
Morton
Osborne
Sands

Shamsudeen
Still

Shelve in
Databases/Oracle

User level:
Intermediate-Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro Oracle SQL
Pro Oracle SQL, Second Edition unlocks the power of SQL in the Oracle database—one of the most potent SQL imple-
mentations on the market today. To master it requires a multi-pronged approach: learn the language features, learn how
and why the language features work, learn the supporting features that Oracle provides to help use the language effec-
tively, and learn to think and work in sets.

Karen Morton has updated the content for Oracle version 12c and helps you master powerful aspects of Oracle SQL from
the inside-out. You’ll learn analytic functions, the MODEL clause, and advanced grouping syntax—features that will help
in creating good queries for reporting and business intelligence applications. Pro Oracle SQL, Second Edition also helps
you minimize parsing overhead, read execution plans, test for correct results, understand performance management, and
exert control over SQL execution in your database. You’ll learn when to create indexes, how to verify that they make a dif-
ference, how to use SQL Baselines and Profiles to optimize and stabilize SQL execution plans, and much more. You’ll also
understand how SQL is optimized for working in sets, and that the key to getting accurate results lies in making sure that
queries ask clear and precise questions.

Pro Oracle SQL, Second Edition helps you work at a truly professional level in the Oracle dialect of SQL. You’ll master the
language, the tools to work effectively with the language, and the right way to think about a problem in SQL.

• Endorsed by the OakTable Network, a group of Oracle technologists well-known for their rigorous and scientific
approach to Oracle Database performance

• Comprehensive—goes beyond the language with a focus on what you need to know to write successful queries and
data manipulation statements.

• Performance focused—teaches you how to measure the performance of your SQL statements and not just the syntax.

What You’ll Learn:

• Master powerful SQL features implemented in the Oracle Database
• Understand how the Oracle Optimizer develops execution plans
• Read and interpret SQL execution plans
• Quickly diagnose and fix badly performing SQL
• Control execution plans through hints, profiles, and plan baselines
• Optimize queries within packaged applications without touching the code
• Recognize when not to waste time on SQL that is performing optimally

RELATED

9 781430 262206

ISBN 978-1-4302-6220-6

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a Glance

About the Authors�� xvii

About the Technical Reviewer�� xix

Acknowledgments�� xxi

Chapter 1: Core SQL■■ ��1

Chapter 2: SQL Execution■■ ���25

Chapter 3: Access and Join Methods■■ ���57

Chapter 4: SQL Is about Sets■■ ��95

Chapter 5: It’s about the Question■■ ��115

Chapter 6: SQL Execution Plans■■ ���131

Chapter 7: Advanced Grouping■■ ���169

Chapter 8: Analytic Functions■■ ��199

Chapter 9: The MODEL Clause■■ ���231

Chapter 10: Subquery Factoring■■ ���261

Chapter 11: Semijoins and Antijoins■■ ��299

Chapter 12: Indexes■■ ��341

Chapter 13: Beyond the SELECT■■ ��369

Chapter 14: Transaction Processing■■ ���397

Chapter 15: Testing and Quality Assurance■■ ��425

■ Contents at a Glance

iv

Chapter 16: Plan Stability■■ ���453

Chapter 17: Plan Control■■ ��477

Chapter 18: Miscellaneous SQL Constructs■■ ��523

Index��545

1

Chapter 1

Core SQL

Whether you’re relatively new to writing SQL or you’ve been writing it for years, learning to write “good” SQL is a
process that requires a strong knowledge foundation of core syntax and concepts. This chapter provides a review of
the core concepts of the SQL language and its capabilities, along with descriptions of the common SQL commands
with which you should already be familiar. For those of you who have worked with SQL previously and have a good
grasp on the basics, this chapter will be a brief refresher to prepare you for the more detailed treatment of SQL we
examine in later chapters. If you’re a new SQL user, you may want to read Beginning Oracle SQL first to make sure
you’re comfortable with the basics. Either way, Chapter 1 “level sets” you with a whirlwind tour of the five core SQL
statements and provides a quick review of the tool we’ll be using to execute SQL: SQL*Plus.

The SQL Language
The SQL language was originally developed during the 1970s by IBM and was called Structured English Query
Language, or SEQUEL. The language was based on the model for relational database management systems (RDBMSs)
developed by E. F. Codd in 1969. The acronym was later shortened to SQL as a result of a trademark dispute. In 1986, the
American National Standards Institute (ANSI) adopted SQL as a standard, and in 1987, the International Organization
for Standardization (otherwise known as the ISO) did so as well. A piece of not-so-common knowledge is that the
official pronunciation of the language was declared to be “ess queue ell” by ANSI. Most people, including me, still use
the “see-qwell” pronunciation just because it flows a bit easier linguistically.

The purpose of SQL is simply to provide an interface to a database—in our case, Oracle. Every SQL statement
is a command, or instruction, to the database. SQL differs from other programming languages such as C and Java
in that it is intended to process data in sets, not individual rows. The language also doesn’t require that you provide
instructions on how to navigate to the data; this happens transparently, under the covers. But, as you’ll see in the
chapters ahead, knowing about your data and how and where they are stored is very important if you want to write
efficient SQL in Oracle.

Although there are minor differences in how vendors (such as Oracle, IBM, and Microsoft) implement the
core functionality of SQL, the skills you learn in one database transfer to another. Basically, you can use the same
SQL statements to query, insert, update, and delete data and create, alter, and drop objects regardless of the
database vendor.

Although SQL is the standard for use with various RDBMSs, it is not particularly relational in practice
(I expand on this a bit later in the book). I recommend that you read C. J. Date’s book SQL and Relational Theory
(O’Reilly Media, 2011) for a detailed review of how SQL and relational theory intersect. Keep in mind that the
SQL language doesn’t always follow the relational model precisely; it doesn’t implement some elements of the
relational model at all, and it implements other elements improperly. The fact remains that because SQL is based
on this model, you must understand SQL and the relational model as well as know how to write SQL as correctly
and efficiently as possible.

Chapter 1 ■ Core SQL

2

Interfacing to the Database
Numerous ways have been developed throughout the years for transmitting SQL to a database and getting results
back. The native interface to the Oracle database is the Oracle Call Interface (OCI). The OCI powers the queries
that are sent internally by the Oracle kernel to the database. You use the OCI any time you use one of Oracle’s
tools, such as SQL*Plus or SQL Developer. Various other Oracle tools, including SQL*Loader, Data Pump, and Real
Application Testing (RAT), use OCI as well as language-specific interfaces, such as Oracle JDBC-OCI, ODP.Net, Oracle
Precompilers, Oracle ODBC, and the Oracle C++ Call Interface (OCCI) drivers.

When you use programming languages such as COBOL or C, the statements you write are known as embedded
SQL statements and are preprocessed by a SQL preprocessor before the application program is compiled. Listing 1-1
shows an example of a SQL statement that could be used within a C/C++ block.

Listing 1-1.  Embedded SQL Statement Used within a C/C++ Block

{
int a;
/* ... */
EXEC SQL SELECT salary INTO :a
 FROM hr.employees
 WHERE employee_id = 108;
/* ... */
printf("The salary is %d\n", a);
/* ... */
}
 

Other tools, such as SQL*Plus and SQL Developer, are interactive tools. You enter and execute commands, and
the output is displayed back to you. Interactive tools don’t require you to compile your code explicitly before running
it; you simply enter the command you wish to execute. Listing 1-2 shows an example of using SQL*Plus to execute a
statement.

Listing 1-2.  Using SQL*Plus to Execute a SQL Statement

SQL> select salary
 2 from hr.employees
 3 where employee_id = 108;
 
 SALARY

 12000
 

In this book, we’ll use SQL*Plus for our example listings for consistency’s sake, but keep in mind that whichever
method or tool you use to enter and execute SQL statements, everything ultimately goes through the OCI. The bottom
line is that the tool you use doesn’t matter; the native interface is the same for all.

Review of SQL*Plus
SQL*Plus is a command-line tool provided with every Oracle installation regardless of platform (Windows, Unix).
It is used to enter and execute SQL commands and to display the resulting output in a text-only environment. The tool
allows you to enter and edit commands, save and execute commands individually or via script files, and display the
output in nicely formatted report form. To start SQL*Plus you simply start sqlplus from your host’s command prompt.

Chapter 1 ■ Core SQL

3

Connect to a Database
There are multiple ways to connect to a database from SQL*Plus. Before you can connect, however, you likely need to
have entries for the databases to which you need to connect entered in the $ORACLE_HOME/network/admin/tnsnames.ora file.
Two common ways to supply your connection information when you start SQL*Plus are shown in Listing 1-3; another
is to use the SQL*Plus connect command after SQL*Plus starts, as shown in Listing 1-4.

Listing 1-3.  Connecting to SQL*Plus from the Windows Command Prompt

$ sqlplus hr@ora12c
 
SQL*Plus: Release 12.1.0.1.0 Production on Tue May 7 12:32:36 2013
 
Copyright (c) 1982, 2013, Oracle. All rights reserved.
Enter password:
 
Last Successful login time: Tue May 07 2013 12:29:09 -04:00
Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing options
 
SQL>
 

Listing 1-4.  Connecting to SQL*Plus and Logging in to the Database from the SQL> Prompt

$ sqlplus /nolog
 
SQL*Plus: Release 12.1.0.1.0 Production on Tue May 7 12:34:21 2013
 
Copyright (c) 1982, 2013, Oracle. All rights reserved.
 
SQL> connect hr@ora12c
Enter password:
Connected.
SQL> 

When starting SQL*Plus using the 12c version, you will notice a new feature that displays your last login time by
default. If you don’t want this to appear, simply use the option –nologintime.

To start SQL*Plus without being prompted to log in to a database, start SQL*Plus with the /nolog option.

Configuring the SQL*Plus Environment
SQL*Plus has numerous commands that allow you to customize the working environment and display options. The
SQL*Plus help data must be installed by the database administrator or it may not be available. There are three help
script files found in $ORACLE_HOME/SQLPLUS/ADMIN/HELP/ that drop, create, and populate the SQL*Plus help tables:
HLPBLD.SQL, HELPDROP.SQL, and HELPUS.SQL. Listing 1-5 shows the SQL*Plus commands available after entering the
SQL*Plus help index command at the SQL> prompt.

Chapter 1 ■ Core SQL

4

Listing 1-5.  SQL*Plus Command List

SQL> help index
 
Enter Help [topic] for help.

@ COPY PAUSE SHUTDOWN

@@ DEFINE PRINT SPOOL

/ DEL PROMPT SQLPLUS

ACCEPT DESCRIBE QUIT START

APPEND DISCONNECT RECOVER STARTUP

ARCHIVE LOG EDIT REMARK STORE

ATTRIBUTE EXECUTE REPFOOTER TIMING

BREAK EXIT REPHEADER TTITLE

BTITLE GET RESERVED WORDS (SQL) UNDEFINE

CHANGE HELP RESERVED WORDS (PL/SQL) VARIABLE

CLEAR HOST RUN WHENEVER OSERROR

COLUMN INPUT SAVE WHENEVER SQLERROR

COMPUTE LIST SET XQUERY

CONNECT PASSWORD SHOW

The set command is the primary command used for customizing your environment settings. Listing 1-6 shows
the help text for the set command.

Listing 1-6.  SQL*Plus SET Command

SQL> help set
 
 SET

 Sets a system variable to alter the SQL*Plus environment settings
 for your current session. For example, to:
 - set the display width for data
 - customize HTML formatting
 - enable or disable printing of column headings
 - set the number of lines per page
 
 SET system_variable value
 where system_variable and value represent one of the following clauses:
 
APPI[NFO]{OFF|ON|text} NEWP[AGE] {1|n|NONE}
ARRAY[SIZE] {15|n} NULL text
AUTO[COMMIT] {OFF|ON|IMM[EDIATE]|n} NUMF[ORMAT] format
AUTOP[RINT] {OFF|ON} NUM[WIDTH] {10|n}

Chapter 1 ■ Core SQL

5

AUTORECOVERY {OFF|ON} PAGES[IZE] {14|n}
AUTOT[RACE] {OFF|ON|TRACE[ONLY]} PAU[SE] {OFF|ON|text}
 [EXP[LAIN]] [STAT[ISTICS]] RECSEP {WR[APPED]|EA[CH]|OFF}
BLO[CKTERMINATOR] {.|c|ON|OFF} RECSEPCHAR {_|c}
CMDS[EP] {;|c|OFF|ON} SERVEROUT[PUT] {ON|OFF}
COLSEP {_|text} [SIZE {n | UNLIMITED}]
CON[CAT] {.|c|ON|OFF} [FOR[MAT] {WRA[PPED] |
COPYC[OMMIT] {0|n} WOR[D_WRAPPED] |
COPYTYPECHECK {ON|OFF} TRU[NCATED]}]
DEF[INE] {&|c|ON|OFF} SHIFT[INOUT] {VIS[IBLE] |
DESCRIBE [DEPTH {1|n|ALL}] INV[ISIBLE]}
 [LINENUM {OFF|ON}] [INDENT {OFF|ON}] SHOW[MODE] {OFF|ON}
ECHO {OFF|ON} SQLBL[ANKLINES] {OFF|ON}
EDITF[ILE] file_name[.ext] SQLC[ASE] {MIX[ED] |
EMB[EDDED] {OFF|ON} LO[WER] | UP[PER]}
ERRORL[OGGING] {ON|OFF} SQLCO[NTINUE] {> | text}
 [TABLE [schema.]tablename] SQLN[UMBER] {ON|OFF}
 [TRUNCATE] [IDENTIFIER identifier] SQLPLUSCOMPAT[IBILITY]
 {x.y[.z]}
ESC[APE] {\|c|OFF|ON} SQLPRE[FIX] {#|c}
ESCCHAR {@|?|%|$|OFF} SQLP[ROMPT] {SQL>|text}
EXITC[OMMIT] {ON|OFF} SQLT[ERMINATOR] {;|c|ON|OFF}
FEED[BACK] {6|n|ON|OFF} SUF[FIX] {SQL|text}
FLAGGER {OFF|ENTRY|INTERMED[IATE]|FULL} TAB {ON|OFF}
FLU[SH] {ON|OFF} TERM[OUT] {ON|OFF}
HEA[DING] {ON|OFF} TI[ME] {OFF|ON}
HEADS[EP] {||c|ON|OFF} TIMI[NG] {OFF|ON}
INSTANCE [instance_path|LOCAL] TRIM[OUT] {ON|OFF}
LIN[ESIZE] {80|n} TRIMS[POOL] {OFF|ON}
LOBOF[FSET] {1|n} UND[ERLINE] {-|c|ON|OFF}
LOGSOURCE [pathname] VER[IFY] {ON|OFF}
LONG {80|n} WRA[P] {ON|OFF}
LONGC[HUNKSIZE] {80|n} XQUERY {BASEURI text|
MARK[UP] HTML [OFF|ON] ORDERING{UNORDERED|
 [HEAD text] [BODY text] [TABLE text] ORDERED|DEFAULT}|
 [ENTMAP {ON|OFF}] NODE{BYVALUE|BYREFERENCE|
 [SPOOL {OFF|ON}] DEFAULT}|
 [PRE[FORMAT] {OFF|ON}] CONTEXT text}
SQL>
 

Given the number of commands available, you can customize your environment easily to suit you best. One thing
to keep in mind is that the set commands aren’t retained by SQL*Plus when you exit/close the tool. Instead of typing
in each of the set commands you want to apply each time you use SQL*Plus, you can create a file named login.sql.
There are actually two files that SQL*Plus reads by default each time you start it. The first is glogin.sql and it can
be found in the directory $ORACLE_HOME/sqlplus/admin. If this file is found, it is read and the statements it contains
are executed. This allows you to store the SQL*Plus commands and SQL statements that customize your experience
across SQL*Plus sessions.

After reading glogin.sql, SQL*Plus looks for the login.sql file. This file must exist in either the directory
from which SQL*Plus was started or in a directory included in the path to which the environment variable SQLPATH
points. Any commands in login.sql will take precedence over those in glogin.sql. Since version 10g, Oracle reads
both glogin.sql and login.sql each time you either start SQL*Plus or execute the connect command from within

Chapter 1 ■ Core SQL

6

SQL*Plus. Prior to 10g, the login.sql script was only executed when SQL*Plus started. The contents of a common
login.sql file are shown in Listing 1-7.

Listing 1-7.  A Common login.sql File

SET LINES 3000
--Sets width of display line (default 80 characters)
SET PAGES 1000
-Sets number of lines per page (default 14 lines)
SET TIMING ON
--Sets display of elapsed time (default OFF)
SET NULL <null>
--Sets display of nulls to show <null> (default empty)
SET SQLPROMPT '&_user@&_connect_identifier> '
--Sets the prompt to show connected user and instance
 

Note the use of the variables _user and _connect_identifier in the SET SQLPROMPT command. These are two
examples of predefined variables. You may use any of the following predefined variables in your login.sql file or in
any other script file you may create:

•	 _connect_identifier (connection identifier used to make the database connection)

•	 _date (current date)

•	 _editor (the editor that is started when you use the EDIT command)

•	 _o_version (current version of the installed Oracle database)

•	 _o_release (full release number of the installed Oracle database)

•	 _privilege (privilege level of the current connection)

•	 _sqlplus_release (full release number of the installed SQL*Plus component)

•	 _user (username used to make the connection)

Executing Commands
There are two types of commands that can be executed within SQL*Plus: SQL statements and SQL*Plus commands.
The SQL*Plus commands shown in Listings 1-5 and 1-6 are specific to SQL*Plus and can be used for customizing
the environment and executing commands that are specific to SQL*Plus, such as DESCRIBE and CONNECT. Executing
a SQL*Plus command requires only that you type the command at the prompt and press Enter. The command is
executed automatically. On the other hand, to execute SQL statements, you must use a special character to indicate
you wish to execute the entered command. You may use either a semicolon or a forward slash to do this. A semicolon
may be placed directly at the end of the typed command or on a following blank line. The forward slash must be
placed on a blank line to be recognized. Listing 1-8 shows how these two execution characters are used.

Listing 1-8.  Execution Character Usage

SQL>select empno, deptno from scott.emp where ename = 'SMITH' ;
 EMPNO DEPTNO
---------- ----------
 7369 20

Chapter 1 ■ Core SQL

7

SQL>select empno, deptno from scott.emp where ename = 'SMITH'
 2 ;
 EMPNO DEPTNO
---------- ----------
 7369 20
SQL>select empno, deptno from scott.emp where ename = 'SMITH'
 2 /
 EMPNO DEPTNO
---------- ----------
 7369 20
SQL>select empno, deptno from scott.emp where ename = 'SMITH'
 2
SQL>/
 EMPNO DEPTNO
---------- ----------
 7369 20
SQL>select empno, deptno from scott.emp where ename = 'SMITH'/
 2
SQL>l
 1* select empno, deptno from scott.emp where ename = 'SMITH'/
SQL>/
select empno, deptno from scott.emp where ename = 'SMITH'/
 *
ERROR at line 1:
ORA-00936: missing expression
 

Notice the fifth example that puts / at the end of the statement. The cursor moves to a new line instead of
executing the command immediately. Then, if you press Enter again, the statement is entered into the SQL*Plus buffer
but is not executed. To view the contents of the SQL*Plus buffer, the list command is used (abbreviated to l). If you
then attempt to execute the statement in the buffer using /, which is how the / command is intended to be used, you
get an error because, originally, you placed / at the end of the SQL statement line. The forward slash is not a valid SQL
command and thus causes an error when the statement attempts to execute.

Another way to execute commands is to place them in a file. You can produce these files with the text editor of
your choice outside of SQL*Plus or you may invoke an editor directly from SQL*Plus using the EDIT command. The
EDIT command either opens a named file or creates a file if it doesn’t exist. The file must be in the default directory
or you must specify the full path of the file. To set the editor to one of your choice, simply set the predefined _editor
variable using the following command: define _editor='/<full path>/myeditor.exe'. Files with the extension
.sql will execute without having to include the extension and can be run using either the @ or START command.
Listing 1-9 shows the use of both commands.

Listing 1-9.  Executing .sql Script Files

SQL> @list_depts
 DEPTNO DNAME LOC
---------- -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON
SQL>

Chapter 1 ■ Core SQL

8

SQL> start list_depts
 DEPTNO DNAME LOC
---------- -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON
SQL>
SQL>l
 1* select * from scott.dept
SQL>
 

SQL*Plus has many features and options—far too many to cover here. For what we need in this book, the
previous overview should suffice. However, the Oracle documentation provides guides for SQL*Plus use and there are
numerous books, including Beginning Oracle SQL (as mentioned earlier), that go in to more depth if you’re interested.

The Five Core SQL Statements
The SQL language contains many different statements. In your professional career you may end up using just a
small percentage of what is available to you. But isn’t that the case with almost any product you use? I once heard a
statistic that most people use 20 percent or less of the functionality available in the software products or programming
languages they use regularly. I don’t know whether this is actually true, but in my experience, it seems fairly accurate.
I have found the same basic SQL statement formats in use within most applications for almost 20 years. Very few
people ever use everything SQL has to offer—and they often implement improperly those features they do use
frequently. Obviously, we will not be able to cover all the statements and their options found in the SQL language.
This book is intended to provide you with deeper insight into the most commonly used statements and to help you
understand how to apply them more effectively.

In this book, we will examine five of the most frequently used SQL statements. These statements are SELECT,
INSERT, UPDATE, DELETE, and MERGE. Although we’ll address each of these core statements in some fashion, our focus
is primarily on the SELECT statement. Developing a good command of these five statements will provide a strong
foundation for your day-to-day work with the SQL language.

The SELECT Statement
The SELECT statement is used to retrieve data from one or more tables or other database objects. You should already
be familiar with the basics of the SELECT statement, so instead of reviewing the statement from the beginner’s point of
view, I want to review how a SELECT statement processes logically. You should have already learned the basic clauses
that form a common SELECT statement, but to build the foundation mind-set you need to write well-formed and
efficient SQL consistently, you need to understand how SQL processes.

