that requires you to move beyond the basics. Just because your
SQL gets the job done doesn’t mean it does the job well.

In this chapter, I'm going to raise the hood and look at how SQL executes from the inside out. I'll discuss basic
Oracle architecture and introduce the cost-based query optimizer. You'll learn how and why the way you formulate
your SQL statements affects the optimizer’s ability to produce the most efficient execution plan possible. You may
already know what to do, but understanding how SQL execution works will help you help Oracle accomplish the
results you need in less time and with fewer resources.

Oracle Architecture Basics

The SQL language is seemingly easy enough that you can learn to write simple SQL statements in fairly short order.
But, just because you can write SQL statements that are functionally correct (in other words, produce the proper result
set) doesn’t mean you've accomplished the task in the most effective and efficient way.

Moving beyond basic skills requires deeper understanding. For instance, when I learned to drive, my father
taught me the basics. We walked around the car and discussed the parts of the car that he thought were important to
be aware of as the driver of the vehicle. We talked about the type of gas I should put in the car, the proper air pressure
for the tires, and the importance of getting regular oil changes. Being aware of these things would help make sure the
vehicle was in good condition when I wanted to drive it.

He then taught me the mechanics of driving. I learned how to start the engine, shift gears, increase and decrease
my speed, use the brake, use turn signals, and so on. But, what he didn’t teach me was specifically how the engine
worked, how to change the oil myself, or anything else other than what I needed to do to allow me to drive the vehicle
safely from place to place. If I needed my car to do anything aside from what I learned, I had to take it to a professional
mechanic, which isn’t a bad thing. Not everyone needs to have the skills and knowledge of a professional mechanic
just to drive a car. However, the analogy applies to anyone who writes SQL. You can learn the basics and be able to get
your applications from place to place; but, without extending your knowledge, I don’t believe you'll ever be more than
an everyday driver. To get the most out of SQL, you need to understand how it does what it does, which means you
need to understand the basics of the underlying architecture on which the SQL you write will execute.

Figure 2-1 depicts how most people view the database when they first learn to write SQL. It is simply a black box
to which they direct SQL requests and from which they get data back. The “machinery” inside the database is
a mystery.

25

CHAPTER 2 © SQL EXECUTION

SQL request

SELECT ename, sal T
R (patabase
WHERE sal > 2500

Data

ENAME SAL

---------------- ~
JONES 2975

BLAKE 2850

SCOTT 3000

KING 5000

FORD 3000

Figure 2-1. Using SQL and the database

The term Oracle database is typically used to refer to the files, stored on disk, where data reside along with the
memory structures used to manage those files. In reality, the term database belongs to the data files; the term instance
belongs to the memory structures and the processes. An instance consists of the system global area (SGA) and a set of
background processes. Each user connection to the database is managed via a server process. Each client connection
is associated with server processes that are each allocated their own private memory area called the program, or
process, global area (PGA).

The Oracle Concepts Guide goes into detail about each of the memory structures and processes. I think it’s a
great idea for everyone who will use Oracle to read the Oracle Concepts Guide. For our purposes, however, I limit my
discussion to a few key areas to help you understand how SQL operates. Specifically, I review two areas of the SGA: the
shared pool (specifically, the library cache within the shared pool) and the database buffer cache. Later in the book,

I discuss some particulars about the PGA, but for now, I'm keeping our review limited to the SGA . Note that these
discussions will present a fairly broad picture. As I said, I don’t want to overwhelm you, but I do think this is critical
information on which to get a grasp before you go any further.

SGA: The Shared Pool

The shared pool is one of the most critical memory components, particularly when it comes to how SQL executes.
The way you write SQL affects more than the individual SQL statement itself. The combination of all SQL that executes
against the database has a tremendous effect on overall performance and scalability resulting from how it affects the
shared pool.

The shared pool is where Oracle caches program data. Every SQL statement executed has its parsed form stored
in the shared pool. The area within the shared pool where statements are stored is called the library cache. Even
before any statement is parsed, Oracle checks the library cache to determine whether that same statement already
exists there. If it does, then Oracle retrieves and uses the cached information instead of going through all the work
to parse the same statement again. The same thing goes for any PL/SQL (PL/SQL is Oracle’s Procedural Language
extension to SQL) code you run. The really nifty part is that, no matter how many users may want to execute the same
SQL statement, Oracle typically only parses that statement once and then shares it among all users who want to use it.
Now maybe you can understand why the shared pool gets its name.

SQL statements you write aren’t the only things stored in the shared pool. The system parameters Oracle uses
are stored in the shared pool as well. In an area called the dictionary cache, Oracle also stores information about all
the database objects. In general, Oracle stores pretty much everything you can think of in the shared pool. As you can
imagine, this makes the shared pool a very busy and important memory component.

26

CHAPTER 2 © SQL EXECUTION

Because the memory area allocated to the shared pool is finite, statements that get loaded originally may not stay
there for very long as new statements are executed. A least recently used (LRU) algorithm regulates how objects in
the shared pool are managed. To borrow an accounting term, it’s similar to a FIFO (first in; first out) system. The basic
idea is that statements that are used most frequently and most currently are retained. Unlike a straight FIFO method,
however, how frequently the same statements are used affects how long they remain in the shared pool. If you execute
a SELECT statement at 8 AM and then execute the same statement again at 4 PM, the parsed version that was stored in
the shared pool at 8 AM may not still be there. Depending on the overall size of the shared pool and how much activity
it has seen between 8 AM and 4 PM—Oracle needs space to store the latest information throughout the day—it simply
reuses older areas and overlays newer information into them. But, if you execute a statement every few seconds
throughout the day, the frequent reuse causes Oracle to retain that information over something else that may have
been originally stored later than your statement but hasn’t been executed frequently, or at all, since it was loaded.

One of the things you need to keep in mind as you write SQL is that, to use the shared pool most efficiently,
statements need to be shareable. If every statement you write is unique, you basically defeat the purpose of the shared
pool. The less shareable it is, the more effect you'll see on overall response times. I show you exactly how expensive
parsing can be in the next section.

The Library Cache

The first thing that must happen to every SQL statement you execute is that it must be parsed and loaded into the
library cache. The library cache, as mentioned earlier, is the area within the shared pool that holds previously parsed
statements. Parsing involves verifying the statement syntax, validating objects being referred to, and confirming

user privileges on the objects. If these checks are passed, the next step is for Oracle to determine whether that same
statement has been executed previously. If it has, then Oracle grabs the stored information from the previous parse
and reuses it. This type of parse is called a soft parse. If the statement hasn’t been executed previously, then Oracle
does all the work to develop the execution plan for the current statement and then stores it in the cache for later reuse.
This type of parse is called a hard parse.

Hard parses require Oracle to do a lot more work than soft parses. Every time a hard parse occurs, Oracle must
gather all the information it needs before it can actually execute the statement. To get the information it needs, Oracle
executes a bunch of queries against the data dictionary. The easiest way to see what Oracle does during a hard parse is
to turn on extended SQL tracing, execute a statement, and then review the trace data. Extended SQL tracing captures
every action that occurs, so not only do you see the statement you execute, but also you see every statement that
Oracle must execute as well. Because I haven’t covered the details of how tracing works and how to read a trace file,
I'm not going to show the detailed trace data. Instead, Table 2-1 provides the list of system tables that were queried
during a hard parse of select * from employees where department_id = 60.

Table 2-1. System Objects Queried during Hard Parse

Tables No. of Queries Purpose

aud_object_opt$ 1 Object audit data

ccol$ 1 Constraint column-specific data
cdef$ 4 Constraint-specific definition data
col$ 1 Table column-specific data
hist_head$ 1 Histogram header data

histgrm$ 1 Histogram specifications

icol$ 1 Index columns

ind$ 1 Indexes

(continued)

27

CHAPTER 2 © SQL EXECUTION

Table 2-1. (continued)

Tables No. of Queries Purpose

ind_stats$ 1 Index statistics

obj$ 3 Objects

objauth$ 2 Table authorizations
opt_directive own$ 1 SQL plan directives

seg$ 1 Mapping of all database segments
tab$ 2 Tables

tab_stats$ 1 Table statistics

user$ 2 User definitions

In total, there were 19 queries against system objects executed during the hard parse. This number, from version 12c,
is less than the version 11g total of 59 for the same query. The soft parse of the same statement did not execute any queries
against the system objects because all that work was done during the initial hard parse. The elapsed time for the hard
parse was 0.030641 second whereas the elapsed time for the soft parse was 0.000025 second. As you can see, soft parsing is
amuch more desirable alternative to hard parsing. Don’t ever fool yourself into thinking parsing doesn’t matter. It does!