How a query statement is processed logically may be quite different from its actual physical processing. The
Oracle cost-based optimizer (CBO) is responsible for generating the actual execution plan for a query, and we will
examine what the optimizer does, and how it does it and why. For now, note that the optimizer determines how to
access tables and the order in which to process them, and how to join multiple tables and apply filters. The logical
order of query processing occurs in a very specific order. However, the steps the optimizer chooses for the physical
execution plan can end up actually processing the query in a very different order. Listing 1-10 shows a query stub
that contains the main clauses of a SELECT statement with step numbers assigned to each clause in the order it is
processed logically.

Chapter 1 ■ Core SQL

9

Listing 1-10.  Logical Query Processing Order

5 SELECT <column list>
1 FROM <source object list>
1.1 FROM <left source object> <join type>
 JOIN <right source object> ON <on predicates>
2 WHERE <where predicates>
3 GROUP BY <group by expression(s)>
4 HAVING <having predicates>
6 ORDER BY <order by list>
 

You should notice right away that SQL differs from other programming languages in that the first written
statement (SELECT) is not the first line of code that is processed; the FROM clause is processed first. Note that I show
two different FROM clauses in this listing. The one marked 1.1 is provided to show the difference when ANSI syntax is
used. It may be helpful to imagine that each step in the processing order creates a temporary dataset. As each step is
processed, the dataset is manipulated until a final result is formulated. It is this final result set of data that the query
returns to the caller.

To walk through each part of the SELECT statement in more detail, you need to use the query in Listing 1-11 that
returns a result set that contains a list of female customers that have placed more than four orders.

Listing 1-11.  Female Customers Who Have Placed More Than Four Orders

SQL> select c.customer_id, count(o.order_id) as orders_ct
 2 from oe.customers c
 3 join oe.orders o
 4 on c.customer_id = o.customer_id
 5 where c.gender = 'F'
 6 group by c.customer_id
 7 having count(o.order_id) > 4
 8 order by orders_ct, c.customer_id
 9 /
CUSTOMER_ID ORDERS_CT
----------- ----------
 146 5
 147 5

The FROM Clause
The FROM clause lists the source objects from which data are selected. This clause can contain tables, views,
materialized views, partitions, or subpartitions, or may specify a subquery that identifies objects. If multiple source
objects are used, this logical processing phase also applies to each join type and ON predicate. We explore join types in
more detail later, but note that, as joins are processed, they occur in the following order:

	 1.	 Cross join, also called a Cartesian product

	 2.	 Inner join

	 3.	 Outer join

Chapter 1 ■ Core SQL

10

In the example query in Listing 1-11, the FROM clause lists two tables: customers and orders. They are joined
on the customer_id column. So, when this information is processed, the initial dataset that is produced by the FROM
clause includes rows in which customer_id matches in both tables. The result set contains 105 rows at this point. To
verify this is true, simply execute only the first four lines of the example query, as shown in Listing 1-12.

Listing 1-12.  Partial Query Execution through the FROM Clause Only

SQL> select c.customer_id cust_id, o.order_id ord_id, c.gender
 2 from oe.customers c
 3 join oe.orders o
 4 on c.customer_id = o.customer_id;
 
CUST_ID ORD_ID G CUST_ID ORD_ID G CUST_ID ORD_ID G
------- ------ - ------- ------ - ------- ------ -
 147 2450 F 101 2430 M 109 2394 M
 147 2425 F 101 2413 M 116 2453 M
 147 2385 F 101 2447 M 116 2428 M
 147 2366 F 101 2458 M 116 2369 M
 147 2396 F 102 2431 M 116 2436 M
 148 2451 M 102 2414 M 117 2456 M
 148 2426 M 102 2432 M 117 2429 M
 148 2386 M 102 2397 M 117 2370 M
 148 2367 M 103 2437 F 117 2446 M
 148 2406 M 103 2415 F 118 2457 M
 149 2452 M 103 2433 F 118 2371 M
 149 2427 M 103 2454 F 120 2373 M
 149 2387 M 104 2438 F 121 2374 M
 149 2368 M 104 2416 F 122 2375 M
 149 2434 M 104 2355 F 123 2376 F
 150 2388 M 104 2354 F 141 2377 M
 151 2389 M 105 2439 F 143 2380 M
 152 2390 M 105 2417 F 144 2445 M
 153 2391 M 105 2356 F 144 2422 M
 154 2392 F 105 2358 F 144 2382 M
 155 2393 M 106 2441 M 144 2363 M
 156 2395 F 106 2418 M 144 2435 M
 157 2398 M 106 2359 M 145 2448 M
 158 2399 M 106 2381 M 145 2423 M
 159 2400 M 107 2442 F 145 2383 M
 160 2401 M 107 2419 F 145 2364 M
 161 2402 M 107 2360 F 145 2455 M
 162 2403 M 107 2440 F 119 2372 M
 163 2404 M 108 2443 M 142 2378 M
 164 2405 M 108 2420 M 146 2449 F
 165 2407 M 108 2361 M 146 2424 F
 166 2408 F 108 2357 M 146 2384 F
 167 2409 M 109 2444 M 146 2365 F
 169 2411 F 109 2421 M 146 2379 F
 170 2412 M 109 2362 M 168 2410 M
105 rows selected. 

Chapter 1 ■ Core SQL

11

Note■■   I formatted the result of this output manually to make it fit nicely on the page. The actual output was displayed
over 105 separate lines.

The WHERE Clause
The WHERE clause provides a way to limit conditionally the rows emitted to the query’s final result set. Each condition,
or predicate, is entered as a comparison of two values or expressions. The comparison matches (evaluates to TRUE) or
does not match (evaluates to FALSE). If the comparison is FALSE, then the row is not included in the final result set.

I need to digress just a bit to cover an important aspect of SQL related to this step. Actually, the possible values
of a logical comparison in SQL are TRUE, FALSE, and UNKNOWN. The UNKNOWN value occurs when a null is involved.
Nulls compared with anything or nulls used in expressions evaluate to null, or UNKNOWN. A null represents a missing
value and can be confusing because of inconsistencies in how nulls are treated within different elements of the SQL
language. I address how nulls affect the execution of SQL statements throughout the book, although I mention the
topic only briefly at this point. What I stated previously is still basically true; comparisons return either TRUE or FALSE.
What you’ll find is that when a null is involved in a filter comparison, it is treated as if it is FALSE.

In our example, there is a single predicate used to limit the result only to females who have placed orders. If you
review the intermediate result after the FROM clause was processed (see Listing 1-12), you’ll note that only 31 of the
105 rows were placed by female customers (gender = ‘F’). Therefore, after the WHERE clause is applied, the
intermediate result set is reduced from 105 rows to 31 rows.

After the WHERE clause is applied, the detailed result set is ready. Note that I use the phrase detailed result set.
What I mean is the rows that satisfy the query requirements are now available. Other clauses may be applied
(GROUP BY, HAVING) that aggregate and limit the final result set further that the caller receives, but it is important to
note that, at this point, all the data your query needs to compute the final answer are available.

The WHERE clause is intended to restrict, or reduce, the result set. The less restrictions you include, the more data
your final result set contains. The more data you need to return, the longer the query takes to execute.

The GROUP BY Clause
The GROUP BY clause aggregates the filtered result set available after processing the FROM and WHERE clauses. The
selected rows are grouped by the expression(s) listed in this clause to produce a single row of summary information
for each group. You may group by any column of any object listed in the FROM clause, even if you don’t intend to
display that column in the list of output columns. Conversely, any nonaggregate column in the select list must be
included in the GROUP BY expression.

There are two additional operations that can be included in a GROUP BY clause: ROLLUP and CUBE. The ROLLUP
operation is used to produce subtotal values. The CUBE operation is used to produce cross-tabulation values. If you use
either of these operations, you get more than one row of summary information. Both these operations are discussed
in detail in Chapter 7.

In the example query, the requested grouping is customer_id. This means that there is only one row for each
distinct customer_id. Of the 31 rows that represent the females who placed orders that made it through the WHERE
clause processing, there are 11 distinct customer_id values, as shown in Listing 1-13.

Chapter 1 ■ Core SQL

12

Listing 1-13.  Partial Query Execution through the GROUP BY Clause

SQL> select c.customer_id, count(o.order_id) as orders_ct
 2 from oe.customers c
 3 join oe.orders o
 4 on c.customer_id = o.customer_id
 5 where gender = 'F'
 6 group by c.customer_id;
 
CUSTOMER_ID ORDERS_CT
----------- ----------
 156 1
 123 1
 166 1
 154 1
 169 1
 105 4
 103 4
 107 4
 104 4
 147 5
 146 5
11 rows selected.
 

Notice that the output from the query, although grouped, is not ordered. The display makes it appear as though
the rows are ordered by order_ct, but this is more coincidence and not guaranteed behavior. This is an important
item to remember; the GROUP BY clause does not ensure ordering of data. If you want the list to display in a specific
order, you have to specify an ORDER BY clause.

The HAVING Clause
The HAVING clause restricts the grouped summary rows to those for which the condition(s) in the clause are TRUE.
Unless you include a HAVING clause, all summary rows are returned. The GROUP BY and HAVING clauses are actually
interchangeable positionally (it doesn’t matter which one comes first). However, it seems to make more sense to code
them with the GROUP BY clause first, because GROUP BY is processed logically first. Essentially, the HAVING clause is
a second WHERE clause that is evaluated after GROUP BY occurs, and is used to filter on grouped values. Because the
WHERE clause is applied before the GROUP BY occurs, you cannot filter grouped results in the WHERE clause; you must
use the HAVING clause instead.

In our example query, the HAVING clause, HAVING COUNT(o.order_id) > 4, limits the grouped result data of
11 rows down to two rows. You can confirm this by reviewing the list of rows returned after GROUP BY is applied,
as shown in Listing 1-13. Note that only customers 146 and 147 have placed more than four orders. The two rows that
make up the final result set are now ready.

The SELECT List
The SELECT list is where the columns included in the final result set from your query are provided. A column can be an
actual column from a table, an expression, or even the result of a SELECT statement, as shown in Listing 1-14.

Chapter 1 ■ Core SQL

13

Listing 1-14.  Example Query Showing SELECT List Alternatives

SQL> select c.customer_id, c.cust_first_name||' '||c.cust_last_name,
 2 (select e.last_name from hr.employees e where e.employee_id = c.account_mgr_id) acct_mgr)
 3 from oe.customers c;
 
 CUSTOMER_ID CUST_NAME ACCT_MGR
--------------- --- --------------
 147 Ishwarya Roberts Russell
 148 Gustav Steenburgen Russell
...
 931 Buster Edwards Cambrault
 981 Daniel Gueney Cambrault
319 rows selected.
 

When another SELECT statement is used to produce the value of a column, the query must return only one row
and one column value. These types of subqueries are referred to as scalar subqueries. Although this can be very useful
syntax, keep in mind that the scalar subquery is executed once for each row in the result set. There are optimizations
available that may eliminate some duplicate executions of the subquery, but the worst-case scenario is that each row
requires this scalar subquery to be executed. Imagine the possible overhead involved if your result set had thousands,
or millions, of rows! I review scalar subqueries later in the book and discuss how to use them optimally.

Another option you may need to use in the SELECT list is the DISTINCT clause. The example provided here doesn’t
use it, but I want to mention it briefly. The DISTINCT clause causes duplicate rows to be removed from the dataset
produced after the other clauses have been processed.

After the SELECT list is processed, you now have the final result set for your query. The only thing that remains to
be done, if it is included, is to sort the result set into a desired order.

The ORDER BY Clause
The ORDER BY clause is used to order the final set of rows returned by the statement. In this case, the requested sort
order was to be by orders_ct and customer_id. The orders_ct column is the value computed using the COUNT
aggregate function in the GROUP BY clause. As shown in Listing 1-13, there are two customers that each placed more
than four orders. Because each customer placed five orders, the order_ct is the same, so the second ordering column
determines the final display order. As shown in Listing 1-15, the final sorted output of the query is a two-row dataset
ordered by customer_id.

Listing 1-15.  Example Query Final Output

SQL> select c.customer_id, count(o.order_id) as orders_ct
 2 from oe.customers c
 3 join oe.orders o
 4 on c.customer_id = o.customer_id
 5 where c.gender = 'F'
 6 group by c.customer_id
 7 having count(o.order_id) > 4
 8 order by orders_ct, c.customer_id
 9 /
CUSTOMER_ID ORDERS_CT
----------- ----------
 146 5
 147 5
 

Chapter 1 ■ Core SQL

14

When ordered output is requested, Oracle must take the final set of data after all other clauses have been
processed and sort them as specified. The size of the data that needs to be sorted is important. When I say size, I mean
total bytes of data in the result set. To estimate the size of the dataset, multiply the number of rows by the number of
bytes per row. The bytes per row are determined by summing the average column lengths of each of the columns in
the SELECT list.

The example query requests only the customer_id and orders_ct column values in the SELECT list. Let’s use ten
as our estimated bytes-per-row value. In Chapter 6, I show you where to find the optimizer’s estimate for this value.
So, given that we only have two rows in the result set, the sort size is actually quite small, approximately 20 bytes.
Remember, this is only an estimate, but the estimate is an important one.

Small sorts should be accomplished entirely in memory whereas large sorts may have to use temporary disk
space to complete the sort. As you may likely deduce, a sort that occurs in memory is faster than a sort that must use
disk. Therefore, when the optimizer estimates the effect of sorting data, it has to consider how big the sort is to adjust
how to accomplish getting the query result in the most efficient way. In general, consider sorts as a fairly expensive
overhead to your query processing time, particularly if the size of your result set is large.

The INSERT Statement
The INSERT statement is used to add rows to a table, partition, or view. Rows can be inserted in either a single-table
or multitable method. A single-table insert inserts values into one row of one table either by specifying the values
explicitly or by retrieving the values using a subquery. The multitable insert inserts rows into one or more tables and
computes the row values it inserts by retrieving the values using a subquery.

Single-Table Inserts
The first example in Listing 1-16 illustrates a single-table insert using the VALUES clause. Each column value is entered
explicitly. The column list is optional if you include values for each column defined in the table. However, if you only
want to provide values for a subset of the columns, you must specify the column names in the column list. A good
practice is to include the column list regardless of whether you specify values for all the columns. Doing so acts to
self-document the statement and also helps reduce possible errors that might occur in the future should someone add
a new column to the table.

Listing 1-16.  Single-Table Insert

SQL> insert into hr.jobs (job_id, job_title, min_salary, max_salary)
 2 values ('IT_PM', 'Project Manager', 5000, 11000) ;
1 row created.
 
SQL> insert into scott.bonus (ename, job, sal)
 2 select ename, job, sal * .10
 3 from scott.emp;
 
14 rows created.
 

The second example in Listing 1-16 illustrates an insert using a subquery, which is a very flexible option for
inserting rows. The subquery can be written to return one or more rows. Each row returned is used to supply column
values for the new rows to be inserted. The subquery can be as simple or as complex as needed to satisfy your needs.
In this example, we use the subquery to compute a 10 percent bonus for each employee based on his or her current
salary. The bonus table actually has four columns, but we only populate three of them with this insert. The comm
column isn’t populated with a value from the subquery and we do not include it in the column list. Because we don’t
include this column, the value for it is null. Note that if the comm column had a NOT NULL constraint, you would get a
constraint error and the statement would fail.

Chapter 1 ■ Core SQL

15

Multitable Inserts
The multitable insert example in Listing 1-17 illustrates how rows returned from a single subquery can be used to insert
rows into more than one table. We start with three tables: small_customers, medium_customers, and large_customers.
Let’s populate these tables with customer data based on the total amount of orders a customer has placed. The subquery
sums the order_total column for each customer, and then the insert places a row conditionally in the proper table based
on whether the customer is considered to be small (less than $10,000 of total orders), medium (between $10,000 and
$99,999.99), or large (greater than or equal to $100,000).

Listing 1-17.  Multitable Insert

SQL> select * from small_customers ;
 
no rows selected
 
SQL> select * from medium_customers ;
 
no rows selected
 
SQL> select * from large_customers ;
 
no rows selected
 
SQL> insert all
 2 when sum_orders < 10000 then
 3 into small_customers
 4 when sum_orders >= 10000 and sum_orders < 100000 then
 5 into medium_customers
 6 else
 7 into large_customers
 8 select customer_id, sum(order_total) sum_orders
 9 from oe.orders
 10 group by customer_id ;
 
47 rows created.
 
SQL> select * from small_customers ;
 
CUSTOMER_ID SUM_ORDERS
----------- ----------
 120 416
 121 4797
 152 7616.8
 157 7110.3
 160 969.2
 161 600
 162 220
 163 510
 164 1233
 165 2519
 166 309
 167 48
 
12 rows selected.
 

Chapter 1 ■ Core SQL

16

SQL> select * from medium_customers ;
CUSTOMER_ID SUM_ORDERS
----------- ----------
 102 69211.4
 103 20591.4
 105 61376.5
 106 36199.5
 116 32307
 119 16447.2
 123 11006.2
 141 38017.8
 142 25691.3
 143 27132.6
 145 71717.9
 146 88462.6
 151 17620
 153 48070.6
 154 26632
 155 23431.9
 156 68501
 158 25270.3
 159 69286.4
 168 45175
 169 15760.5
 170 66816
 
22 rows selected.
 
SQL> select * from large_customers ;
 
CUSTOMER_ID SUM_ORDERS
----------- ----------
 101 190395.1
 104 146605.5
 107 155613.2
 108 213399.7
 109 265255.6
 117 157808.7
 118 100991.8
 122 103834.4
 144 160284.6
 147 371278.2
 148 185700.5
 149 403119.7
 150 282694.3
 
13 rows selected.
 

Chapter 1 ■ Core SQL

17

Note the use of the ALL clause after the INSERT keyword. When ALL is specified, the statement performs unconditional
multitable inserts, which means that each WHEN clause is evaluated for each row returned by the subquery regardless of
the outcome of a previous condition. Therefore, you need to be careful about how you specify each condition. For example,
if I had used WHEN sum_orders < 100000 instead of the range I specified, the medium_customers table would have
included the rows that were also inserted into small_customers.

Specify the FIRST option to cause each WHEN to be evaluated in the order it appears in the statement and to skip
subsequent WHEN clause evaluations for a given subquery row. The key is to remember which option, ALL or FIRST,
best meets your needs, then use the one most suitable.

The UPDATE Statement
The UPDATE statement is used to change the column values of existing rows in a table. The syntax for this statement is
composed of three parts: UPDATE, SET, and WHERE. The UPDATE clause specifies the table to update. The SET clause specifies
which columns are changed and the modified values. The WHERE clause is used to filter conditionally which rows are
updated. This clause is optional; if it is omitted, the update operation is applied to all rows of the specified table.

Listing 1-18 demonstrates several different ways an UPDATE statement can be written. First, I create a duplicate of
the employees table called employees2, then I execute several different updates that accomplish basically the same
task: the employees in department 90 are updated to have a 10 percent salary increase and, in the case of example 5,
the commission_pct column is also updated. The following list includes the different approaches taken:

Example 1: Update a single column value using an expression.

Example 2: Update a single column value using a subquery.

Example 3: Update a single column using a subquery in the WHERE clause to determine
which rows to update.

Example 4: Update a table using a SELECT statement to define the table and the
column values.

Example 5: Update multiple columns using a subquery.

Listing 1-18.  UPDATE Statement Examples

SQL> -- create a duplicate employees table
SQL> create table employees2 as select * from employees ;
Table created.
 
SQL> -- add a primary key
SQL> alter table employees2
 1 add constraint emp2_emp_id_pk primary key (employee_id) ;
 
Table altered.
 
SQL> -- retrieve list of employees in department 90
SQL> select employee_id, last_name, salary
 2 from employees where department_id = 90 ;
 
 EMPLOYEE_ID LAST_NAME SALARY
--------------- ------------------------- ---------------
 100 King 24000
 101 Kochhar 17000
 102 De Haan 17000
 
3 rows selected.
 

Chapter 1 ■ Core SQL

18

SQL> -- Example 1: Update a single column value using an expression
 
SQL> update employees2
 2 set salary = salary * 1.10 -- increase salary by 10%
 3 where department_id = 90 ;
 
3 rows updated.
 
SQL> commit ;
 
Commit complete.
 
SQL> select employee_id, last_name, salary
 2 from employees2 where department_id = 90 ;
 
EMPLOYEE_ID LAST_NAME SALARY
----------- ---------- ------
 100 King 26400 -- previous value 24000
 101 Kochhar 18700 -- previous value 17000
 102 De Haan 18700 -- previous value 17000
 
3 rows selected.
 
SQL> -- Example 2: Update a single column value using a subquery
 
SQL> update employees
 2 set salary = (select employees2.salary
 3 from employees2
 4 where employees2.employee_id = employees.employee_id
 5 and employees.salary != employees2.salary)
 6 where department_id = 90 ;
 
3 rows updated.
 
SQL> select employee_id, last_name, salary
 2 from employees where department_id = 90 ;
 
 EMPLOYEE_ID LAST_NAME SALARY
--------------- ------------------------- ---------------
 100 King 26400
 101 Kochhar 18700
 102 De Haan 18700
 
3 rows selected.
 
SQL> rollback ;
 
Rollback complete.
 
SQL> -- Example 3: Update single column using subquery in
SQL> -- WHERE clause to determine which rows to update
 

Chapter 1 ■ Core SQL

19

SQL> update employees
 2 set salary = salary * 1.10
 3 where department_id in (select department_id
 4 from departments
 5 where department_name = 'Executive') ;
 
3 rows updated.
SQL> select employee_id, last_name, salary
 2 from employees
 3 where department_id in (select department_id
 4 from departments
 5 where department_name = 'Executive') ;
 
 EMPLOYEE_ID LAST_NAME SALARY
--------------- ------------------------- ---------------
 100 King 26400
 101 Kochhar 18700
 102 De Haan 18700
 
3 rows selected.

SQL> rollback ;

Rollback complete.
 
SQL> -- Example 4: Update a table using a SELECT statement
SQL> -- to define the table and column values
 
SQL> update (select e1.salary, e2.salary new_sal
 2 from employees e1, employees2 e2
 3 where e1.employee_id = e2.employee_id
 4 and e1.department_id = 90)
 5 set salary = new_sal;
 
3 rows updated.
 
SQL> select employee_id, last_name, salary, commission_pct
 2 from employees where department_id = 90 ;
 
 EMPLOYEE_ID LAST_NAME SALARY COMMISSION_PCT
--------------- ------------------------- --------------- ---------------
 100 King 26400
 101 Kochhar 18700
 102 De Haan 18700
 
3 rows selected.

SQL> rollback ;

Rollback complete.
 
SQL> -- Example 5: Update multiple columns using a subquery
 

Chapter 1 ■ Core SQL

20

SQL> update employees
 2 set (salary, commission_pct) = (select employees2.salary, .10 comm_pct
 3 from employees2
 4 where employees2.employee_id = employees.employee_id
 5 and employees.salary != employees2.salary)
 6 where department_id = 90 ;
 
3 rows updated.
SQL> select employee_id, last_name, salary, commission_pct
 2 from employees where department_id = 90 ;
 
 EMPLOYEE_ID LAST_NAME SALARY COMMISSION_PCT
--------------- ------------------------- --------------- ---------------
 100 King 26400 .1
 101 Kochhar 18700 .1
 102 De Haan 18700 .1
 
3 rows selected.

SQL> rollback ;

Rollback complete.

SQL> 

The DELETE Statement
The DELETE statement is used to remove rows from a table. The syntax for this statement is composed of three parts:
DELETE, FROM, and WHERE. The DELETE keyword stands alone. Unless you decide to use a hint, which we examine later,
there are no other options associated with the DELETE keyword. The FROM clause identifies the table from which rows
are to be deleted. As the examples in Listing 1-19 demonstrate, the table can be specified directly or via a subquery.
The WHERE clause provides any filter conditions to help determine which rows are deleted. If the WHERE clause is
omitted, the DELETE operation deletes all rows in the specified table.

Listing 1-19.  DELETE Statement Examples

SQL> select employee_id, department_id, last_name, salary
 2 from employees2
 3 where department_id = 90;
 EMPLOYEE_ID DEPARTMENT_ID LAST_NAME SALARY
--------------- --------------- ------------------------- ---------------
 100 90 King 26400
 101 90 Kochhar 18700
 102 90 De Haan 18700
 
3 rows selected.
SQL> -- Example 1: Delete rows from specified table using
SQL> -- a filter condition in the WHERE clause
SQL> delete from employees2
 2 where department_id = 90;
 

Chapter 1 ■ Core SQL

21

3 rows deleted.
 
SQL> select employee_id, department_id, last_name, salary
 2 from employees2
 3 where department_id = 90;
 
no rows selected
 
SQL> rollback;
 
Rollback complete.
 
SQL> select employee_id, department_id, last_name, salary
 2 from employees2
 3 where department_id = 90;
 
 EMPLOYEE_ID DEPARTMENT_ID LAST_NAME SALARY
--------------- --------------- ------------------------- ---------------
 100 90 King 26400
 101 90 Kochhar 18700
 102 90 De Haan 18700
 
3 rows selected.
 
SQL> -- Example 2: Delete rows using a subquery in the FROM clause
SQL> delete from (select * from employees2 where department_id = 90);
 
3 rows deleted.
 
SQL> select employee_id, department_id, last_name, salary
 2 from employees2
 3 where department_id = 90;
 
no rows selected
 
SQL> rollback;
 
Rollback complete.
 
SQL> select employee_id, department_id, last_name, salary
 2 from employees2
 3 where department_id = 90;
 
 EMPLOYEE_ID DEPARTMENT_ID LAST_NAME SALARY
--------------- --------------- ------------------------- ---------------
 100 90 King 26400
 101 90 Kochhar 18700
 102 90 De Haan 18700
 
3 rows selected.
 

Chapter 1 ■ Core SQL

22

SQL> -- Example 3: Delete rows from specified table using
SQL> -- a subquery in the WHERE clause
SQL> delete from employees2
 2 where department_id in (select department_id
 3 from departments
 4 where department_name = 'Executive');
 
3 rows deleted.
 
SQL> select employee_id, department_id, last_name, salary
 2 from employees2
 3 where department_id = 90;
 
no rows selected
 
SQL> rollback;
 
Rollback complete.
 
SQL>
 

Listing 1-19 demonstrates several different ways a DELETE statement can be written. Note that I am using the
employees2 table created in Listing 1-18 for these examples. The following are the different delete methods that you
can use:

Example 1: Delete rows from a specified table using a filter condition in the WHERE clause.

Example 2: Delete rows using a subquery in the FROM clause.

Example 3: Delete rows from a specified table using a subquery in the WHERE clause.

The MERGE Statement
The MERGE statement is a single command that combines the ability to update or insert rows into a table by deriving
conditionally the rows to be updated or inserted from one or more sources. It is used most frequently in data
warehouses to move large amounts of data, but its use is not limited only to data warehouse environments. The big
value-add this statement provides is that you have a convenient way to combine multiple operations into one, which
allows you to avoid issuing multiple INSERT, UPDATE, and DELETE statements. And, as you’ll see later in the book, if you
can avoid doing work you really don’t have to do, your response times will likely improve.

The syntax for the MERGE statement is as follows:

MERGE <hint>
INTO <table_name>
USING <table_view_or_query>
ON (<condition>)
WHEN MATCHED THEN <update_clause>
DELETE <where_clause>
WHEN NOT MATCHED THEN <insert_clause>
[LOG ERRORS <log_errors_clause> <reject limit <integer | unlimited>];

To demonstrate the use of the MERGE statement, Listing 1-20 shows how to create a test table and then insert or
update rows appropriately into that table based on the MERGE conditions.

Chapter 1 ■ Core SQL

23

Listing 1-20.  MERGE Statement Example

SQL> create table dept60_bonuses
 2 (employee_id number
 3 ,bonus_amt number);
 
Table created.
 
SQL> insert into dept60_bonuses values (103, 0);
 
1 row created.
 
SQL> insert into dept60_bonuses values (104, 100);
 
1 row created.
 
SQL> insert into dept60_bonuses values (105, 0);
 
1 row created.
 
SQL> commit;
 
Commit complete.
 
SQL> select employee_id, last_name, salary
 2 from employees
 3 where department_id = 60 ;
 
 EMPLOYEE_ID LAST_NAME SALARY
--------------- ------------------------- ---------------
 103 Hunold 9000
 104 Ernst 6000
 105 Austin 4800
 106 Pataballa 4800
 107 Lorentz 4200
 
5 rows selected.
 
SQL> select * from dept60_bonuses;
 
 EMPLOYEE_ID BONUS_AMT
--------------- ---------------
 103 0
 104 100
 105 0
 
3 rows selected.
 
SQL> merge into dept60_bonuses b
 2 using (
 3 select employee_id, salary, department_id
 4 from employees

Chapter 1 ■ Core SQL

24

 5 where department_id = 60) e
 6 on (b.employee_id = e.employee_id)
 7 when matched then
 8 update set b.bonus_amt = e.salary * 0.2
 9 where b.bonus_amt = 0
 10 delete where (e.salary > 7500)
 11 when not matched then
 12 insert (b.employee_id, b.bonus_amt)
 13 values (e.employee_id, e.salary * 0.1)
 14 where (e.salary < 7500);
 
4 rows merged.
 
SQL> select * from dept60_bonuses;
 
 EMPLOYEE_ID BONUS_AMT
--------------- ---------------
 104 100
 105 960
 106 480
 107 420
 
4 rows selected.
 
SQL> rollback;
 
Rollback complete.
 
SQL>
 

The MERGE accomplished the following:

Two rows were inserted (•	 employee_ids 106 and 107).

One row was updated (•	 employee_id 105).

One row was deleted (•	 employee_id 103).

One row remained unchanged (•	 employee_id 104).

Without the MERGE statement, you would have had to write at least three different statements to complete the
same work.

Summary
As you can tell from the examples shown so far, the SQL language offers many alternatives that can produce the same
result set. What you may have also noticed is that each of the five core statements can use similar constructs, such as
subqueries. The key is to learn which constructs are the most efficient under various circumstances. We look at how to
do this later.

If you had any trouble following the examples in this chapter, make sure to take the time to review either
Beginning Oracle SQL (mentioned earlier) or The SQL Reference Guide in the Oracle documentation. The rest of this
book assumes you are comfortable with the basic constructs for each of the five core SQL statements: SELECT, INSERT,
UPDATE, DELETE, and MERGE.

25

Chapter 2

SQL Execution

You likely learned the mechanics of writing basic SQL in a relatively short period of time. Throughout the course of a
few weeks or few months, you became comfortable with the general statement structure and syntax, how to filter, how
to join tables, and how to group and order data. But, how far beyond that initial level of proficiency have you traveled?
Writing complex SQL that executes efficiently is a skill that requires you to move beyond the basics. Just because your
SQL gets the job done doesn’t mean it does the job well.

In this chapter, I’m going to raise the hood and look at how SQL executes from the inside out. I’ll discuss basic
Oracle architecture and introduce the cost-based query optimizer. You’ll learn how and why the way you formulate
your SQL statements affects the optimizer’s ability to produce the most efficient execution plan possible. You may
already know what to do, but understanding how SQL execution works will help you help Oracle accomplish the
results you need in less time and with fewer resources.

Oracle Architecture Basics
The SQL language is seemingly easy enough that you can learn to write simple SQL statements in fairly short order.
But, just because you can write SQL statements that are functionally correct (in other words, produce the proper result
set) doesn’t mean you’ve accomplished the task in the most effective and efficient way.

Moving beyond basic skills requires deeper understanding. For instance, when I learned to drive, my father
taught me the basics. We walked around the car and discussed the parts of the car that he thought were important to
be aware of as the driver of the vehicle. We talked about the type of gas I should put in the car, the proper air pressure
for the tires, and the importance of getting regular oil changes. Being aware of these things would help make sure the
vehicle was in good condition when I wanted to drive it.

He then taught me the mechanics of driving. I learned how to start the engine, shift gears, increase and decrease
my speed, use the brake, use turn signals, and so on. But, what he didn’t teach me was specifically how the engine
worked, how to change the oil myself, or anything else other than what I needed to do to allow me to drive the vehicle
safely from place to place. If I needed my car to do anything aside from what I learned, I had to take it to a professional
mechanic, which isn’t a bad thing. Not everyone needs to have the skills and knowledge of a professional mechanic
just to drive a car. However, the analogy applies to anyone who writes SQL. You can learn the basics and be able to get
your applications from place to place; but, without extending your knowledge, I don’t believe you’ll ever be more than
an everyday driver. To get the most out of SQL, you need to understand how it does what it does, which means you
need to understand the basics of the underlying architecture on which the SQL you write will execute.

Figure 2-1 depicts how most people view the database when they first learn to write SQL. It is simply a black box
to which they direct SQL requests and from which they get data back. The “machinery” inside the database is
a mystery.

Chapter 2 ■ SQL Execution

26

The term Oracle database is typically used to refer to the files, stored on disk, where data reside along with the
memory structures used to manage those files. In reality, the term database belongs to the data files; the term instance
belongs to the memory structures and the processes. An instance consists of the system global area (SGA) and a set of
background processes. Each user connection to the database is managed via a server process. Each client connection
is associated with server processes that are each allocated their own private memory area called the program, or
process, global area (PGA).

The Oracle Concepts Guide goes into detail about each of the memory structures and processes. I think it’s a
great idea for everyone who will use Oracle to read the Oracle Concepts Guide. For our purposes, however, I limit my
discussion to a few key areas to help you understand how SQL operates. Specifically, I review two areas of the SGA: the
shared pool (specifically, the library cache within the shared pool) and the database buffer cache. Later in the book,
I discuss some particulars about the PGA, but for now, I’m keeping our review limited to the SGA . Note that these
discussions will present a fairly broad picture. As I said, I don’t want to overwhelm you, but I do think this is critical
information on which to get a grasp before you go any further.

SGA: The Shared Pool
The shared pool is one of the most critical memory components, particularly when it comes to how SQL executes.
The way you write SQL affects more than the individual SQL statement itself. The combination of all SQL that executes
against the database has a tremendous effect on overall performance and scalability resulting from how it affects the
shared pool.

The shared pool is where Oracle caches program data. Every SQL statement executed has its parsed form stored
in the shared pool. The area within the shared pool where statements are stored is called the library cache. Even
before any statement is parsed, Oracle checks the library cache to determine whether that same statement already
exists there. If it does, then Oracle retrieves and uses the cached information instead of going through all the work
to parse the same statement again. The same thing goes for any PL/SQL (PL/SQL is Oracle’s Procedural Language
extension to SQL) code you run. The really nifty part is that, no matter how many users may want to execute the same
SQL statement, Oracle typically only parses that statement once and then shares it among all users who want to use it.
Now maybe you can understand why the shared pool gets its name.

SQL statements you write aren’t the only things stored in the shared pool. The system parameters Oracle uses
are stored in the shared pool as well. In an area called the dictionary cache, Oracle also stores information about all
the database objects. In general, Oracle stores pretty much everything you can think of in the shared pool. As you can
imagine, this makes the shared pool a very busy and important memory component.

Figure 2-1.  Using SQL and the database

Chapter 2 ■ SQL Execution

27

Because the memory area allocated to the shared pool is finite, statements that get loaded originally may not stay
there for very long as new statements are executed. A least recently used (LRU) algorithm regulates how objects in
the shared pool are managed. To borrow an accounting term, it’s similar to a FIFO (first in; first out) system. The basic
idea is that statements that are used most frequently and most currently are retained. Unlike a straight FIFO method,
however, how frequently the same statements are used affects how long they remain in the shared pool. If you execute
a SELECT statement at 8 AM and then execute the same statement again at 4 PM, the parsed version that was stored in
the shared pool at 8 AM may not still be there. Depending on the overall size of the shared pool and how much activity
it has seen between 8 AM and 4 PM—Oracle needs space to store the latest information throughout the day—it simply
reuses older areas and overlays newer information into them. But, if you execute a statement every few seconds
throughout the day, the frequent reuse causes Oracle to retain that information over something else that may have
been originally stored later than your statement but hasn’t been executed frequently, or at all, since it was loaded.

One of the things you need to keep in mind as you write SQL is that, to use the shared pool most efficiently,
statements need to be shareable. If every statement you write is unique, you basically defeat the purpose of the shared
pool. The less shareable it is, the more effect you’ll see on overall response times. I show you exactly how expensive
parsing can be in the next section.

The Library Cache
The first thing that must happen to every SQL statement you execute is that it must be parsed and loaded into the
library cache. The library cache, as mentioned earlier, is the area within the shared pool that holds previously parsed
statements. Parsing involves verifying the statement syntax, validating objects being referred to, and confirming
user privileges on the objects. If these checks are passed, the next step is for Oracle to determine whether that same
statement has been executed previously. If it has, then Oracle grabs the stored information from the previous parse
and reuses it. This type of parse is called a soft parse. If the statement hasn’t been executed previously, then Oracle
does all the work to develop the execution plan for the current statement and then stores it in the cache for later reuse.
This type of parse is called a hard parse.

Hard parses require Oracle to do a lot more work than soft parses. Every time a hard parse occurs, Oracle must
gather all the information it needs before it can actually execute the statement. To get the information it needs, Oracle
executes a bunch of queries against the data dictionary. The easiest way to see what Oracle does during a hard parse is
to turn on extended SQL tracing, execute a statement, and then review the trace data. Extended SQL tracing captures
every action that occurs, so not only do you see the statement you execute, but also you see every statement that
Oracle must execute as well. Because I haven’t covered the details of how tracing works and how to read a trace file,
I’m not going to show the detailed trace data. Instead, Table 2-1 provides the list of system tables that were queried
during a hard parse of select * from employees where department_id = 60.

Table 2-1.  System Objects Queried during Hard Parse

Tables No. of Queries Purpose

aud_object_opt$ 1 Object audit data

ccol$ 1 Constraint column-specific data

cdef$ 4 Constraint-specific definition data

col$ 1 Table column-specific data

hist_head$ 1 Histogram header data

histgrm$ 1 Histogram specifications

icol$ 1 Index columns

ind$ 1 Indexes

(continued )

Chapter 2 ■ SQL Execution

28

In total, there were 19 queries against system objects executed during the hard parse. This number, from version 12c,
is less than the version 11g total of 59 for the same query. The soft parse of the same statement did not execute any queries
against the system objects because all that work was done during the initial hard parse. The elapsed time for the hard
parse was 0.030641 second whereas the elapsed time for the soft parse was 0.000025 second. As you can see, soft parsing is
a much more desirable alternative to hard parsing. Don’t ever fool yourself into thinking parsing doesn’t matter. It does!

Identical Statements
For Oracle to determine whether a statement has been executed previously, it checks the library cache for the
identical statement. You can see which statements are currently stored in the library cache by querying the v$sql
view. This view lists statistics on the shared SQL area and contains one row for each “child” of the original SQL text
entered. Listing 2-1 shows three different executions of a query against the employees table followed by a query
against v$sql showing information about the three queries that have been stored in the library cache.

Listing 2-1.  Queries against Employees and v$sql Contents

SQL> select * from employees where department_id = 60;
 
 EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL
--------------- -------------------- ------------------------- -----------
 103 Alexander Hunold AHUNOLD
 104 Bruce Ernst BERNST
 105 David Austin DAUSTIN
 106 Valli Pataballa VPATABAL
 107 Diana Lorentz DLORENTZ
  
SQL> SELECT * FROM EMPLOYEES WHERE DEPARTMENT_ID = 60;
 
 EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL
--------------- -------------------- ------------------------- -----------
 103 Alexander Hunold AHUNOLD
 104 Bruce Ernst BERNST
 105 David Austin DAUSTIN
 106 Valli Pataballa VPATABAL
 107 Diana Lorentz DLORENTZ
  

Tables No. of Queries Purpose

ind_stats$ 1 Index statistics

obj$ 3 Objects

objauth$ 2 Table authorizations

opt_directive_own$ 1 SQL plan directives

seg$ 1 Mapping of all database segments

tab$ 2 Tables

tab_stats$ 1 Table statistics

user$ 2 User definitions

Table 2-1.  (continued )

Chapter 2 ■ SQL Execution

29

SQL> select /* a_comment */ * from employees where department_id = 60;
 
 EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL
--------------- -------------------- ------------------------- -----------
 103 Alexander Hunold AHUNOLD
 104 Bruce Ernst BERNST
 105 David Austin DAUSTIN
 106 Valli Pataballa VPATABAL
 107 Diana Lorentz DLORENTZ
 
SQL> select sql_text, sql_id, child_number, hash_value, executions
 2 from v$sql where upper(sql_text) like '%EMPLOYEES%';
 
SQL_TEXT SQL_ID CHILD_NUMBER HASH_VALUE EXECUTIONS
--------------------------- ------------- ------------ ---------- ----------
select * from employees 0svc967bxf4yu 0 3621196762 1
 where department_id = 60
SELECT * FROM EMPLOYEES cq7t1xq95bpm8 0 2455098984 1
 WHERE DEPARTMENT_ID = 60
select /* a_comment */ * 2dkt13j0cyjzq 0 1087326198 1
 from employees
 where department_id = 60
 

Although all three statements return the exact same result, Oracle considers them to be different. This is because,
when a statement is executed, Oracle first converts the string to a hash value. That hash value is used as the key for
that statement when it is stored in the library cache. As other statements are executed, their hash values are compared
with the existing hash values to find a match.

So, why would these three statements produce different hash values, even though they return the same result?
Because the statements are not identical. Lowercase text is different from uppercase text. Adding a comment into the
statement makes it different from the statements that don’t have a comment. Any differences cause a different hash
value to be created for the statement, and cause Oracle to hard parse the statement.

The execution of statements that differ only by their literals can cause significant parsing overhead, which is why
it is important to use bind variables instead of literals in your SQL statements. When you use a bind variable, Oracle is
able to share the statement even as you change the values of the bind variables, as shown in Listing 2-2.

Listing 2-2.  The Effect of Using Bind Variables on Parsing

SQL> variable v_dept number
SQL> exec :v_dept := 10
SQL> select * from employees where department_id = :v_dept;
 
 EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL
--------------- -------------------- ------------------------- -----------
 200 Jennifer Whalen JWHALEN
 
1 row selected.
 
SQL> exec :v_dept := 20
 
PL/SQL procedure successfully completed.
 

Chapter 2 ■ SQL Execution

30

SQL> select * from employees where department_id = :v_dept;
 
 EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL
--------------- -------------------- ------------------------- -----------
 201 Michael Hartstein MHARTSTE
 202 Pat Fay PFAY
 
2 rows selected.
 
SQL> exec :v_dept := 30
 
PL/SQL procedure successfully completed.
 
SQL> select * from employees where department_id = :v_dept;
 
 EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL
--------------- -------------------- ------------------------- -----------
 114 Den Raphaely DRAPHEAL
 115 Alexander Khoo AKHOO
 116 Shelli Baida SBAIDA
 117 Sigal Tobias STOBIAS
 118 Guy Himuro GHIMURO
 119 Karen Colmenares KCOLMENA
 
6 rows selected.
 
SQL> select sql_text, sql_id, child_number, executions
 2 from v$sql where sql_text like '%v_dept';
 
SQL_TEXT SQL_ID CHILD_NUMBER EXECUTIONS
------------------------------- ------------- ------------ ----------
select * from employees 72k66s55jqk1j 0 3
 where department_id = :v_dept
 
1 row selected.
 