Identical Statements

For Oracle to determine whether a statement has been executed previously, it checks the library cache for the
identical statement. You can see which statements are currently stored in the library cache by querying the v$sql
view. This view lists statistics on the shared SQL area and contains one row for each “child” of the original SQL text
entered. Listing 2-1 shows three different executions of a query against the employees table followed by a query
against v$sql showing information about the three queries that have been stored in the library cache.

Listing 2-1. Queries against Employees and v$sql Contents

SOL> select * from employees where department_id = 60;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMATL
103 Alexander Hunold AHUNOLD
104 Bruce Ernst BERNST
105 David Austin DAUSTIN
106 Valli Pataballa VPATABAL
107 Diana Lorentz DLORENTZ

SQL> SELECT * FROM EMPLOYEES WHERE DEPARTMENT ID = 60;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL
103 Alexander Hunold AHUNOLD
104 Bruce Ernst BERNST
105 David Austin DAUSTIN
106 Valli Pataballa VPATABAL
107 Diana Lorentz DLORENTZ

28

CHAPTER 2 © SQL EXECUTION

SOL> select /* a_comment */ * from employees where department_id = 60;

EMPLOYEE_ID FIRST NAME LAST_NAME EMAIL
103 Alexander Hunold AHUNOLD
104 Bruce Ernst BERNST
105 David Austin DAUSTIN
106 Valli Pataballa VPATABAL
107 Diana Lorentz DLORENTZ

SQL> select sql_text, sql_id, child _number, hash_value, executions
2 from v$sql where upper(sql_text) like '%EMPLOYEES%';

SQL_TEXT SQL_ID CHILD_NUMBER HASH VALUE EXECUTIONS
select * from employees 0svc967bxfayu 0 3621196762 1
where department_id = 60
SELECT * FROM EMPLOYEES cq7t1xq95bpm8 0 2455098984 1
WHERE DEPARTMENT ID = 60
select /* a_comment */ * 2dkt13jocyjzq 0 1087326198 1

from employees
where department_id = 60

Although all three statements return the exact same result, Oracle considers them to be different. This is because,
when a statement is executed, Oracle first converts the string to a hash value. That hash value is used as the key for
that statement when it is stored in the library cache. As other statements are executed, their hash values are compared
with the existing hash values to find a match.

So, why would these three statements produce different hash values, even though they return the same result?
Because the statements are not identical. Lowercase text is different from uppercase text. Adding a comment into the
statement makes it different from the statements that don’t have a comment. Any differences cause a different hash
value to be created for the statement, and cause Oracle to hard parse the statement.

The execution of statements that differ only by their literals can cause significant parsing overhead, which is why
itis important to use bind variables instead of literals in your SQL statements. When you use a bind variable, Oracle is
able to share the statement even as you change the values of the bind variables, as shown in Listing 2-2.

Listing 2-2. The Effect of Using Bind Variables on Parsing

SOL> variable v_dept number
SOL> exec :v_dept := 10
SOL> select * from employees where department_id = :v_dept;
EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL
200 Jennifer Whalen JWHALEN
1 row selected.

SQL> exec :v_dept := 20

PL/SOL procedure successfully completed.

29

CHAPTER 2 © SQL EXECUTION

SQL> select * from employees where department_id = :v_dept;

EMPLOYEE_ID FIRST NAME LAST_NAME EMAIL
201 Michael Hartstein MHARTSTE
202 Pat Fay PFAY

2 rows selected.
SOL> exec :v_dept := 30
PL/SQL procedure successfully completed.

SOL> select * from employees where department id = :v_dept;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL
114 Den Raphaely DRAPHEAL
115 Alexander Khoo AKHOO
116 Shelli Baida SBAIDA
117 Sigal Tobias STOBIAS
118 Guy Himuro GHIMURO
119 Karen Colmenares KCOLMENA

6 rows selected.