Notice how there is only one statement with three executions stored in the library cache. If I had executed the
queries using the literal values (10, 20, 30), there would have been three different statements. Always keep this in mind
and try to write SQL that takes advantage of bind variables and uses exactly the same SQL. The less hard parsing that
is required means your applications perform better and are more scalable.

There are two final mechanisms that are important to understand. The first is something called a latch. A latch
is a type of lock that Oracle must acquire to read information stored in the library cache as well as other memory
structures. Latches protect the library cache from becoming corrupted by concurrent modifications by two sessions,
or by one session trying to read information that is being modified by another one. Before reading any information
from the library cache, Oracle acquires a latch that then causes all other sessions to wait until that latch is released
before they can acquire the latch and do the work they need to complete.

This is a good place to mention the second mechanism: the mutex. A mutex (mutual exclusion lock) is similar to a
latch in that it is a serialization device used to prevent multiple threads from accessing shared structures simultaneously.
The biggest advantage of mutexes over latches is that mutexes require less memory and are faster to acquire and release.
Also, mutexes are used to avoid the need to get the library cache latch for a previously opened cursor (in the session
cursor cache) by modifying the cursor’s mutex reference count directly. A mutex is a better performing and more
scalable mechanism than a latch. Note that library cache latching is still needed for parsing, however.

Chapter 2 ■ SQL Execution

31

Latches, unlike typical locks, are not queued. In other words, if Oracle attempts to acquire a latch on the library
cache to determine whether the statement you are executing already exists, it checks whether the latch is available.
If the latch is available, it acquires the latch, does the work it needs to do, then releases the latch. However, if the latch
is already in use, Oracle does something called spinning. Think of spinning as repetitive—like a kid in the backseat of
a car asking, “Are we there yet?” over and over and over. Oracle basically iterates in a loop, and continues to determine
whether the latch is available. During this time, Oracle is actively using the central processing unit (CPU) to do these
checks, but your query is actually “on hold” and not really doing anything until the latch is acquired.

If the latch is not acquired after spinning for a while (Oracle spins up to the number of times indicated by the
_spin_count hidden parameter, which is set to 2000 by default), then the request is halted temporarily and your
session has to get in line behind other sessions that need to use the CPU. It must wait its turn to use the CPU again to
determine whether the latch is available. This iterative process continues until the latch can be acquired. You don’t
just get in line and wait on the latch to become available; it’s entirely possible that another session acquires the latch
while your session is waiting in line to get back on the CPU to check the latch again. As you can imagine, this can be
quite time-consuming if many sessions all need to acquire the latch concurrently.

The main thing to remember is that latches and mutexes are serialization devices. The more frequently Oracle
needs to acquire one, the more likely it is that contention will occur, and the longer you’ll have to wait. The effects on
performance and scalability can be dramatic. So, writing your code so that it requires fewer mutexes and latches
(in other words, less hard parsing) is critical.

SGA: The Buffer Cache
The buffer cache is one of the largest components of the SGA. It stores database blocks after they have been read
from disk or before they are written to disk. A block is the smallest unit with which Oracle works. Blocks contain rows
of table data or index entries, and some blocks contain temporary data for sorts. The key thing to remember is that
Oracle must read blocks to get to the rows of data needed to satisfy a SQL statement. Blocks are typically either 4KB,
8KB, or 16KB, although the only restricting factor to the size of a block depends on your operating system.

Each block has a certain structure. Within the block there are a few areas of block overhead that contain
information about the block itself that Oracle uses to manage the block. There is information that indicates the type
of block it is (table, index, and so forth), a bit of information about transactions against the block, the address where
the block resides physically on the disk, information about the tables that store data in the block, and information
about the row data contained in the block. The rest of the block contains either the actual data or free space where
new data can be stored. There’s more detail about how the buffer cache can be divided into multiple pools and how it
has varying block sizes, but I’ll keep this discussion simple and just consider one big default buffer pool with a single
block size.

At any given time, the blocks in the buffer cache will either be dirty, which means they have been modified and
need to be written into a physical location on the disk, or not dirty. During the earlier discussion of the shared pool,
I mentioned the LRU algorithm used by Oracle to manage the information there. The buffer cache also uses an LRU
list to help Oracle know which blocks are used most recently to determine how to make room for new blocks as
needed. Besides the LRU list, Oracle maintains a touch count for each block in the buffer cache. This count indicates
how frequently a block is used; blocks with higher touch counts remain in the cache longer than those with lower
touch counts.

Also similar to the shared pool, latches must be acquired to verify whether blocks are in the buffer cache, and to
update the LRU information and touch counts. One of the ways you can help Oracle use less latches is to write your
SQL in such a way that it accesses the fewest blocks possible when trying to retrieve the rows needed to satisfy your
query. I discuss how you can do this throughout the rest of the book, but for now, keep in mind that, if all you think
about when writing a SQL statement is getting the functionally correct answer, you may write your SQL in such a way
that it accesses blocks inefficiently and therefore uses more latches than needed. The more latches required, the more
chance for contention, and the more likely your application will be less responsive and less scalable than others that
are better written.

Chapter 2 ■ SQL Execution

32

Executing a query with blocks that are not in the buffer cache requires Oracle to make a call to the operating system
to retrieve those blocks and then place them in the buffer cache before returning the result set to you. In general, any
block that contains rows needed to satisfy a query must be present in the buffer cache. When Oracle determines that a
block already exists in the buffer cache, such access is referred to as a logical read. If the block must be retrieved from
disk, it is referred to as a physical read. As you can imagine, because the block is already in memory, response times to
complete a logical read are faster than physical reads. Listing 2-3 shows the differences between executing the same
statement multiple times under three scenarios. First, the statement is executed after clearing both the shared pool and
the buffer cache. This means that the statement will be hard parsed, and the blocks that contain the data to satisfy the
query (and all the queries from the system objects to handle the hard parse) have to be read physically from disk. The
second example shows what happens if only the buffer cache is cleared. The third example shows what happens if both
the shared pool and buffer cache are populated.

Listing 2-3.  Hard Parsing and Physical Reads Versus Soft Parsing and Logical Reads

SQL> alter system flush buffer_cache;
 
System altered.
 
SQL> alter system flush shared_pool;
 
System altered.
 
SQL> set autotrace traceonly statistics
SQL>
SQL> select * from employees where department_id = 60;
 
5 rows selected.
 
Statistics
--
 951 recursive calls
 0 db block gets
 237 consistent gets
 27 physical reads
 0 redo size
 1386 bytes sent via SQL*Net to client
 381 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 9 sorts (memory)
 0 sorts (disk)
 5 rows processed
 
SQL> set autotrace off
SQL>
SQL> alter system flush buffer_cache;
 
System altered.
 

Chapter 2 ■ SQL Execution

33

SQL> set autotrace traceonly statistics
SQL>
SQL> select * from employees where department_id = 60;
 
5 rows selected.
 
Statistics
--
 0 recursive calls
 0 db block gets
 4 consistent gets
 2 physical reads
 0 redo size
 1386 bytes sent via SQL*Net to client
 381 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 5 rows processed
 
SQL> select * from employees where department_id = 60;
 
5 rows selected.
 
Statistics
--
 0 recursive calls
 0 db block gets
 4 consistent gets
 0 physical reads
 0 redo size
 1386 bytes sent via SQL*Net to client
 381 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 5 rows processed
 
SQL> set autotrace off
 

You can see from the statistics that when a query is executed and does only a soft parse and finds the blocks in
the buffer cache, the work done is minimal. Your goal should be to develop code that promotes reusability in both the
shared pool and the buffer cache.

Query Transformation
Before the development of the execution plan, a step called query transformation occurs. This step happens just
after a query is checked for syntax and permissions, and just before the optimizer computes cost estimates for the
various plan operations it considers when determining the final execution plan. In other words, transformation and
optimization are two different tasks.

Chapter 2 ■ SQL Execution

34

After your query passes the syntactical and permissions checks, the query enters the transformation phase in a
set of query blocks. A query block is defined by the keyword SELECT. For example, select * from employees where
department_id = 60 has a single query block. However, select * from employees where department_id in
(select department_id from departments) has two query blocks. Each query block is either nested within another
or interrelated in some way. The way the query is written determines the relationships between query blocks. It is
the query transformer’s main objective to determine whether changing the way the query is written provides a better
query plan.

Make sure you caught that last sentence. The query transformer can—and will—rewrite your query. This is
something you may have never realized. What you write may not end up being the exact statement for which the
execution plan is developed. Many times this is a good thing. The query transformer knows how the optimizer deals
with certain syntax and does everything it can to render your SQL in a way that helps the optimizer come up with the
best, most efficient execution plan. However, the fact that what you write can be changed may mean that a behavior
you expected—particularly the order in which certain parts of the statement occur—doesn’t happen the way you
intended. Therefore, you must understand how query transformation works so that you can make sure to write your
SQL properly to get the behaviors you intend.

The query transformer may change the way you originally formulated your query as long as the change does
not affect the result set. Any change that might cause the result set to differ from the original query syntax is not
considered. The change that is most often made is to transform separate query blocks into straight joins. For example,
the statement
 
select * from employees where department_id in (select department_id from departments)
 
will likely be transformed to
 
select e.* from employees e, departments d where e.department_id = d.department_id
 

The result set doesn’t change, but the execution plan choices for the transformed version are better from the
optimizer’s point of view. The transformed version of the query can open up additional operations that might allow
for better performance and resource utilization than was possible with the original SQL.

Query Blocks
As mentioned earlier, the way the query can be transformed depends on how each query block is formed. Each query
block is named either by Oracle with a system-generated name or by you using the QB_NAME hint. Listing 2-4 shows the
execution plans for this query with system-generated query block names and with assigned query block names using
the QB_NAME hint.

Listing 2-4.  Query Block Naming

-- System-generated query block names
 
--
| Id | Operation | Name | Starts | E-Rows | A-Rows |
--
0	SELECT STATEMENT		1		106
* 1	FILTER		1		106
2	TABLE ACCESS FULL	EMPLOYEES	1	107	107
* 3	INDEX UNIQUE SCAN	DEPT_ID_PK	12	1	11
--
 

Chapter 2 ■ SQL Execution

35

Query Block Name / Object Alias (identified by operation id):

 1 - SEL$1
 2 - SEL$1 / EMPLOYEES@SEL$1
 3 - SEL$2 / DEPARTMENTS@SEL$2
 
Predicate Information (identified by operation id):

 1 - filter(IS NOT NULL)
 3 - access("DEPARTMENT_ID"=:B1)
 
-- User-defined query block names
 
select /*+ qb_name(outer_employees) */ *
from employees where department_id in
(select /*+ qb_name(inner_departments) */ department_id from departments)
 
--
| Id | Operation | Name | Starts | E-Rows | A-Rows |
--
0	SELECT STATEMENT		1		106
* 1	FILTER		1		106
2	TABLE ACCESS FULL	EMPLOYEES	1	107	107
* 3	INDEX UNIQUE SCAN	DEPT_ID_PK	12	1	11
--
 
Query Block Name / Object Alias (identified by operation id):

 1 - OUTER_EMPLOYEES
 2 - OUTER_EMPLOYEES / EMPLOYEES@OUTER_EMPLOYEES
 3 - INNER_DEPARTMENTS / DEPARTMENTS@INNER_DEPARTMENTS
 
Predicate Information (identified by operation id):

 1 - filter(IS NOT NULL)
 3 - access("DEPARTMENT_ID"=:B1)
 

Note the system-generated query block names are numbered sequentially as SEL$1 and SEL$2. In Chapter 6,
we cover the DBMS_XPLAN package, which is used here to display the execution plan along with the Query Block Name
section. Just note for now that the +ALIAS option was added to the format parameter to produce this section of the
output. When the QB_NAME hint is used, the blocks use the specified names OUTER_EMPLOYEES and INNER_DEPARTMENTS.
When you name a query block, it allows you to qualify where other hints are applied that you may want to use in the
SQL. For instance, you could apply a full table scan hint to the DEPARTMENTS table by specifying a hint as follows:
 
select /*+ full(@inner_departments departments) */ *
from employees where department_id in
(select /*+ qb_name(inner_departments) */ department_id from departments)
 

Chapter 2 ■ SQL Execution

36

This hinted SQL would produce the following execution plan:

| Id | Operation | Name | Starts | E-Rows | A-Rows |

0	SELECT STATEMENT		1		106
* 1	FILTER		1		106
2	TABLE ACCESS FULL	EMPLOYEES	1	107	107
* 3	TABLE ACCESS FULL	DEPARTMENTS	12	1	11

Another benefit to using the QB_NAME hint is that you can use the name you specify to locate the query in the
shared pool. The V$SQL_PLAN view has a QBLOCK_NAME column that contains the query block name you used so that
you can query from that view using a predicate like WHERE QBLOCK_NAME = 'INNER_DEPARTMENTS' to find a SQL
statement you executed previously. This strategy can come in handy when you want to locate previously executed
SQL statements for analysis or troubleshooting.

When you learn what to look for, you can usually tell by looking at the execution plan if a transformation
occurred. You can also execute your query using the NO_QUERY_TRANSFORMATION hint and compare the execution
plan from this query with the plan from the query without the hint. I actually used the NO_QUERY_TRANSFORMATION
hint when demonstrating the previous QB_NAME hint use. If the two plans are not the same, the differences can be
attributed to query transformation. When using the hint, all query transformations, with the exception of predicate
pushing (which I review shortly), are prohibited.

There are numerous transformations that can be applied to a given query. I review several of the more common
ones to give you a feel for how the optimizer refactors your query text in an attempt to produce better execution plans.
In the next sections, we examine the following:

View merging•	

Subquery unnesting•	

Join elimination•	

ORDER BY elimination•	

Predicate pushing•	

Query rewrite with materialized views•	

View Merging
As the name implies, view merging is a transformation that expands views, either inline views or stored views, into
separate query blocks that can either be analyzed separately or merged with the rest of the query to form a single
overall execution plan. Basically, the statement is rewritten without the view. A statement like select * from my_view
would be rewritten as if you had simply typed in the view source. View merging usually occurs when the outer query
block’s predicate contains the following:

A column that can be used in an index within another query block•	

A column that can be used for partition pruning within another query block•	

A condition that limits the rows returned from one of the tables in a joined view•	

Most people believe that a view is always treated as a separate query block, and that it always has its own subplan
and is executed prior to joining to other query blocks. This is not true because of the actions of the query transformer.
The truth is that, sometimes, views are analyzed separately and have their own subplan, but more often than not,

Chapter 2 ■ SQL Execution

37

merging views with the rest of the query provides a greater performance benefit. For example, the following query
might use resources quite differently depending on whether the view is merged:
 
select *
from orders o,
 (select sales_rep_id
 from orders
) o_view
where o.sales_rep_id = o_view.sales_rep_id(+)
and o.order_total > 100000;
 

Listing 2-5 shows the execution plans for this query when view merging occurs and when it doesn’t. Notice the
plan operations chosen and the A-Rows count (actual rows retrieved during that step of the plan) in each step.

Listing 2-5.  View Merging Plan Comparison

-- View merging occurs
 
--
| Id | Operation | Name | Starts | E-Rows | A-Rows |
--
0	SELECT STATEMENT		1		31
1	NESTED LOOPS OUTER		1	384	31
* 2	TABLE ACCESS FULL	ORDERS	1	70	7
* 3	INDEX RANGE SCAN	ORD_SALES_REP_IX	7	5	26
--
 
Predicate Information (identified by operation id):

 2 - filter("O"."ORDER_TOTAL">100000)
 3 - access("O"."SALES_REP_ID"="SALES_REP_ID")
 filter("SALES_REP_ID" IS NOT NULL)
 
-- View merging does not occur

| Id | Operation | Name | Starts | E-Rows | A-Rows |

0	SELECT STATEMENT		1		31
* 1	HASH JOIN OUTER		1	384	31
* 2	TABLE ACCESS FULL	ORDERS	1	70	7
3	VIEW		1	105	105
4	TABLE ACCESS FULL	ORDERS	1	105	105

Predicate Information (identified by operation id):

 1 - access("O"."SALES_REP_ID"="O_VIEW"."SALES_REP_ID")
 2 - filter("O"."ORDER_TOTAL">100000)
 

Chapter 2 ■ SQL Execution

38

Did you notice how in the second, nonmerged plan the view is handled separately? The plan even indicates the
view was kept “as is” by showing the VIEW keyword in line 3 of the plan. By treating the view separately, a full scan of
the orders table occurs before it is joined with the outer orders table. But, in the merged version, the plan operations
are merged into a single plan instead of keeping the inline view separate. This results in a more efficient index access
operation being chosen and requires fewer rows to be processed (26 vs. 105). This example uses small tables, so
imagine how much work would occur if you had really large tables involved in the query. The transformation to merge
the view makes the plan perform more optimally overall.

The misconception that an inline or normal view is considered first and separately from the rest of the query
often comes from our education about execution order in mathematics. Let’s consider the following examples:
 
6 + 4 ÷ 2 = 8 (6 + 4) ÷ 2 = 5
 

The parentheses in the right-hand example cause the addition to happen first, whereas in the left-hand example,
the division would happen first based on the rules of precedence order. We are trained to know that when we use
parentheses, that action happens first; however, the SQL language doesn’t follow the same rules that mathematical
expressions do. Using parentheses to set a query block apart from another does not in any way guarantee that that
block will be executed separately or first. If you have written your statement to include an inline view because you
intend for that view to be considered separately, you may need to add the NO_MERGE hint to that query block to prevent
it from being rewritten. As a matter of fact, using the NO_MERGE hint is how I was able to produce the nonmerged
plan in Listing 2-5. With this hint, I was able to tell the query transformer that I wanted the o_view query block to be
considered independently from the outer query block. The query using the hint actually looked like this:
 
select *
from orders o,
 (select /*+ NO_MERGE */ sales_rep_id
 from orders
) o_view
where o.sales_rep_id = o_view.sales_rep_id(+)
and o.order_total > 100000;
 

There are some conditions that, if present, also prevent view merging from occurring. If a query block contains
analytic or aggregate functions, set operations (such as UNION, INTERSECT, MINUS), or an ORDER BY clause, or uses
ROWNUM, view merging is prohibited or limited. Even if some of these conditions are present, you can force view
merging to take place by using the MERGE hint. If you force view merging to occur by using the hint, you must make
sure that the query result set is still correct after the merge. If view merging does not occur, it is likely a result of the fact
that the merge might cause the query result to be different. By using the hint, you are indicating the merge does affect
the answer. Listing 2-6 shows a statement with an aggregate function that does not view merge, and exemplifies how
the use of a MERGE hint can force view merging to occur.

Listing 2-6.  The MERGE Hint

-- No hint used
 
SQL> SELECT e1.last_name, e1.salary, v.avg_salary
 2 FROM employees e1,
 3 (SELECT department_id, avg(salary) avg_salary
 4 FROM employees e2
 5 GROUP BY department_id) v
 6 WHERE e1.department_id = v.department_id AND e1.salary > v.avg_salary;
 

Chapter 2 ■ SQL Execution

39

| Id | Operation | Name | Starts | E-Rows | A-Rows |

0	SELECT STATEMENT		1		38
* 1	HASH JOIN		1	17	38
2	VIEW		1	11	12
3	HASH GROUP BY		1	11	12
4	TABLE ACCESS FULL	EMPLOYEES	1	107	107
5	TABLE ACCESS FULL	EMPLOYEES	1	107	107

Predicate Information (identified by operation id):

 1 - access("E1"."DEPARTMENT_ID"="V"."DEPARTMENT_ID")
 filter("E1"."SALARY">"V"."AVG_SALARY")
 
SQL> SELECT /*+ MERGE(v) */ e1.last_name, e1.salary, v.avg_salary
 2 FROM employees e1,
 3 (SELECT department_id, avg(salary) avg_salary
 4 FROM employees e2
 5 GROUP BY department_id) v
 6 WHERE e1.department_id = v.department_id AND e1.salary > v.avg_salary;
 
-- MERGE hint used

| Id | Operation | Name | Starts | E-Rows | A-Rows |

0	SELECT STATEMENT		1		38
* 1	FILTER		1		38
2	HASH GROUP BY		1	165	106
* 3	HASH JOIN		1	3298	3298
4	TABLE ACCESS FULL	EMPLOYEES	1	107	107
5	TABLE ACCESS FULL	EMPLOYEES	1	107	107

Predicate Information (identified by operation id):

 1 - filter("E1"."SALARY">SUM("SALARY")/COUNT("SALARY"))
 3 - access("E1"."DEPARTMENT_ID"="DEPARTMENT_ID")
 
-- When _complex_view_merging is turned off
 
SQL> alter session set "_complex_view_merging" = FALSE ;
SQL>
SQL> explain plan for
SELECT /*+ merge (v) */ e1.last_name, e1.salary, v.avg_salary
 FROM employees e1,
 4 (SELECT department_id, avg(salary) avg_salary
 5 FROM employees e2

Chapter 2 ■ SQL Execution

40

 6 GROUP BY department_id) v
 7 WHERE e1.department_id = v.department_id
 8 AND e1.salary > v.avg_salary;
  
SQL> select * from table(dbms_xplan.display) ;
 
PLAN_TABLE_OUTPUT

Plan hash value: 2695105989
 
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		17	697	6 (0)	00:00:01
* 1	HASH JOIN		17	697	6 (0)	00:00:01
2	VIEW		11	286	3 (0)	00:00:01
3	HASH GROUP BY		11	77	3 (0)	00:00:01
4	TABLE ACCESS FULL	EMPLOYEES	107	749	3 (0)	00:00:01
5	TABLE ACCESS FULL	EMPLOYEES	107	1605	3 (0)	00:00:01
--
 
Predicate Information (identified by operation id):

 1 - access("E1"."DEPARTMENT_ID"="V"."DEPARTMENT_ID")
 filter("E1"."SALARY">"V"."AVG_SALARY")
 

The examples in Listings 2-5 and 2-6 demonstrate two different types of view merging: simple and complex,
respectively. Simple view merging, which occurs automatically for most Select–Project–Join (SPJ)-type queries,
is demonstrated in Listing 2-5. SPJ queries containing user-defined views or inline views are transformed into a single
query block when possible. For our example query, when it is merged, you can think of it as being transformed
as follows:
 
SELECT *
FROM orders o, orders o2
WHERE o.sales_rep_id = o2.sales_rep_id(+)
AND o.order_total > 100000;
 

Complex view merging, as shown in Listing 2-6, is used when the query contains aggregation using GROUP BY,
DISTINCT, or outer joins. With complex view merging, the idea is to eliminate the view that contains the aggregation in
the hope that fewer resources are needed to produce the result set. In this case, our example query, when it is merged,
would likely be transformed as follows:
 
SELECT e1.last_name, e1.salary, avg(e2.salary) avg_salary
FROM employees e1, employees e2
WHERE e1.department_id = e2.department_id
GROUP BY e2.department_id, e1.rowid, e1.salary,e1.last_name
HAVING e1.salary > avg(e2.salary);
 

Chapter 2 ■ SQL Execution

41

Complex view-merging behavior is controlled by the hidden parameter _complex_view_merging that defaults to
TRUE in version 9 and higher. Starting in version 10, transformed queries are reviewed by the optimizer, then the costs
of both the merged and nonmerged plans are evaluated. The optimizer then chooses the plan that is the least costly.
As shown at the end of Listing 2-6, when _complex_view_merging is set to FALSE, the optimizer does not merge the
view even if directed to do so with the MERGE hint.

Subquery Unnesting
Subquery unnesting is similar to view merging in that, just like a view, a subquery is represented by a separate query
block. The main difference between “mergeable” views and subqueries that can be unnested is location; subqueries
located within the WHERE clause are reviewed for unnesting by the transformer. The most typical transformation is
to convert the subquery into a join. The join is a statistically preferable choice because the original syntax may be
suboptimal; for example, it may require multiple, redundant reevaluations of the subquery. Unnesting is actually
a combination of actions that first converts the subquery into an inline view connected using a join, then merging
occurs with the outer query. There is a wide variety of operators that are unnested if possible: IN, NOT IN, EXISTS,
NOT EXISTS, correlated or uncorrelated, and others. If a subquery isn’t unnested, a separate subplan is generated for it
and is executed in an order within the overall plan that allows for optimal execution speed.

When the subquery is not correlated, the transformed query is very straightforward, as shown in Listing 2-7.

Listing 2-7.  Unnesting Transformation of an Uncorrelated Subquery

SQL> select * from employees
 2 where employee_id in
 3 (select manager_id from departments);

| Id | Operation | Name | Starts | E-Rows | A-Rows |

0	SELECT STATEMENT		1		11
* 1	HASH JOIN RIGHT SEMI		1	11	11
* 2	TABLE ACCESS FULL	DEPARTMENTS	1	11	11
3	TABLE ACCESS FULL	EMPLOYEES	1	107	107

Predicate Information (identified by operation id):

 1 - access("EMPLOYEE_ID"="MANAGER_ID")
 2 - filter("MANAGER_ID" IS NOT NULL)
 

The subquery in this case is simply merged into the main query block and converted to a table join. Notice that
the join operation is a HASH JOIN RIGHT SEMI, which is an indication that the transformation resulted in a semijoin
operation being selected. We examine both semijoins and antijoins extensively in Chapter 11, and look at more details
about this specific type of operation then. The query plan is derived as if the statement was written as follows:
 
select e.*
from employees e, departments d
where e.department_id S= d.department_id
 

Using the NO_UNNEST hint, I could have forced the query to be optimized as written, which would mean that a
separate subplan would be created for the subquery (as shown in Listing 2-8).

Chapter 2 ■ SQL Execution

42

Listing 2-8.  Using the NO_UNNEST Hint

SQL> select *
 2 from employees
 3 where employee_id in
 4 (select /*+ NO_UNNEST */ manager_id
 5 from departments);

| Id | Operation | Name | Starts | E-Rows | A-Rows |

0	SELECT STATEMENT		1		11
* 1	FILTER		1		11
2	TABLE ACCESS FULL	EMPLOYEES	1	107	107
* 3	TABLE ACCESS FULL	DEPARTMENTS	107	2	11

Predicate Information (identified by operation id):

 1 - filter(IS NOT NULL)
 3 - filter("MANAGER_ID"=:B1)
 

The main difference between the plans is that, without query transformation, a FILTER operation is chosen
instead of a HASH JOIN join. I discuss both of these operations in detail in Chapters 3 and 6, but for now, just note that
the FILTER operation typically represents a less efficient way of accomplishing a match—or join—between two tables.
You can see that the subquery remains intact if you look at the Predicate Information for step 3. What happens with
this as-is version is that, for each row in the employees table, the subquery must execute using the employees table
employee_id column as a bind variable for comparison with the list of manager_ids returned from the execution of
the subquery. Because there are 107 rows in the employees table, the subquery executes once for each row. This is not
precisely what happens, because of a nice optimization feature Oracle uses called subquery caching, but hopefully you
can see that executing the query for each row isn’t as efficient as joining the two tables. I discuss in the chapters ahead
the details of these operations and review why the choice of HASH JOIN is more efficient than the FILTER operation.

The subquery unnesting transformation is a bit more complicated when a correlated subquery is involved. In this
case, the correlated subquery is typically transformed into a view, unnested, and then joined to the table in the main
query block. Listing 2-9 shows an example of subquery unnesting of a correlated subquery.

Listing 2-9.  Unnesting Transformation of a Correlated Subquery

SQL> select outer.employee_id, outer.last_name,
 2 outer.salary, outer.department_id
 3 from employees outer
 4 where outer.salary >
 5 (select avg(inner.salary)
 6 from employees inner
 7 where inner.department_id = outer.department_id)
 8 ;
 

Chapter 2 ■ SQL Execution

43

| Id | Operation | Name | Starts | E-Rows | A-Rows |

0	SELECT STATEMENT		1		38
* 1	HASH JOIN		1	17	38
2	VIEW	VW_SQ_1	1	11	12
3	HASH GROUP BY		1	11	12
4	TABLE ACCESS FULL	EMPLOYEES	1	107	107
5	TABLE ACCESS FULL	EMPLOYEES	1	107	107

Predicate Information (identified by operation id):

 1 - access("ITEM_1"="OUTER"."DEPARTMENT_ID")
 filter("OUTER"."SALARY">"AVG(INNER.SALARY)")
 

Notice in this example how the subquery is transformed into an inline view, then merged with the outer query
and joined. The correlated column becomes the join condition and the rest of the subquery is used to formulate an
inline view. The rewritten version of the query would look something like this:
 
select outer.employee_id, outer.last_name, outer.salary, outer.department_id
 from employees outer,
 (select department_id, avg(salary) avg_sal
 from employees
 group by department_id) inner
 where outer.department_id = inner.department_id
 

Subquery unnesting behavior is controlled by the hidden parameter _unnest_subquery, which defaults to TRUE
in version 9 and higher. This parameter is described specifically as controlling unnesting behavior for correlated
subqueries. Just like with view merging, starting in version 10, transformed queries are reviewed by the optimizer, and
the costs are evaluated to determine whether an unnested version would be the least costly.

Join Elimination
The transformation for table elimination (alternately called join elimination) was introduced in Oracle version 10gR2
and is used to remove redundant tables from a query. A redundant table is defined as a table that has only columns
present in the join predicate, and a table in which the joins are guaranteed not to affect the resulting rows by filtering
rows out or by adding rows.

The first case when Oracle eliminates a redundant table is when there is a primary key–foreign key constraint.
Listing 2-10 shows a very simple query between the employees and departments tables in which the join columns are
the primary key and foreign key columns in the two tables.

Chapter 2 ■ SQL Execution

44

Listing 2-10.  Primary Key–Foreign Key Table Elimination

SQL> select e.* from employees e, departments d where
 2 e.department_id = d.department_id;
 
--
| Id | Operation | Name | Starts | E-Rows | A-Rows |
--
| 0 | SELECT STATEMENT | | 1 | | 106 |
|* 1 | TABLE ACCESS FULL| EMPLOYEES | 1 | 106 | 106 |
--
 
Predicate Information (identified by operation id):

 1 - filter("E"."DEPARTMENT_ID" IS NOT NULL)
 

Notice how the join to departments is eliminated completely. The elimination can occur because no columns
from departments are referenced in the column list and the primary key–foreign key constraint guarantees there is,
at most, one match in departments for each row in employees, which is why you see filter ("E"."DEPARTMENT_ID"
IS NOT NULL) in the Predicate Information section. This filter must be present to guarantee an equivalent set of
resulting rows from the transformed query. The only case when eliminating the table wouldn’t be valid would be if
the employees table department_id column was null. As we see later, nulls cannot be compared with other values
using an equality check. Therefore, to guarantee that the predicate e.department_id = d.department_id is satisfied
properly, all nulls have to be removed from consideration. This filter would have been unnecessary if the department_id
column had a NOT NULL constraint; but, because it didn’t, the filter had to be added to the plan.

The second case when Oracle eliminates a redundant table is in the case of outer joins. Even without any primary
key–foreign key constraints, an outer join to a table that does not have any columns present in the column list can
be eliminated if the join column in the table to be eliminated has a unique constraint. The example in Listing 2-11
demonstrates this type of table elimination.

Listing 2-11.  Outer Join Table Elimination

SQL> select e.first_name, e.last_name, e.job_id
 2 from employees e, jobs j
 3 where e.job_id = j.job_id(+) ;
  
--
| Id | Operation | Name | Starts | E-Rows | A-Rows |
--
| 0 | SELECT STATEMENT | | 1 | | 107 |
| 1 | TABLE ACCESS FULL| EMPLOYEES | 1 | 107 | 107 |
--
 

The outer join guarantees that every row in employees appears at least once in the result set. There is a unique
constraint on jobs.job_id that guarantees that every row in employees matches, at most, one row in jobs. These two
properties guarantee that every row in employees appears in the result exactly once.

The two examples here are quite simplistic, and you might be wondering why this transformation is useful
because most people would just write the queries without the joins present to begin with. Take a minute to imagine a
more complex query, particularly queries that have joins to views that include joins in their source. The way a query
uses a view may require only a subset of the columns present in the view. In that case, the joined tables that aren’t
requested could be eliminated. Just keep in mind that if a table doesn’t show up in the execution plan, you are seeing

Chapter 2 ■ SQL Execution

45

the results of the join elimination transformation. Although you wouldn’t have to do so, the original query could be
changed to remove the unneeded table for the sake of clarity.

There are a few limitations for this transformation:

If the join key is referred to elsewhere in the query, join elimination is prevented.•	

If the primary key–foreign key constraints have multiple columns, join elimination is •	
not supported.

ORDER BY Elimination
Similar to join elimination, ORDER BY elimination removes unnecessary operations. In this case, the unnecessary
operation is a sort. If you include an ORDER BY clause in your SQL statement, the SORT ORDER BY operation is in the
execution plan. But, what if the optimizer can deduce that the sorting is unnecessary? How could it do this? Listing 2-12
shows an example in which an ORDER BY clause is unnecessary.

Listing 2-12.  ORDER BY Elimination

SQL> select count(*) from
 2 (
 3 select d.department_name
 4 from departments d
 5 where d.manager_id = 201
 6 order by d.department_name
 7) ;

| Id | Operation | Name | Rows |

0	SELECT STATEMENT		
1	SORT AGGREGATE		1
* 2	TABLE ACCESS FULL	DEPARTMENTS	1

Predicate Information (identified by operation id):

 2 - filter("D"."MANAGER_ID"=201)
 
SQL> select /*+ no_query_transformation */ count(*) from
 2 (
 3 select d.department_name
 4 from departments d
 5 where d.manager_id = 201
 6 order by d.department_name
 7) ;
 

Chapter 2 ■ SQL Execution

46

| Id | Operation | Name | Rows |

0	SELECT STATEMENT		
1	SORT AGGREGATE		1
2	VIEW		1
3	SORT ORDER BY		1
* 4	TABLE ACCESS FULL	DEPARTMENTS	1

Predicate Information (identified by operation id):

 4 - filter("D"."MANAGER_ID"=201)
 

In the second part of the example, I used the NO_QUERY_TRANSFORMATION hint to stop the optimizer from
transforming the query to remove the sort. In this case, you see the SORT ORDER BY operation in the plan whereas in the
transformed version there is no sort operation present. The final output of this query is the answer to a COUNT aggregate
function. It, by definition, returns just a single row value. There actually is nothing to sort in this case. The optimizer
understands this and simply eliminates the ORDER BY to save doing something that doesn’t really need to be done.

There are other cases when this type of transformation occurs. The most common one is when the optimizer
chooses to use an index on the column in the ORDER BY. Because the index is stored in sorted order, the rows are read
in order as they are retrieved and there is no need for a separate sort.

In the end, the reason for this transformation is to simplify the plan to remove unnecessary or redundant work. In
doing so, the plan is more efficient and performs better.

Predicate Pushing
Predicate pushing is used to apply the predicates from a containing query block into a nonmergeable query block.
The goal is to allow an index to be used or to allow for other filtering of the dataset earlier in the query plan rather
than later. In general, it is always a good idea to filter out rows that aren’t needed as soon as possible. Always think:
Filter early.

A real-life example in which the downside of filtering late is readily apparent when you consider moving to
another city. Let’s say you are moving from Portland, Oregon, to Jacksonville, Florida. If you hire a moving company to
pack and move you—and they charge by the pound—it wouldn’t be a very good idea to realize that you really didn’t
need or want 80% of the stuff that was moved. If you’d just taken the time to check out everything before the movers
packed you up in Portland, you could have saved yourself a lot of money!

That’s the idea with predicate pushing. If a predicate can be applied earlier by pushing it into a nonmergeable
query block, there is less data to carry through the rest of the plan. Less data means less work. Less work means less
time. Listing 2-13 shows the difference between when predicate pushing happens and when it doesn’t.

Listing 2-13.  Predicate Pushing

SQL> SELECT e1.last_name, e1.salary, v.avg_salary
 2 FROM employees e1,
 3 (SELECT department_id, avg(salary) avg_salary
 4 FROM employees e2
 5 GROUP BY department_id) v
 6 WHERE e1.department_id = v.department_id
 7 AND e1.salary > v.avg_salary
 8 AND e1.department_id = 60;
  

Chapter 2 ■ SQL Execution

47

| Id | Operation | Name | Rows |

0	SELECT STATEMENT		
1	NESTED LOOPS		
2	NESTED LOOPS		1
3	VIEW		1
4	HASH GROUP BY		1
5	TABLE ACCESS BY INDEX ROWID BATCHED	EMPLOYEES	5
* 6	INDEX RANGE SCAN	EMP_DEPT_ID_IDX	5
* 7	INDEX RANGE SCAN	EMP_DEPT_ID_IDX	5
* 8	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	1

Predicate Information (identified by operation id):

 6 - access("DEPARTMENT_ID"=60)
 7 - access("E1"."DEPARTMENT_ID"=60)
 8 - filter("E1"."SALARY">"V"."AVG_SALARY")
 
SQL> SELECT e1.last_name, e1.salary, v.avg_salary
 2 FROM employees e1,
 3 (SELECT department_id, avg(salary) avg_salary
 4 FROM employees e2
 5 WHERE rownum > 1 -- rownum prohibits predicate pushing!
 6 GROUP BY department_id) v
 7 WHERE e1.department_id = v.department_id
 8 AND e1.salary > v.avg_salary
 9 AND e1.department_id = 60;

| Id | Operation | Name | Rows |

0	SELECT STATEMENT		
* 1	HASH JOIN		3
2	JOIN FILTER CREATE	:BF0000	5
3	TABLE ACCESS BY INDEX ROWID BATCHED	EMPLOYEES	5
* 4	INDEX RANGE SCAN	EMP_DEPT_ID_IDX	5
* 5	VIEW		11
6	HASH GROUP BY		11
7	JOIN FILTER USE	:BF0000	107
8	COUNT		
* 9	FILTER		
10	TABLE ACCESS FULL	EMPLOYEES	107

Chapter 2 ■ SQL Execution

48

Predicate Information (identified by operation id):

 1 - access("E1"."DEPARTMENT_ID"="V"."DEPARTMENT_ID")
 filter("E1"."SALARY">"V"."AVG_SALARY")
 4 - access("E1"."DEPARTMENT_ID"=60)
 5 - filter("V"."DEPARTMENT_ID"=60)
 9 - filter(ROWNUM>1)
 

Notice step 6 of the first plan. The WHERE department_id = 60 predicate was pushed into the view, allowing the
average salary to be determined for one department only. When the predicate is not pushed, as shown in the second
plan, the average salary must be computed for every department. Then, when the outer query block and inner query
blocks are joined, all the rows that are not department_id 60 get thrown away. You can tell from the Rows estimates of
the second plan that the optimizer realizes that having to wait to apply the predicate requires more work and therefore
is a more expensive and time-consuming operation.

I used a little trick to stop predicate pushing in this example that I want to point out. The use of the rownum
pseudocolumn in the second query (I added the predicate WHERE rownum > 1) acted to prohibit predicate pushing.
As a matter of fact, rownum not only prohibits predicate pushing, but also it prohibits view merging as well. Using
rownum is like adding the NO_MERGE and NO_PUSH_PRED hints to the query. In this case, it allowed me to point out the ill
effects that occur when predicate pushing doesn’t happen, but I also want to make sure you realize that using rownum
affects the choices the optimizer has available when determining the execution plan. Be careful when you use rownum;
it makes any query block in which it appears both nonmergeable and unable to have predicates pushed into it.

Other than through the use of rownum or a NO_PUSH_PRED hint, predicate pushing happens without any special
action on your part—and that’s just what you want! Although there may be a few corner cases when predicate pushing
might be less advantageous, these cases are few and far between. So, make sure to check execution plans to ensure
predicate pushing happens as expected.

Query Rewrite with Materialized Views
Query rewrite is a transformation that occurs when a query, or a portion of a query, has been saved as a materialized
view and the transformer can rewrite the query to use the precomputed materialized view data instead of executing
the current query. A materialized view is like a normal view except that the query has been executed and its result set
has been stored in a table. What this does is to precompute the result of the query and make it available whenever the
specific query is executed. This means that all the work to determine the plan, execute it, and gather all the data has
already been done. So, when the same query is executed again, there is no need to go through all that effort again.

The query transformer matches a query with available materialized views and then rewrites the query simply to
select from the materialized result set. Listing 2-14 walks you through creating a materialized view and shows how the
transformer rewrites the query to use the materialized view result set.

Listing 2-14.  Query Rewrite with Materialized Views

SQL> SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 2 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
 3 FROM sales s, products p, times t
 4 WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id;
 

Chapter 2 ■ SQL Execution

49

--
| Id | Operation | Name | Rows | Pstart| Pstop |
--
0	SELECT STATEMENT		918K		
* 1	HASH JOIN		918K		
2	TABLE ACCESS FULL	TIMES	1826		
* 3	HASH JOIN		918K		
4	TABLE ACCESS FULL	PRODUCTS	72		
5	PARTITION RANGE ALL		918K	1	28
6	TABLE ACCESS FULL	SALES	918K	1	28
--
 
Predicate Information (identified by operation id):

 1 - access("S"."TIME_ID"="T"."TIME_ID")
 3 - access("S"."PROD_ID"="P"."PROD_ID")
 
SQL>
SQL> CREATE MATERIALIZED VIEW sales_time_product_mv
 2 ENABLE QUERY REWRITE AS
 3 SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 4 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
 5 FROM sales s, products p, times t
 6 WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id;
SQL>
SQL> SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 2 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
 3 FROM sales s, products p, times t
 4 WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id;
 
--
| Id | Operation | Name | Rows | Pstart| Pstop |
--
0	SELECT STATEMENT		918K		
* 1	HASH JOIN		918K		
2	TABLE ACCESS FULL	TIMES	1826		
* 3	HASH JOIN		918K		
4	TABLE ACCESS FULL	PRODUCTS	72		
5	PARTITION RANGE ALL		918K	1	28
6	TABLE ACCESS FULL	SALES	918K	1	28
--
 
Predicate Information (identified by operation id):

 1 - access("S"."TIME_ID"="T"."TIME_ID")
 3 - access("S"."PROD_ID"="P"."PROD_ID")
 

Chapter 2 ■ SQL Execution

50

SQL>
SQL> SELECT /*+ rewrite(sales_time_product_mv) */
 2 p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 3 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
 4 FROM sales s, products p, times t
 5 WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id;
 
--
| Id | Operation | Name | Rows |
--
| 0 | SELECT STATEMENT | | 909K|
| 1 | MAT_VIEW REWRITE ACCESS FULL| SALES_TIME_PRODUCT_MV | 909K|
--
 

To keep the example simple, I used a REWRITE hint to turn on the query rewrite transformation. You can enable
query rewrite to happen automatically, and, actually, it is enabled by default using the query_rewrite_enabled
parameter. But as you notice in the example, when the rewrite does occur, the plan simply shows a full access on
the materialized view instead of the entire set of operations required to produce the result set originally. As you can
imagine, the time savings can be substantial for complicated queries with large results sets, particularly if the query
contains aggregations. For more information on query rewrite and materialized views, refer to the Oracle Data
Warehousing Guide, (http://www.oracle.com/technetwork/indexes/documentation/index.html) in which you’ll
find an entire chapter on advanced query rewrite.

Determining the Execution Plan
When a hard parse occurs, Oracle determines which execution plan is best for the query. An execution plan is simply
the set of steps that Oracle takes to access the objects used by your query, and it returns the data that satisfy your
query’s question. To determine the plan, Oracle gathers and uses a lot of information, as you’ve already seen. One of
the key pieces of information that Oracle uses to determine the plan is statistics. Statistics can be gathered on objects,
such as tables and indexes; system statistics can be gathered as well. System statistics provide Oracle data about
average speeds for block reads and much more. All this information is used to help Oracle review different scenarios
for how a query could execute, and to determine which of these scenarios is likely to result in the best performance.