SOL> select sql_text, sql_id, child number, executions
2 from v$sql where sql_text like '%v_dept';

SOL_TEXT SQL_ID CHILD_NUMBER EXECUTIONS
select * from employees 72k66s55jqk1]j 0 3
where department_id = :v_dept

1 row selected.

Notice how there is only one statement with three executions stored in the library cache. If T had executed the
queries using the literal values (10, 20, 30), there would have been three different statements. Always keep this in mind
and try to write SQL that takes advantage of bind variables and uses exactly the same SQL. The less hard parsing that
is required means your applications perform better and are more scalable.

There are two final mechanisms that are important to understand. The first is something called a latch. A latch
is a type of lock that Oracle must acquire to read information stored in the library cache as well as other memory
structures. Latches protect the library cache from becoming corrupted by concurrent modifications by two sessions,
or by one session trying to read information that is being modified by another one. Before reading any information
from the library cache, Oracle acquires a latch that then causes all other sessions to wait until that latch is released
before they can acquire the latch and do the work they need to complete.

This is a good place to mention the second mechanism: the mutex. A mutex (mutual exclusion lock) is similar to a
latch in that it is a serialization device used to prevent multiple threads from accessing shared structures simultaneously.
The biggest advantage of mutexes over latches is that mutexes require less memory and are faster to acquire and release.
Also, mutexes are used to avoid the need to get the library cache latch for a previously opened cursor (in the session
cursor cache) by modifying the cursor’s mutex reference count directly. A mutex is a better performing and more
scalable mechanism than a latch. Note that library cache latching is still needed for parsing, however.

30

CHAPTER 2 © SQL EXECUTION

Latches, unlike typical locks, are not queued. In other words, if Oracle attempts to acquire a latch on the library
cache to determine whether the statement you are executing already exists, it checks whether the latch is available.

If the latch is available, it acquires the latch, does the work it needs to do, then releases the latch. However, if the latch
is already in use, Oracle does something called spinning. Think of spinning as repetitive—like a kid in the backseat of
a car asking, “Are we there yet?” over and over and over. Oracle basically iterates in a loop, and continues to determine
whether the latch is available. During this time, Oracle is actively using the central processing unit (CPU) to do these
checks, but your query is actually “on hold” and not really doing anything until the latch is acquired.

If the latch is not acquired after spinning for a while (Oracle spins up to the number of times indicated by the
_spin_count hidden parameter, which is set to 2000 by default), then the request is halted temporarily and your
session has to get in line behind other sessions that need to use the CPU. It must wait its turn to use the CPU again to
determine whether the latch is available. This iterative process continues until the latch can be acquired. You don’t
just get in line and wait on the latch to become available; it’s entirely possible that another session acquires the latch
while your session is waiting in line to get back on the CPU to check the latch again. As you can imagine, this can be
quite time-consuming if many sessions all need to acquire the latch concurrently.

The main thing to remember is that latches and mutexes are serialization devices. The more frequently Oracle
needs to acquire one, the more likely it is that contention will occur, and the longer you'll have to wait. The effects on
performance and scalability can be dramatic. So, writing your code so that it requires fewer mutexes and latches
(in other words, less hard parsing) is critical.

SGA: The Buffer Cache

The buffer cache is one of the largest components of the SGA. It stores database blocks after they have been read
from disk or before they are written to disk. A block is the smallest unit with which Oracle works. Blocks contain rows
of table data or index entries, and some blocks contain temporary data for sorts. The key thing to remember is that
Oracle must read blocks to get to the rows of data needed to satisfy a SQL statement. Blocks are typically either 4KB,
8KB, or 16KB, although the only restricting factor to the size of a block depends on your operating system.

Each block has a certain structure. Within the block there are a few areas of block overhead that contain
information about the block itself that Oracle uses to manage the block. There is information that indicates the type
of block it is (table, index, and so forth), a bit of information about transactions against the block, the address where
the block resides physically on the disk, information about the tables that store data in the block, and information
about the row data contained in the block. The rest of the block contains either the actual data or free space where
new data can be stored. There’s more detail about how the buffer cache can be divided into multiple pools and how it
has varying block sizes, but I'll keep this discussion simple and just consider one big default buffer pool with a single
block size.

At any given time, the blocks in the buffer cache will either be dirty, which means they have been modified and
need to be written into a physical location on the disk,