Understanding how Oracle determines execution plans not only helps you write better SQL, but also helps you to
understand how and why performance is affected by certain execution plan choices. After Oracle verifies the syntax
and permissions for a SQL statement, it uses the statistics information it collects from the data dictionary to compute
a cost for each operation and combination of operations that could be used to get the result set your query needs. Cost
is an internal value Oracle uses to compare different plan operations for the same query with each other, with the
lowest cost option considered to be the best. For example, a statement could be executed using a full table scan or an
index. Using the statistics, parameters, and other information, Oracle determines which method results in the fastest
execution time.

Because Oracle’s main goal in determining an execution plan is to choose a set of operations that results in
the fastest response time possible for the SQL statement being parsed, the more accurate the statistics, the more
likely Oracle is to compute the best execution plan. In the chapters ahead, I provide details about the various access
methods and join methods available, and how to review execution plans in detail. For now, I want to make sure you
understand what statistics are, why they’re important, and how to review them for yourself.

The optimizer is the code path within the Oracle kernel that is responsible for determining the optimal execution
plan for a query. So, when I talk about statistics, I’m talking about how the optimizer uses statistics. I use the script
named st-all.sql to display statistics for the employees table, as shown in Listing 2-15. I refer to this information to
discuss how statistics are used by the optimizer.

http://www.oracle.com/technetwork/indexes/documentation/index.html

Chapter 2 ■ SQL Execution

51

Listing 2-15.  Statistics for the employees Table

SQL> @st-all
Enter the owner name: hr
Enter the table name: employees
==
 TABLE STATISTICS
==
Owner : hr
Table name : employees
Tablespace : example
Partitioned : no
Last analyzed : 05/26/2013 14:12:28
Degree : 1
Rows : 107
Blocks : 5
Empty Blocks : 0
Avg Space : 0
Avg Row Length: 68
Monitoring? : yes
Status : valid
 
==
 COLUMN STATISTICS
==
 Name Null? NDV # Nulls # Bkts AvLn Lo-Hi Values
==
commission_pct Y 7 72 1 2 .1 | .4
department_id Y 11 1 11 3 10 | 110
email N 107 0 1 8 ABANDA | WTAYLOR
employee_id N 107 0 1 4 100 | 206
first_name Y 91 0 1 7 Adam | Winston
hire_date N 98 0 1 8 06/17/1987 | 04/21/2000
job_id N 19 0 19 9 AC_ACCOUNT | ST_MAN
last_name N 102 0 1 8 Abel | Zlotkey
manager_id Y 18 1 18 4 100 | 205
phone_number Y 107 0 1 15 214.343.3292 |650.509.4876
salary Y 57 0 1 4 2100 | 24000
 
==
 INDEX INFORMATION
==
 
Index Name BLevel Lf Blks #Rows Dist Keys LB/Key DB/Key ClstFctr Uniq?
----------------- ------ ------- ----- --------- ------ ------ -------- -----
EMP_DEPARTMENT_IX 0 1 106 11 1 1 7 NO
EMP_EMAIL_UK 0 1 107 107 1 1 19 YES
EMP_EMP_ID_PK 0 1 107 107 1 1 2 YES
EMP_JOB_IX 0 1 107 19 1 1 8 NO
EMP_MANAGER_IX 0 1 106 18 1 1 7 NO
EMP_NAME_IX 0 1 107 107 1 1 15 NO
 

Chapter 2 ■ SQL Execution

52

Index Name Pos# Order Column Name
------------------ ---------- ----- ------------------------------
emp_department_ix 1 ASC department_id
 
emp_email_uk 1 ASC email
 
emp_emp_id_pk 1 ASC employee_id
 
emp_job_ix 1 ASC job_id
 
emp_manager_ix 1 ASC manager_id
 
emp_name_ix 1 ASC last_name
 

The first set of statistics shown in Listing 2-15 is table statistics. These values can be queried from the all_tables
view (or dba_tables or user_tables as well). The next section lists column statistics and can be queried from the
all_tab_cols view. The final section lists index statistics and can be queried from the all_indexes and
all_ind_columns views.

Just like statistics in baseball, the statistics the optimizer uses are intended to be predictive. For example, if
a baseball player has a batting average of .333, you’d expect that he’d get a hit about one out of every three times.
This won’t always be true, but it is an indicator on which most people rely. Likewise, the optimizer relies on the
num_distinct column statistic to compute how frequently values within a column occur. By default, the assumption is
that any value occurs in the same proportion as any other value. If you look at the num_distinct statistic for a column
named color and it is set to 10, it means that the optimizer is going to expect there to be 10 possible colors and that
each color would be present in one tenth of the total rows of the table.

So, let’s say that the optimizer was parsing the following query:
 
select * from widgets where color = 'BLUE'
 

The optimizer could choose to read the entire table (TABLE ACCESS FULL operation) or it could choose to use an index
(TABLE ACCESS BY INDEX ROWID). But how does it decide which one is best? It uses statistics. I’m just going to use two
statistics for this example. I’ll use the statistic that indicates the number of rows in the widgets table (num_rows = 1000)
and the statistic that indicates how many distinct values are in the color column (num_distinct = 10). The math is quite
simple in this case:
 
Number of rows query should return = (1 / num_distinct) x num_rows
 = (1 / 10) x 1000
 = 100
 

If you think about it for a second, it makes perfect sense. If there are 1000 rows in the table and there are
10 distinct colors present in the table, then if your query only wants rows in which the color is blue, you’ll be asking
for only one tenth of the data, or 100 rows. This computed value is called selectivity. By dividing the number of distinct
values into one, you determine how selective any single value is. Easy, right?

Well, as you can imagine, the computations do get more complex, but I hope this simple example helps you see
how the optimizer is doing nothing more than some fairly straightforward calculations. No rocket science—really! But,
as you can see, even something so simple can be dramatically affected if the values used aren’t accurate.

What if, at the time the optimizer parsed this query, the statistics were out of date or missing? For example, let’s
say that instead of indicating there were 1000 rows and 10 colors, the statistics showed 100 rows in the table and one
color. Using these values, the number of rows the query should return would be computed to be 100 (1 / 1 x 100).
The number of rows is the same as our original computation, but is it really the same? No, it’s very different. In the
case of the first calculation, the optimizer would have assumed 10 percent of 1000 rows were returned whereas,
in the second case, the 100 rows returned represent all the rows in the table (at least according to the statistics).
Can you see how this would influence the optimizer’s decision about which operation to choose to retrieve the data?

Chapter 2 ■ SQL Execution

53

Understanding the importance of statistics helps you know how to identify performance problems that are not
necessarily related to the way you wrote the SQL, but instead are rooted in issues with the statistics. You could have done
everything right, but if the statistics are wrong or inaccurate enough that they don’t reflect the reality of your data, you need
to be able to pinpoint that quickly and not spend hours or days trying to fix a code problem that isn’t really a code problem.

However, just to keep you from getting too happy that you’ve now got a way to point the finger of blame away
from yourself, let me show you an example of how you can write SQL in such a way that the optimizer can’t use the
statistics properly. In this case, you write a very simple query as follows:
 
select * from car_purchases where manufacturer = 'Ford' and make = 'Focus'
 

The query uses a table containing information about car purchases for all American–model cars. For the sake
of this example, let’s assert that each make of car is produced only by one manufacturer, which means that only Ford
has a Focus. So, what’s the problem with the way this query is written? It certainly returns the correct result set, but
that’s not the only question that needs to be answered. You also need to determine whether the optimizer is able to
understand the data accurately given this query formulation. So, let’s look at the statistics:
 
num_rows (car_purchases): 1,000,000
num_distinct (manufacturer): 4
num_distinct (make): 1000
 

Because there are two different conditions (or predicates) to apply, you first need to figure out the selectivities
of each one by itself. The selectivity of manufacturer would be 1/4 or .25. The selectivity of make would be 1/1000 or
.001. Because the predicates are combined with AND, the two selectivities are multiplied together to get the correct
overall selectivity for both combined. So, the final selectivity is .00025 (.25 × .001), which means the optimizer
determines that the query returns 250 rows (.00025 × 1,000,000).

Remember that I began this example by asserting that only one manufacturer would produce a certain make
of car. This means that, because none of the other three manufacturers could have possibly produced a Focus, the
calculation that includes the selectivity for manufacturer is flawed. The truth is that we know all Focus–model vehicles
have to be manufactured by Ford. Including the condition where manufacturer = 'Ford' reduces the overall
selectivity by 25 percent. In this case, the true selectivity should have been only the selectivity for the model column
alone. If just that predicate had been written, then the selectivity would have been 1/1000 or .001, and the optimizer
would have computed that 1000 rows would be returned by the query instead of 250. This means the answer the
optimizer comes up with is “off” by a factor of four. You may look at the difference between 250 and 1000 and think,
“So what’s the big deal? That’s not that far off, is it?” Let’s go back to the baseball example and apply this same logic to
see if it stands out more to you. If a player normally has a .333 average and you were to tack on another meaningless
condition that would require you to multiply his average by .25 as well, what happens? All of a sudden, the high-paid
professional athlete looks like a sandlot wanna-be with an average of .083 (.333 × .25)!

Numbers can change everything—and not just in baseball. The calculations the optimizer makes affects
drastically the choice of execution plan operations. These choices can make the difference between response times
of a few seconds to response times of several hours. In this particular example, you get to see what happens when
the optimizer doesn’t know something that you do. All the optimizer can do is to plug in the statistics and come up
with an answer. If you know something about your data that the optimizer can’t know, make sure you code your SQL
accordingly and don’t lead the optimizer astray.

Executing the Plan and Fetching Rows
After the optimizer determines the plan and stores it in the library cache for later reuse, the next step is actually to
execute the plan and fetch the rows of data that satisfy your query. I’m going to cover much more on plan operations
and how to read and understand execution plan output in the chapters ahead, but for now, let’s talk about what
happens after the plan is chosen.

Chapter 2 ■ SQL Execution

54

An execution plan is just a set of instructions that tell Oracle which access method to use for each table object,
and which order and join method to use to join multiple table objects together. Each step in the plan produces a
row source that is then joined with another row source until all objects have been accessed and joined. As rows are
retrieved that satisfy the query, they must be returned from the database to the application. For result sets of any size,
the rows that need to be returned are very likely not all passed to the application in a single round-trip. Packets of data
are transmitted from the database and across the network until all rows ultimately arrive back to the user/requestor.

When you execute a query, what appears to you to be a single response consisting of the rows that satisfy your
query is really a series of calls executed independently. Your query completes PARSE, BIND, EXEC, and FETCH steps. One
or more FETCH calls occurs for a query that each return a portion of the rows that satisfy the query. Figure 2-2 shows
the steps that actually occur “under the covers” when a SELECT statement is executed.

Figure 2-2.  “Under the covers” of a SELECT statement execution

The network round-trip between the client and the database for each call contributes to the overall response time
of the statement. There is only one of each type of database call except for FETCH. As mentioned previously, Oracle
needs to execute as many FETCH calls as necessary to retrieve and return all the rows required to satisfy your query.

A single FETCH call accesses one or more blocks of data from the buffer cache. Each time a block is accessed,
Oracle takes rows from the block and returns them to the client in one round-trip. The number of rows that are
returned is a configurable setting called arraysize. The arraysize is the number of rows to be transmitted in a single
network round-trip, if possible. If the size of the rows is too large to fit in a single packet, Oracle breaks up the rows
into multiple packets, but even then, only a single FETCH call is needed to provide the specified number of rows.

The arraysize setting is set programmatically; how it is accomplished depends on which calling application
environment you use. In SQL*Plus, in which the default arraysize is 15, you change the arraysize setting using the
command SET ARRAYSIZE n. The JDBC default is ten and may be changed using
((OracleConnection)conn).setDefaultRowPrefetch (n). Make sure to discover your application’s arraysize
setting and increase it as necessary. The benefit to having a larger arraysize is twofold: reduction of FETCH calls and
reduction of network round-trips. It may not seem like much, but the impact can be quite stunning. Listing 2-16
demonstrates how logical reads for the same query are reduced simply by changing arraysize. Note that logical
reads are labeled as buffers in the autotrace output.

Chapter 2 ■ SQL Execution

55

Listing 2-16.  How the arraysize Setting Affects Logical Reads

SQL> set arraysize 15
SQL>
SQL> set autotrace traceonly statistics
SQL>
SQL> select * from order_items ;
Statistics
--
 0 recursive calls
 0 db block gets
 52 consistent gets
 0 physical reads
 0 redo size
 18815 bytes sent via SQL*Net to client
 865 bytes received via SQL*Net from client
 46 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 664 rows processed
 
SQL>
SQL> set arraysize 45
SQL> /
 
Statistics
--
 0 recursive calls
 0 db block gets
 22 consistent gets
 0 physical reads
 0 redo size
 15026 bytes sent via SQL*Net to client
 535 bytes received via SQL*Net from client
 16 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 664 rows processed
 

Even for this small result set of 664 rows, the difference that increasing the arraysize setting produces is clearly
visible. I increased the setting from 15 to 45, reduced the logical reads from 52 to 22, and reduced the number of
network round-trips from 46 to 16! This change had nothing to do with the SQL statement and everything to do with
how Oracle was able to access and return the rows. This is just one more example of how understanding how things
work can help you to help Oracle use less resources and time to do what you ask of it.

SQL Execution: Putting It All Together
Now that I’ve covered the details, I’m ready to put together the whole picture of how a SQL statement executes.
Figure 2-3 shows the steps that are involved when a SQL statement executes.

Chapter 2 ■ SQL Execution

56

This is a simplified view, but it encapsulates the view of the process. From a big-picture perspective, every query
must complete PARSE, EXECUTE, and FETCH steps. Data Manipulation Language (DML) statements (INSERT, UPDATE,
DELETE) only need to parse and execute. In addition to these steps, statements that use bind variables also include a
step to read the bind values as part of the parse component.

Summary
Understanding how SQL executes enables you to write it more effectively. The optimizer is at the heart of every SQL
statement you write; writing SQL with the optimizer in mind helps you more than you can imagine. On this point, I’ll
ask you to trust me for now. I can assure you that understanding the optimizer has been one of the most beneficial
pieces of knowledge I’ve gained, so don’t get frustrated if you’re just itching to start looking at syntax and specific SQL
code. What you end up with by the end of this journey is well worth it.

At this point, I hope you feel more comfortable with at least some of the key parts of Oracle’s architecture that are
involved in the execution of the SQL you send to the database. You should also have a flavor for the power of statistics
and how they are used by the optimizer. It is outside the scope of this book to go into more detail about this topic, but
I highly recommend picking up Jonathan Lewis’s Cost-Based Oracle Fundamentals (Apress 2006) if you really want to
take a deep dive into this subject matter. The more you know, the better equipped you’ll be to write SQL that works
with the optimizer and not against it.

In the next chapter, I cover the access and join methods the optimizer can choose, and review numerous
examples of how and why the optimizer does what it does. What I’ve covered so far has built the foundation for what I
cover next, and each chapter continues to add to this foundation. The goal is to shed some light on the black box into
which you’ve been throwing SQL and to help you develop an enriched perspective on the importance of what’s under
the covers of Oracle—in particular, the optimizer—and how to interact properly with it.

Figure 2-3.  Overview of steps that occur when a SQL statement is executed

57

Chapter 3

Access and Join Methods

The optimizer must determine how to access the data your SQL statements require. You formulate your statement
and the optimizer, during a hard parse, figures out which operations should provide the data in the most effective
way possible. Using statistics as the primary guide, the optimizer computes the cost of the possible alternatives first
to access data and then to join multiple tables to get the final result set. The more you understand the different access
and join methods the optimizer considers, the more likely you are to formulate your SQL to help the optimizer make
the best choices. And, when the operation chosen by the optimizer doesn’t provide the performance you need, you
can determine more accurately which operations would be more suited to produce the response times you want.

After your SQL statement’s expressions and conditions are evaluated and any query transformation that might
help it develop the execution plan more clearly are complete, the next step in developing the execution plan is for the
optimizer to determine which method of accessing the data is best. In general, there are only two basic ways to access
data: either via a full scan or an index scan. During a full scan (which, by the way, can be a full table scan or a fast full
index scan), multiple blocks are read in a single input/output (IO) operation. Index scans first scan index leaf blocks
to retrieve specific rowids and then hand those rowids to the parent table access step to retrieve the actual row data.
These accesses are performed via single-block reads. If there are additional filters that need to be applied to the data
after the table access step, the rows pass through that filter before being included in the final result set from that step.

The access method that is chosen for a table is used to determine the join methods and join orders that are
used in the final plan. So, if the access method chosen for a table is suboptimal, the likelihood that the whole plan
is faulty is high. As discussed in Chapter 2, statistics play a vital role in how accurate the optimizer is in determining
the best method. Along with representative statistics, the optimizer uses your query to figure out how much data
you are requesting and which access method provides that data as quickly as possible. Each table in the query is first
evaluated independently from the others to determine its optimal access path. In the next sections, I review each of
the access methods in detail.

Full Scan Access Methods
When full scanning an object, all the blocks associated with that object must be retrieved and processed to determine
whether rows in a block match your query’s needs. Remember that Oracle must read an entire block into memory to
get to the row data stored in that block. So, when a full scan occurs, there are actually two things the optimizer—and
you—need to consider: How many blocks must be read and how much data in each block is to be thrown away?
The idea I want you to grab on to at this point is that the decision regarding whether a full scan is the right choice isn’t
based simply on how many rows your query returns. There have been many rules of thumb published that state things
like: If your query retrieves more than x percent of rows from the table, then a full scan should be chosen. There’s
more to the decision than just that ROT (rule of thumb = ROT), and I don’t want you to get stuck on a rule that limits
the consideration that should be given to the choice.

Chapter 3 ■ Access and Join Methods

58

I’m not saying the theory behind the rule of thumb doesn’t make logical sense; I’m just saying that it isn’t
everything that must be considered. In a case when the query returns a very high percentage of rows, the likelihood
that a full scan should be used is certainly high, but the trouble with a generalized rule is that the percentage of rows
chosen is somewhat arbitrary. Throughout the years, I’ve seen this rule published in various books, articles, and
forums with percentages varying from 20 percent to 70 percent. Why should it change?

How Full Scan Operations Are Chosen
At this point, now that I’ve briefly discussed the problem with generalizing how full table scans are chosen,
I can continue with the rest of the story. It’s not just about rows; it’s also about blocks and about throwaway. The
combination of all these pieces of information may lead to a conclusion that it makes sense to do a full scan even
when the percentage of rows is quite small. On the other hand, a full scan may not be chosen even when a large
percentage of the rows is returned. Let’s walk through an example in Listing 3-1 that shows how even when a small
percentage of rows satisfies the query, the optimizer may choose a full table scan plan. First, two tables are created
that contain the exact same 10,000 rows. Next, the execution plans for the same query against each table are shown.
Notice how even though the query returns 100 rows (only 1 percent of the total data), a full scan plan can be chosen.

Listing 3-1.  Creating Two Test Tables

SQL> create table t1 as
 2 select trunc((rownum-1)/100) id,
 3 rpad(rownum,100) t_pad
 4 from dba_source
 5 where rownum <= 10000;
 
Table created.
 
SQL> create index t1_idx1 on t1(id);
 
Index created.
 
SQL> exec dbms_stats.gather_table_stats(user,'t1',method_opt=>'FOR ALL COLUMNS SIZE
1',cascade=>TRUE);
 
PL/SQL procedure successfully completed.
 
SQL> create table t2 as
 2 select mod(rownum,100) id,
 3 rpad(rownum,100) t_pad
 4 from dba_source
 5 where rownum <= 10000;
 
Table created.
 
SQL> create index t2_idx1 on t2(id);
 
Index created.
 
SQL> exec dbms_stats.gather_table_stats(user,'t2',method_opt=>'FOR ALL COLUMNS SIZE
1',cascade=>TRUE);
 
PL/SQL procedure successfully completed.
 

Chapter 3 ■ Access and Join Methods

59

Both tables have 10,000 rows. The id columns in both tables have 100 rows for each value between zero and 99.
So, in terms of the data content, the tables are identical. However, notice that for t1, the id column is populated
using the expression trunc((rownum-1)/100), whereas for t2, the id column is populated using mod(rownum,100).
Figure 3-1 shows how the rows might be stored physically in the table’s data blocks.

Figure 3-1.  Diagram of random vs. sequentially stored row values

Given what we just inserted, we expect to get a result set of 100 rows if we execute a query for any single value of
either table. We know how many rows we should get because we just created the tables. But, how can we get an idea
of what the tables contain and how those rows are stored otherwise? One way is to run a query and use the COUNT
aggregate function, as shown in Listing 3-2.

Listing 3-2.  count(*) Queries against Tables t1 and t2

SQL> select count(*) ct from t1 where id = 1 ;
 
 CT

 100
 
1 row selected.
 
SQL> select count(*) ct from t2 where id = 1 ;
 
 CT

 100
 
1 row selected.
 

Notice that, as expected, we get 100 rows from both tables. If it is reasonable to query actual data to determine the
result set sizes, this is a great way to know what to expect from your query. For each table involved in the query you
write, you can execute individual queries that apply the predicates for that table and that count the number of rows
returned, which helps you estimate which access method is best suited for your final query. But, knowing row counts
is only part of the information you need. Now you need to go back to how the data are stored.

Chapter 3 ■ Access and Join Methods

60

Of 10,000 total rows in each table, if you query for a single value (where id = 1), you know you’ll get back 100
rows. That’s just 1 percent of the total rows. Given that small percentage, you’d also then likely expect the optimizer
to choose to use the index on id to access those rows, right? This certainly seems like a logical conclusion, but here is
where knowing how your data are stored comes in. If your data are stored sequentially, with most of the rows where
id = 1 stored physically in just a few blocks, as is the case with table t1, this conclusion is correct, as shown in the
explain plan in Listing 3-3.

Listing 3-3.  Explain Plan for Query against t1

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		100	10300	3 (0)
1	TABLE ACCESS BY INDEX ROWID	T1	100	10300	3 (0)
* 2	INDEX RANGE SCAN	T1_IDX1	100		1 (0)
--
 
Predicate Information (identified by operation id):

 2 - access("ID"=1)
 

So, wouldn’t you expect the query against t2 to do exactly the same thing because it returns the same 100 rows?
As you can see from the explain plan shown in Listing 3-4, this is not the case at all.

Listing 3-4.  Explain Plan for Query against t2

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 100 | 10300 | 39 (3)|
|* 1 | TABLE ACCESS FULL| T2 | 100 | 10300 | 39 (3)|

Predicate Information (identified by operation id):

 1 - filter("ID"=1)
 

Why didn’t the optimizer make the same plan choice for both queries? It’s because of how the data are stored
in each table. The query against table t1 requires that Oracle access only a few blocks to get the 100 rows needed to
satisfy the query. Therefore, the index scan costs out to be the most attractive option. But, the query against table t2
ends up having to read practically every block in the table to get the same 100 rows because the rows are scattered
physically throughout all the table blocks. The optimizer calculates that the time to read every block in the table
using an index is likely more than just reading all the blocks in the table using a full table scan and simply throwing
away rows that aren’t needed from each block. Retrieving the rows from an index requires approximately 200 block
accesses. I discuss why it’s 200 in the next section, when I cover index scans. So, the query against t2 uses a TABLE
ACCESS FULL operation instead of an index.

This demonstration shows you that there can be differences in the optimizer’s plan choices based on how the
data are stored. Although knowing this may not necessarily make a difference in how you end up writing a query,
it can make a difference in how you determine whether the performance of the query meets your Service Level
Agreements (SLA). If you keep seeing a full table scan plan operation, you may think you need to change or add a hint

Chapter 3 ■ Access and Join Methods

61

to your query to force the use of the index; however, doing so might make performance worse in the long term. If you
don’t understand how the data are stored, you may make poor decisions about what should happen when your
query executes.

Note■■  T he demonstration in this section of how a full table scan is chosen is based on behavior exhibited by Oracle
version 11gR2 and earlier. Improvements to the optimizer in Oracle version 12c allow both plans to use the index.

Full Scans and Throwaway
Always remember that whether a full scan is an effective choice depends on the number of blocks that need to be
read as much as on how many rows end up in the final result set. Again, how the data are stored plays an important
role in the decision, as demonstrated in the earlier example. However, the other key factor in whether a full scan is an
effective choice is throwaway. Throwaway rows are those rows that are checked against a filter predicate and don’t
match the filter, and thus are rejected from the final result set.

In the previous example, the full table scan operation would have to check all 10,000 rows in the table and throw
away 9900 of them to end up with the final result set of 100 rows. The check on each row is simply the filter predicate
on id = 1 (seen in Listing 3-4 in the Predicate Information section for step 1). To execute this filter, the CPU is used
for each check, which means that, although the number of blocks accessed is limited, there are quite a bit of CPU
resources used to complete the filter checks for each row. The use of the CPU is factored into the cost of the full scan.

As the number of blocks accessed and the amount of throwaway increases, the more costly the full scan becomes.
Listing 3-5 is a simple query to show the number of rows and number of blocks for table t2 in our example. Based on
the number of blocks shown, the full table scan accesses approximately 164 blocks.

Listing 3-5.  Rows and Blocks Statistics for Tables t1 and t2

SQL> select table_name, num_rows, blocks from user_tables where table_name = 'T2' ;
 
TABLE_NAME NUM_ROWS BLOCKS
------------------------------ --------------- ---------------
T2 10000 164
 
1 rows selected.
 

Over time, as rows are added to the table and the table grows larger, the cost of throwing away so many rows
increases enough to cause the optimizer to switch to an index scan operation instead. The point when the optimizer
decides to switch over may not necessarily be the point where you achieve optimal performance. You can use hints to
force the optimizer to use an index, and to test to determine at what point it might make more sense to use an index.
If the optimizer doesn’t choose that path, you can consider using hints or SQL profiles to help. Chapters 16 and 17
covers using hints and profiles so you are prepared to use them if you ever need to do so.

Full Scans and Multiblock Reads
Another thing you need to know about full scans is how blocks are read. A full scan operation makes multiblock reads,
which means that a single IO call requests several blocks instead of just one. The number of blocks requested varies
and can actually range anywhere from one to the number of blocks specified in the db_file_multiblock_read_count
parameter. For example, if the parameter is set to 16 and there are 160 blocks in the table, there could be only 10 calls
made to get all the blocks.

Chapter 3 ■ Access and Join Methods

62

I say that only 10 calls could be made because of the following limitations on multiblock read calls. Oracle reads
db_file_multiblock_read_count blocks unless reading the full number of blocks

causes Oracle to have to read blocks that cross an extent boundary. In this case, Oracle •	
reads the blocks up to the extent boundary in one call, then issues another call to read the
remainder.

means a block already in the buffer cache would be read again as part of the multiblock read. •	
Oracle simply reads the blocks up to those not already in memory, then issues another read
call that skips those blocks to read the rest. This could mean that a multiblock read might be
truncated to a single-block read because of the blocks that are already in the buffer cache. For
example, let’s say the multiblock read count is 16 and the range of blocks to be read is between
block numbers 1 and 16. If the even-numbered blocks are already placed in the buffer cache,
individual single-block reads are done for each odd-numbered block in that range. In this case,
eight read calls are made—one for each block in the range not already in the buffer cache.

would exceed an operating system limit for multiblock read sizes. The size of a multiblock read •	
depends on your operating system, so it can vary.

Full Scans and the High-Water Mark
A final point of note regarding full table scans is that, as the multiblock read calls for the scan are made, Oracle reads
blocks up to the high-water mark in the table. The high-water mark is the last block in the table that has ever had
data written to it. To be technically correct, it is actually called the low high-water mark. For our purposes, the low
high-water mark is what I discuss, and I refer to it generically as the high-water mark. For a more detailed discussion,
please see the Oracle documentation.

When rows are inserted into a table, blocks are allocated and the rows are placed in the blocks. Figure 3-2 shows
how a table might look after a large insert to populate the table.

Throughout the course of normal operations, rows are deleted from the blocks. Figure 3-3 shows how the table
might look after a large number of rows have been deleted from the table.

Figure 3-2.  Blocks allocated to a table with rows indicated with a +. HWM, high-water mark

Chapter 3 ■ Access and Join Methods

63

Even though almost all the rows have been deleted and some blocks have actually become completely unused,
the high-water mark remains the same. When a full scan operation occurs, all blocks up to the high-water mark are
read in and scanned, even if they are empty, which means that many blocks that don’t need to be read because they
are empty are still read. Listing 3-6 shows an example of how the high-water mark doesn’t change, even if all the rows
in the table are deleted.

Listing 3-6.  High-water Mark

SQL> -- List number of allocated blocks (table has 800,000 rows)
SQL> -- The highwater mark is the last block containing data.
SQL> -- While this query doesn’t specifically show the HWM, it gives you an idea.
SQL>
SQL> select blocks from user_segments where segment_name = 'T2';
 
 BLOCKS

 12288
 
1 row selected.
 
SQL> -- List how many blocks contain data
SQL>
SQL> select count(distinct (dbms_rowid.rowid_block_number(rowid))) block_ct from t2 ;
 
 BLOCK_CT

 12122
 
1 row selected.
 
SQL> -- List the lowest and highest block numbers for this table
SQL>
SQL> select min(dbms_rowid.rowid_block_number(rowid)) min_blk, max(dbms_rowid.rowid_block_
number(rowid)) max_blk from t2 ;
 
 MIN_BLK MAX_BLK
--------------- ---------------
 1302492 1386248
 
1 row selected.
 

Figure 3-3.  The blocks after rows have been deleted. The high-water mark (HWM) remains unchanged

Chapter 3 ■ Access and Join Methods

64

SQL> -- Check the space usage in the table
SQL> get space_usage.sql
 1 declare
 2 l_tabname varchar2(30) := '&1';
 3 l_fs1_bytes number;
 4 l_fs2_bytes number;
 5 l_fs3_bytes number;
 6 l_fs4_bytes number;
 7 l_fs1_blocks number;
 8 l_fs2_blocks number;
 9 l_fs3_blocks number;
 10 l_fs4_blocks number;
 11 l_full_bytes number;
 12 l_full_blocks number;
 13 l_unformatted_bytes number;
 14 l_unformatted_blocks number;
 15 begin
 16 dbms_space.space_usage(
 17 segment_owner => user,
 18 segment_name => l_tabname,
 19 segment_type => 'TABLE',
 20 fs1_bytes => l_fs1_bytes,
 21 fs1_blocks => l_fs1_blocks,
 22 fs2_bytes => l_fs2_bytes,
 23 fs2_blocks => l_fs2_blocks,
 24 fs3_bytes => l_fs3_bytes,
 25 fs3_blocks => l_fs3_blocks,
 26 fs4_bytes => l_fs4_bytes,
 27 fs4_blocks => l_fs4_blocks,
 28 full_bytes => l_full_bytes,
 29 full_blocks => l_full_blocks,
 30 unformatted_blocks => l_unformatted_blocks,
 31 unformatted_bytes => l_unformatted_bytes
 32);
 33 dbms_output.put_line('0-25% Free = '||l_fs1_blocks||' Bytes = '||l_fs1_bytes);
 34 dbms_output.put_line('25-50% Free = '||l_fs2_blocks||' Bytes = '||l_fs2_bytes);
 35 dbms_output.put_line('50-75% Free = '||l_fs3_blocks||' Bytes = '||l_fs3_bytes);
 36 dbms_output.put_line('75-100% Free = '||l_fs4_blocks||' Bytes = '||l_fs4_bytes);
 37 dbms_output.put_line('Full Blocks = '||l_full_blocks||' Bytes = '||l_full_bytes);
 38* end;
SQL>
SQL> @space_usage T2
0-25% Free = 0 Bytes = 0
25-50% Free = 0 Bytes = 0
50-75% Free = 0 Bytes = 0
75-100% Free = 16 Bytes = 131072
Full Blocks = 12121 Bytes = 99295232
 
PL/SQL procedure successfully completed.
 

Chapter 3 ■ Access and Join Methods

65

SQL> -- Note that most blocks are full
SQL> -- A full table scan would have to read all the blocks (12137 total)
SQL>
SQL> -- Delete all the rows from the table
SQL> delete from t2 ;
 
800000 rows deleted.
 
SQL>
SQL> commit ;
 
Commit complete.
 
SQL> -- Check the space usage after all rows are deleted
SQL> @space_usage T2
0-25% Free = 0 Bytes = 0
25-50% Free = 0 Bytes = 0
50-75% Free = 0 Bytes = 0
75-100% Free = 12137 Bytes = 99426304
Full Blocks = 0 Bytes = 0
PL/SQL procedure successfully completed.
SQL> -- Note that blocks are now free but the same space is still consumed
SQL> -- A full table scan would still read 12137 blocks
SQL> -- List number of blocks (table has 0 rows)
SQL> select blocks from user_segments where segment_name = 'T2';
 
 BLOCKS

 12288
 
1 row selected.
 
SQL> -- List how many blocks contain data
SQL> select count(distinct (dbms_rowid.rowid_block_number(rowid))) block_ct from t2 ;
 
 BLOCK_CT

 0
 
1 row selected.
 
SQL> -- Execute a full table scan and note the consistent gets (logical block reads)
SQL>
SQL> set autotrace traceonly
SQL> select * from t2 ;
no rows selected
Execution Plan
--
Plan hash value: 1513984157
 

Chapter 3 ■ Access and Join Methods

66

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 65 | 2674 (1)| 00:00:33 |
| 1 | TABLE ACCESS FULL| T2 | 1 | 65 | 2674 (1)| 00:00:33 |
--
Statistics
--
 0 recursive calls
 0 db block gets
 12148 consistent gets
 11310 physical reads
 0 redo size
 332 bytes sent via SQL*Net to client
 370 bytes received via SQL*Net from client
 1 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 0 rows processed
 
SQL> set autotrace off
SQL>
 
SQL> -- Truncate the table to deallocate the space and reset the HWM
SQL> truncate table t2 ;
 
Table truncated.
 
SQL> -- Check the space usage after table is truncated
SQL> @space_usage T2
0-25% Free = 0 Bytes = 0
25-50% Free = 0 Bytes = 0
50-75% Free = 0 Bytes = 0
75-100% Free = 0 Bytes = 0
Full Blocks = 0 Bytes = 0
 
PL/SQL procedure successfully completed.
 
SQL> -- Note that the space has been deallocated
SQL>
SQL> -- List number of blocks (table has 0 rows and all space recovered)
SQL> select blocks from user_segments where segment_name = 'T2';
 
 BLOCKS

 8
 
1 row selected.
 

Chapter 3 ■ Access and Join Methods

67

SQL> set autotrace traceonly
SQL> select * from t2 ;
 
no rows selected
 
Execution Plan
--
Plan hash value: 1513984157
 
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 65 | 2674 (1)| 00:00:33 |
| 1 | TABLE ACCESS FULL| T2 | 1 | 65 | 2674 (1)| 00:00:33 |
--
 
 
Statistics
--
 0 recursive calls
 0 db block gets
 3 consistent gets
 0 physical reads
 0 redo size
 332 bytes sent via SQL*Net to client
 370 bytes received via SQL*Net from client
 1 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 0 rows processed
 
SQL> set autotrace off
 

I hope this example illustrates that even when a full table scan is the “right” plan operation choice, the overhead
of reading additional empty blocks can mean performance takes a significant hit. For tables that are loaded and
unloaded frequently (using DELETE instead of TRUNCATE), you may discover that response time suffers. This occurs
often with tables that are used for ETL or any form of load/process/unload activity. Now that you know how full scan
behavior can be affected, you can diagnose and correct related performance problems more easily.

Index Scan Access Methods
If you have a book about U.S. presidents and want to find information on Jimmy Carter, you could start on the first
page and visually scan each page until you come to the section of the book about Carter. However, it would take a lot
of time to do this scan, so you might find it more expedient to look up Carter in the book’s index. After you determine
the page number for the Carter text, you can go directly to that location. An index scan operation is conceptually
similar to using an index in a book.

The default index type is a B-tree index and is the only type I discuss in this chapter. Indexes are created on one
or more table columns or column expressions, and they store the column values along with a rowid. There are other
pieces of information stored in the index entry, but for our purposes, we concern ourselves only with the column
value and the rowid. rowid is a pseudocolumn that uniquely identifies a row within a table. It is the internal address of

Chapter 3 ■ Access and Join Methods

68

a physical table row and it consists of an address that points to the data file that contains the table block that contains
the row and the address of the row within the block that leads directly to the row itself. Listing 3-7 shows how to
decode rowid into a readable form.

Listing 3-7.  Decoding rowid

SQL> column filen format a50 head 'File Name'
SQL>
SQL> select e.rowid ,
 2 (select file_name
 3 from dba_data_files
 4 where file_id = dbms_rowid.rowid_to_absolute_fno(e.rowid, user, 'EMPLOYEES')) filen,
 5 dbms_rowid.rowid_block_number(e.rowid) block_no,
 6 dbms_rowid.rowid_row_number(e.rowid) row_no
 7 from employees e
 8 where e.email = 'SKING' ;
 
ROWID File Name BLOCK_NO ROW_NO
------------------ -------------------------------- ---------- ---------
AABMTiAAGAAEgWdAAA /u02/oradata/ORA12C/users01.dbf 1181085 1
 
1 row selected.
 

As you can see, rowid points to the exact location of a particular row. Therefore, when an index is used to
access a row, all that happens is that a match is made on the access criteria provided in the predicate, then rowid
is used to access the specific file/block/row of data. Block accesses made via an index scan are usually made using
single-block reads (there are cases when multiblock reads occur, but discussing them here would be getting a bit
ahead of ourselves). This makes sense when you consider how rowid is used. When the index entry is read, only
the single block of data identified by that rowid is retrieved. After it is retrieved, only the row specified by the
rowid is accessed.

What this means is that for each row retrieved via an index scan, at least two block accesses are required: at least
one index block and one data block. If your final result set contains 100 rows and those 100 rows are retrieved using an
index scan, there would be at least 200 block accesses required. I keep saying “at least” because, depending on the size
of the index, Oracle may have to access several index blocks initially to get to the first matching column value needed.

Index Structure
An index is structured logically, as shown in Figure 3-4. Indexes are comprised of one or more levels of branch blocks
and a single level of leaf blocks. Branch blocks hold information about the range of values contained in the next level
of branch blocks, and they are used to search the index structure to find the needed leaf blocks. The height of an index
is the number of branch levels between the initial branch block (referred to as the root block) and the leaf blocks.
The leaf blocks contain the indexed values and the rowid for each in sorted order, as mentioned previously.

Chapter 3 ■ Access and Join Methods

69

If you start with a newly created, empty table and create an index on that table, the index consists of one empty
block. In this case, the single block acts as both a root block and a leaf block. The height of the index is one. There is
another statistic called blevel that represents the number of branch levels present in an index. In this case, the blevel
would be zero.

As new rows are added to the table, new index entries are added to the block, and it fills to the point where
additional entries won’t fit. At this point, Oracle allocates two new index blocks and places all the index entries into
these two new leaf blocks. The previously filled single root block is now replaced with pointers to the two new blocks.
The pointers are made up of the relative block address (RBA) to the new index blocks and a value indicating the lowest
indexed value (in other words, lowest in sorted order) found in the referenced leaf block. With this information in the
root block, Oracle can now search the index to find specific leaf blocks that hold a requested value. At this point, the
index now has a height of two and a blevel of one.

Over time, as more rows are inserted into the table, index entries are added into the two leaf blocks that were just
created. As these leaf blocks fill up, Oracle adds one leaf block and allocates the index entries between the full and
new leaf blocks. Every time a leaf block fills up and splits, a new pointer for this new leaf block is added to the root
block. Eventually, the root block fills up and the process repeats, with the root being split into two new branch blocks.
When this split occurs, the height of the index increases to three and the blevel to two.

At this point, as new index entries are made, the leaf blocks fill and split, but instead of a new pointer being added
to the root block, the pointer is added to the corresponding branch block. Eventually, the branch blocks fill and split.
It is at this point that a new entry gets added to the root block. As this process continues, eventually the root block fills
up and splits, increasing the height of the index once again. Just remember that the only time the height of an index
increases is when the root block splits. For this reason, all leaf blocks are always the same distance from the root block,
which is why you’ll hear the term balanced used in regard to Oracle B-tree indexes. Indexes are guaranteed to remain
height balanced.

Why go through all this detail? Understanding how an index structure is created and maintained will help you
understand how the various types of index scans work. Now that you have an understanding of how indexes are
structured, you’re ready to discover how the different index scans traverse the structure to retrieve the row data your
query needs.

Figure 3-4.  Logical view of an index structure

Chapter 3 ■ Access and Join Methods

70

Index Scan Types
There are several different types of index scans, but each shares some common ground in how they must traverse
the index structure to access the leaf block entries that match the values being searched. First, the root block of the
index is accessed with a single-block read. The next step is to read a branch block. Depending on the height of the
index, one or more branch blocks may need to be read. Each read is for a separate single block. Last, the first index
leaf block that contains the start of the index entries needed is read. If the height of an index is four, to get to the leaf
block needed, four single-block reads are performed. At this point, the row ID for the first matching index value in the
leaf block is read and used to make a single-block read call to retrieve the table block where the entire row resides.
Therefore, in this example, to retrieve a single row from a table using an index, Oracle has to read five blocks: four
index blocks and one table block.

The various index scan types we examine are index range scan, index unique scan, index full scan, index skip
scan, and index fast full scan. An index fast full scan is actually more like a full table scan, but because the scans are
against an index structure, I cover them in this section.

Before I review the different scan types, I want to point out a very important index statistic called clustering factor.
The clustering factor statistic of an index helps the optimizer generate the cost of using the index, and it is a measure
of how well ordered the table data are related to the indexed values. Recall that index entries are stored in sorted order
whereas table data are stored in random order. Unless an effort has been made to load data specifically into a table
in a specific order, you are not guaranteed where individual rows of data end up. For example, rows from the orders
table that share the same order_date may not all reside in the same blocks. They are likely to be scattered randomly
across the blocks in the table.

The clustering factor of an index indicates to the optimizer whether data rows containing the same indexed
values are located in the same or a small set of contiguous blocks, or whether rows are scattered across numerous
table blocks. Figure 3-5 shows how the rows might be stored physically in the table’s data blocks.

Figure 3-5.  Diagram of random vs. sequentially loaded row values

Chapter 3 ■ Access and Join Methods

71

In the diagram showing table T1, you see how rows containing the value 2 are loaded into the same block. But,
in table T2, rows with a value of 2 are not loaded in contiguous blocks. In this example, an index on this column for
table T1 would have a lower clustering factor. Lower numbers that are closer to the number of table blocks are used to
indicate highly ordered, or clustered, rows of data based on the indexed value. The clustering factor for this column
in table T2, however, is higher and typically closer to the number of rows in the table. Listing 3-8 shows the clustering
factor statistic for each of these two tables.

Listing 3-8.  Index clustering_factor

SQL> select t.table_name||'.'||i.index_name idx_name,
 2 i.clustering_factor, t.blocks, t.num_rows
 3 from user_indexes i, user_tables t
 4 where i.table_name = t.table_name
 5 and t.table_name in ('T1','T2')
 6 order by t.table_name, i.index_name;
 
IDX_NAME CLUSTERING_FACTOR BLOCKS NUM_ROWS
--------------- ----------------- --------------- ---------------
T1.T1_IDX1 152 164 10000
T2.T2_IDX1 10000 164 10000
 
2 rows selected.
 

As demonstrated earlier in this chapter (see Listings 3-3 and 3-4), the optimizer in Oracle version 11gR2
and earlier chooses an index scan when querying table T1, but opts for a full table scan when querying table T2.
The clustering_factor was the key piece of information that helped the optimizer make that decision. In version 12c,
the clustering_factor is still used, but it does not have the extreme effect on the plan operation choice as it had in
earlier versions.

So, although clustering_factor is a statistic associated with an index, it is computed by looking at the blocks of
data in the table. When computing clustering_factor, Oracle version 11gR2 and earlier does something similar to
what is shown in Listing 3-9.

Listing 3-9.  Computing Index clustering_factor

SQL> select t.table_name||'.'||i.index_name idx_name,
 2 i.clustering_factor, t.blocks, t.num_rows
 3 from all_indexes i, all_tables t
 4 where i.table_name = t.table_name
 5 and t.table_name = 'EMPLOYEES'
 6 and t.owner = 'HR'
 7 and i.index_name = 'EMP_DEPARTMENT_IX'
 8 order by t.table_name, i.index_name;
 
IDX_NAME CLUSTERING_FACTOR BLOCKS NUM_ROWS
------------------------------- ----------------- ------ --------
EMPLOYEES.EMP_DEPARTMENT_IX 7 5 107
 
1 row selected.
SQL> select department_id, last_name, blk_no,
 2 lag (blk_no,1,blk_no) over (order by department_id) prev_blk_no,
 3 case when blk_no != lag (blk_no,1,blk_no) over
 4 (order by department_id) or rownum = 1

Chapter 3 ■ Access and Join Methods

72

 5 then '*** +1'
 6 else null
 7 end cluf_ct
 8 from (
 9 select department_id, last_name,
 10 dbms_rowid.rowid_block_number(rowid) blk_no
 11 from hr.employees
 12 where department_id is not null
 13 order by department_id
 14);
 
DEPARTMENT_ID LAST_NAME BLK_NO PREV_BLK_NO CLUF_CT
------------- --------------- ------- ------------ -------
 10 Whalen 84 84 *** +1
 20 Hartstein 84 84
 20 Fay 84 84
 30 Raphaely 88 84 *** +1
 30 Colmenares 88 88
...
 30 Himuro 88 88
 40 Mavris 84 88 *** +1
 50 OConnell 84 84
 50 Grant 84 84
 50 Weiss 88 84 *** +1
 50 Fripp 88 88
 50 Kaufling 88 88
...
 70 Baer 84 88 *** +1
 80 Bates 88 84 *** +1
 80 Smith 88 88
 100 Sciarra 88 88
 110 Gietz 84 88 *** +1
 110 Higgins 84 84
 
106 rows selected.
 

As I mentioned, this isn’t precisely how the clustering factor is computed, but this query can help you see how
it is done in general terms. Note that I deleted some of the output rows for brevity, but left enough of the output so
you can see where the block number for the row changed from the previous row’s block number. Clustering factor is
computed by adding one to a counter each time the block number for the current row is different from the previous
row. In this example, this happens seven times. What this number is supposed to represent is seven different table
blocks that hold data for this table. As you can see from the output, there are really only two blocks that contain data
(block numbers 84 and 88). In reality, the clustering factor isn’t exactly accurate. In this case, it is off by a factor of 3.5.

Note■■   Bug 13262857 Enh: provide some control over DBMS_STATS index clustering factor computation INDEX was
addressed in Oracle version 12c. Patches are also available for 11.1.07, 11.2.0.2, and 11.2.0.3 (patch ID 15830250
“Index Clustering Factor Computation Is Pessimistic”).

Chapter 3 ■ Access and Join Methods

73

In Oracle version 12c, a new statistics collection preference, called TABLE_CACHED_BLOCKS, can be defined to
correct the issue just described. By setting the preference to a value greater than one (in other words, as performed
currently), but less than or equal to 255, the collection does not increment the clustering factor if the table block being
referenced by the current index entry has already been referenced by any of the prior n index entries (where n is a
number between one and 255). This preference can be set using the DBMS_STATS.SET_TABLE_PREFS (it can also be set
using DBMS_STATS.SET_SCHEMA_PREFS or DBMS_STATS.SET_DATABASE_PREFS) procedure as follows:
 
dbms_stats.set_table_prefs (
 ownname=>'HR',
 tabname=>'EMPLOYEES',
 pname=>'TABLE_CACHED_BLOCKS',
 pvalue=>50
)
 

Recall from Listing 3-8, the original clustering factors for tables T1 and T2 were as follows:
 
IDX_NAME CLUSTERING_FACTOR BLOCKS NUM_ROWS
--------------- ----------------- --------------- ---------------
T1.T1_IDX1 152 164 10000
T2.T2_IDX1 10000 164 10000
 

In Listing 3-10, note how the clustering factor for T2 changes when the statistics collection is altered using the
TABLE_CACHE_BLOCKS parameter setting.

Listing 3-10.  Using the TABLE_CACHED_BLOCKS Parameter to Alter Clustering Factor Statistic Collection

SQL> exec dbms_stats.set_table_prefs(user, 'T2', pname=>'TABLE_CACHED_BLOCKS', pvalue=>255);
 
PL/SQL procedure successfully completed.
 
SQL> exec dbms_stats.gather_table_stats(user,'T2') ;
 
PL/SQL procedure successfully completed.
 
SQL> select t.table_name||'.'||i.index_name idx_name,
 2 i.clustering_factor, t.blocks, t.num_rows
 3 from user_indexes i, user_tables t
 4 where i.table_name = t.table_name
 5 and t.table_name in ('T1','T2')
 6 order by t.table_name, i.index_name;
 
IDX_NAME CLUSTERING_FACTOR BLOCKS NUM_ROWS
--------------- ----------------- --------------- ---------------
T1.T1_IDX1 152 164 10000
T2.T2_IDX1 152 164 10000
 
2 rows selected.
 

The clustering factor improved from 10,000 to 152. This change helps the optimizer compute a lower cost to use
the T2_IDX1 index and choose it, if appropriate, for the plan. This addition of the TABLE_CACHED_BLOCKS setting to
12c allows a less pessimistic clustering_factor value to be computed and can help lead to a more informed and
accurate decision by the optimizer.

Chapter 3 ■ Access and Join Methods

74

Even prior to 12c, the inaccuracy in the way clustering_factor is computed won’t make a significant difference
to cause the optimizer to overcost the index so it will not be utilized. If the optimizer doesn’t choose the index you
expect, it may choose another index that can satisfy the predicate that contains similar columns. In this situation, you
may need to do a careful analysis of the indexes you created to determine whether there is a way to consolidate several
indexes into a single compound index. Do not make the mistake of rebuilding the index, thinking it will help “fix” the
clustering_factor. As I have demonstrated here, the clustering_factor is related to the table data, not the index.
So, rebuilding the index won’t have any effect on it.

On the other hand, if you start to consider rebuilding the table to improve the clustering_factor, proceed
with caution. Tables typically have numerous indexes. You can’t rebuild the table to make the order match one
index without causing it to be less ordered by other columns. So, a rebuild may help in relation to one index but
may hurt others. Also, rebuilding tables is typically a time-consuming and resource-intensive process. Just because
you rebuild the table in a particular order today doesn’t mean it’s going to stay in that order over time as rows are
inserted, updated, and deleted. As you proceed through the rest of the book, you’ll learn enough to understand when
clustering_factor may be part of a problem, and you’ll likely be able to find ways to adjust for it if needed.

Note■■  I n each of the following examples that show explain plan output, the output has been edited. I’ve removed
columns for brevity.

Index Unique Scan
An index unique scan is chosen when a predicate contains a condition using a column defined with a UNIQUE or
PRIMARY KEY index. These types of indexes guarantee that only one row is ever returned for a specified value. In this
case, the index structure is traversed from root to leaf block to a single entry, the rowid is retrieved, and it is used to
access the table data block containing the one row. The TABLE ACCESS BY INDEX ROWID step in the plan indicates
the table data block access. The number of block accesses required is always equal to the height of the index plus
one, unless there are special circumstances, such as the row is chained or contains a large object (LOB) that is stored
elsewhere. Listing 3-11 shows an example query that produces an index unique scan plan.

Listing 3-11.  Index Unique Scan

SQL> select * from employees where employee_id = 100;
 
--
| Id | Operation | Name | Cost (%CPU)|
--
0	SELECT STATEMENT		1 (100)
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	1 (0)
2	INDEX UNIQUE SCAN	EMP_EMP_ID_PK	0 (0)
--
 
Predicate Information (identified by operation id):

 2 - access("EMPLOYEE_ID"=100) 

Chapter 3 ■ Access and Join Methods

75

Index Range Scan
An index range scan is chosen when a predicate contains a condition that returns a range of data. The index can be
unique or nonunique, because it is the condition that determines whether multiple rows are returned. The conditions
specified can use operators such as <, >, LIKE, BETWEEN, and even =. For a range scan to be selected, the range needs to
be fairly selective. The larger the range, the more likely a full scan operation is chosen instead. Listing 3-12 shows an
example of a query that produces an index range scan plan.

Listing 3-12.  Index Range Scan

SQL> select * from employees where department_id = 60 ;
 
--
| Id | Operation | Name | Cost (%CPU)|
--
0	SELECT STATEMENT		2 (100)
1	TABLE ACCESS BY INDEX ROWID BATCHED	EMPLOYEES	2 (0)
* 2	INDEX RANGE SCAN	EMP_DEPT_ID_IDX	1 (0)
--
 
Predicate Information (identified by operation id):

 2 - access("DEPARTMENT_ID"=60)
 

A range scan traverses the index structure from the root block to the first leaf block containing an entry matching
the specified condition. From that starting point, a rowid is retrieved from the index entry and the table data block is
retrieved (TABLE ACCESS BY INDEX ROWID). After the first row is retrieved, the index leaf block is accessed again and
the next entry is read to retrieve the next rowid. This back-and-forth between the index leaf blocks and the data blocks
continues until all the matching index entries have been read. Therefore, the number of block accesses required
includes the number of branch blocks in the index (which can be found using the blevel statistic for the index) plus
the number of index entries that match the condition multiplied by two. You have to multiply by two because each
retrieval of a single row in the table requires the index leaf block to be accessed to retrieve the rowid, and then the
table data block is accessed using that rowid. Therefore, if the example returns five rows and the blevel is three, the
total block accesses required is (5 rows × 2) + 3 = 13.

If the range of entries matching the condition is large enough, it is likely that more than one leaf block has to be
accessed. When this is the case, the next leaf block needed can be read using a pointer stored in the current leaf block
that leads to the next leaf block (there’s also a pointer to the previous leaf block). Because these pointers exist, there is
no need to go back up to the branch block to determine where to go next.

When an index range scan is chosen, the predicate information in the plan shows the condition used to access
the index. In the example, step 2 in the plan has an asterisk beside it, which is an indicator that predicate information
for that step is listed below the plan. In that section, you see an entry that shows that the index entry access was
determined using the condition DEPARTMENT_ID = 60.

There are cases when predicates that you might think should use index range scans do not. For example, if you
use a LIKE operator with a condition that starts with a wildcard such as '%abc', the optimizer does not choose a
range scan on an index for that column because the condition is too broad. Basically, leading wildcards need to be
compared with the indexed column values in every index block to determine a match, which can result in a significant
amount of work. This work may appear significant enough to the optimizer that it prefers to use a different operation,
such as a full table scan, instead. Another similar case is when you have a predicate that uses a column that isn’t the
leading column in a compound index. In this case, as I discuss shortly, it is more likely for an index skip scan to be
chosen instead.

Chapter 3 ■ Access and Join Methods

76

One final nuance of an index range scan that I’d like to note is the ability of an ascending ordered index (the
default) to return rows in descending sorted order. The optimizer may choose to use an index to access rows via an
index even if a full scan might be warranted. This may occur when the query includes an ORDER BY clause on a column
that is indexed. Because the index is stored in sorted order, reading rows using the index means the rows are retrieved
in sorted order, and the need to do a separate sort step can be avoided. But, what if the ORDER BY clause is requested
in descending order? Because the index is stored in ascending order, the index can’t be used for a descending order
request, can it? Listing 3-13 shows an example of this behavior and the special range scan operation used to handle it.

Listing 3-13.  An Index Range Scan Used to Avoid a Sort

SQL> select * from employees
 2 where department_id in (90, 100)
 3 order by department_id desc;
 
--
| Id | Operation | Name | Cost (%CPU)|
--
0	SELECT STATEMENT		2 (100)
1	INLIST ITERATOR		
2	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	2 (0)
* 3	INDEX RANGE SCAN DESCENDING	EMP_DEPT_ID_IDX	1 (0)
--
 
Predicate Information (identified by operation id):

 3 - access(("DEPARTMENT_ID"=90 OR "DEPARTMENT_ID"=100))
 

In this case, the index entries are actually read in reverse order to avoid the need for a separate sort.

Index Full Scan
An index full scan is chosen under several conditions. For example, when there is no predicate but the column list can
be satisfied through an index on a column, the predicate contains a condition on a nonleading column in an index, or
the data can be retrieved via an index in sorted order and saves the need for a separate sort step. Listing 3-14 shows an
example of each of these cases.

Listing 3-14.  Index Full Scan Examples

SQL> select email from employees ;
 
--
| Id | Operation | Name | Cost (%CPU)|
--
| 0 | SELECT STATEMENT | | 1 (100)|
| 1 | INDEX FULL SCAN | EMP_EMAIL_UK | 1 (0)|
--
 
SQL>
SQL> select first_name, last_name from employees
 2 where first_name like 'A%' ;
 

Chapter 3 ■ Access and Join Methods

77

--
| Id | Operation | Name | Cost (%CPU)|
--
| 0 | SELECT STATEMENT | | 3 (100)|
|* 1 | TABLE ACCESS FULL| EMPLOYEES | 3 (0)|
--
 
Predicate Information (identified by operation id):

 1 - filter("FIRST_NAME" LIKE 'A%')
 
SQL> select * from employees order by employee_id ;
 
--
| Id | Operation | Name | Cost (%CPU)|
--
0	SELECT STATEMENT		3 (100)
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	3 (0)
2	INDEX FULL SCAN	EMP_EMP_ID_PK	1 (0)
--
 
SQL> select * from employees order by employee_id desc ;
 
--
| Id | Operation | Name | Cost (%CPU)|
--
0	SELECT STATEMENT		3 (100)
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	3 (0)
2	INDEX FULL SCAN DESCENDING	EMP_EMP_ID_PK	1 (0)
--
 

An index full scan operation scans every leaf block in the index structure, reads the row IDs for each entry, and
retrieves the table rows. Every leaf block is accessed. This is often more efficient than doing a full table scan because the
index blocks contain more entries than the table blocks; therefore, fewer overall blocks may need to be accessed. In cases
when the columns needed to satisfy the column list are all present as part of the index entry, the table access step is
avoided as well, which means that choosing an index full scan operation is more efficient than reading all the table blocks.

You may have noticed in the last example that the index full scan operation also has the ability to read in
descending order to avoid the need for a separate descending ordered sort request. There is another optimization for
index full scans, and it occurs when a query requests the minimum or maximum column value and that column is
indexed. Listing 3-15 shows an example of this operation choice.

Listing 3-15.  Index Full Scan Min/Max Optimization

SQL> select min(department_id) from employees ;

| Id | Operation | Name | Cost (%CPU)|

0	SELECT STATEMENT		1 (100)
1	SORT AGGREGATE		
2	INDEX FULL SCAN (MIN/MAX)	EMP_DEPT_ID_IDX	1 (0)

Chapter 3 ■ Access and Join Methods

78

SQL> select max(department_id) from employees ;

| Id | Operation | Name | Cost (%CPU)|

0	SELECT STATEMENT		1 (100)
1	SORT AGGREGATE		
2	INDEX FULL SCAN (MIN/MAX)	EMP_DEPT_ID_IDX	1 (0)

SQL> select min(department_id), max(department_id) from employees ;

| Id | Operation | Name | Cost (%CPU)|

0	SELECT STATEMENT		3 (100)
1	SORT AGGREGATE		
2	TABLE ACCESS FULL	EMPLOYEES	3 (0)

SQL> select (select min(department_id) from employees) min_id,
 2 (select max(department_id) from employees) max_id
 3 from dual
 4

| Id | Operation | Name | Cost (%CPU)|

0	SELECT STATEMENT		4 (100)
1	SORT AGGREGATE		
2	INDEX FULL SCAN (MIN/MAX)	EMP_DEPT_ID_IDX	1 (0)
3	SORT AGGREGATE		
4	INDEX FULL SCAN (MIN/MAX)	EMP_DEPT_ID_IDX	1 (0)
5	FAST DUAL		2 (0)

As the example shows, when a MIN or MAX aggregate is requested, the optimizer can choose a special optimized
version of the index full scan operation. In these special cases, when the index is used to retrieve the minimum value
quickly, it is the first entry in the first index leaf block; when it retrieves the maximum value, it is the last entry in
the last index leaf block. This makes perfect sense because the index is stored in sorted order so the minimum and
maximum values have to be at either end of the first and last leaf blocks. However, the really great part is that, in these
special cases, the index full scan isn’t really a full scan; it is a scan of only the root block, one or more branch blocks,
and the first or last leaf blocks. This means that finding these values is very fast and very low cost in terms of the
number of block accesses required. The index full scan operation title may seem a bit confusing because index full
scans typically read all the index leaf blocks. However, this optimization is a nice win in terms of performance.

I did include an example of where the query includes both a MIN and a MAX aggregate, and as you may have
noticed, the optimizer chose to do a full table scan with a sort instead of the nice optimized index full scan operation.
Although I think this is a shortcoming in the way the optimizer handles this situation, there is a fairly easy way
to get the same optimized behavior—just code the two queries separately. In this way, you get the benefits of the
optimization.

Chapter 3 ■ Access and Join Methods

79

Index Skip Scan
An index skip scan is chosen when the predicate contains a condition on a nonleading column in an index and the
leading columns are fairly distinct. In earlier releases of Oracle, if a predicate used a column that wasn’t the leading
column in an index, the index couldn’t be chosen. This behavior changed in Oracle version 9 with the introduction of
the index skip scan. A skip scan works by splitting a multicolumn index logically into smaller subindexes. The number
of logical subindexes is determined by the number of distinct values in the leading columns of the index. Therefore,
the more distinct the leading columns, the more logical subindexes need to be created. If too many subindexes are
required, the operation isn’t as efficient as simply doing a full scan. However, in cases when the number of subindexes
needed is smaller, the operation can be many times more efficient than a full scan because scanning a smaller number
of index blocks can be more efficient than scanning a larger number of table blocks. Listing 3-16 shows an example
of an index skip scan plan. Note that for this example, I use a copy of the hr.employees table, which has more than
28,000 rows.

Listing 3-16.  Index Skip Scan Example

SQL> create index emp_jobfname_ix on employees2(job_id, first_name, salary);
 
Index created.
 
SQL> select * from employees2 where first_name = 'William';

| Id | Operation | Name | A-Rows | Buffers |

0	SELECT STATEMENT		559	465
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES2	559	465
	BATCHED			
* 2	INDEX SKIP SCAN	EMP2_JOBFNAME_IX	559	59

Predicate Information (identified by operation id):

 2 - access("FIRST_NAME"='William')
 filter("FIRST_NAME"='William')
 
SQL> select /*+ full(employees2) */ * from employees2 where first_name = 'William';

| Id | Operation | Name | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | 559 | 581 |
|* 1 | TABLE ACCESS FULL| EMPLOYEES2 | 559 | 581 |

Predicate Information (identified by operation id):

Chapter 3 ■ Access and Join Methods

80

 1 - filter("FIRST_NAME"='William')
 
SQL> -- How many distinct values of job_id?
SQL> select count(distinct job_id) ct from employees ;
 
 CT

 19
 

In this example, the leading column of the index, job_id, has 19 distinct values. Using an index skip scan to
access the 559 rows that match the condition (first_name = 'William'), there are 465 buffer gets (logical block
accesses). However, if a full table scan is used, 581 blocks are accessed. As you can see, the skip scan is more efficient.
What happened was that the index was divided logically into 19 subindexes and then each subindex was scanned
for a match for first_name = 'William'. For this index scan type, just keep in mind that the fewer distinct values
the leading column (or columns) has, the fewer logical subindexes are needed, and therefore the fewer total block
accesses are required.

Index Fast Full Scan
An index fast full scan is more like a full table scan than like other index scan types. When an index fast full scan
operation is chosen, all the index blocks are read using multiblock reads. This type of scan is chosen as an alternative
to a full table scan when all the columns needed to satisfy the query’s column list are included in the index and at
least one column in the index has the NOT NULL constraint. In this case, the data are accessed from the index instead
of having to access table blocks. Unlike other index scan types, the index fast full scan cannot be used to avoid a sort
because the blocks are read using unordered multiblock reads. Listing 3-17 shows an example of an index fast full
scan plan.

Listing 3-17.  Index Fast Full Scan

SQL> alter table employees2 modify (email null) ;
 
Table altered.
 
SQL> select email from employees2 ;
  
 --
| Id | Operation | Name | A-Rows | Buffers | Reads |
--
| 0 | SELECT STATEMENT | | 29784 | 2537 | 565 |
| 1 | TABLE ACCESS FULL| EMPLOYEES2 | 29784 | 2537 | 565 |
--
  
SQL>
SQL> alter table employees2 modify (email not null) ;
 
Table altered.
 
SQL> select email from employees2 ;
 

Chapter 3 ■ Access and Join Methods

81

| Id | Operation | Name | A-Rows | Buffers | Reads |

| 0 | SELECT STATEMENT | | 29784 | 2064 | 80 |
| 1 | INDEX FAST FULL SCAN| EMP2_EMAIL_IDX | 29784 | 2064 | 80 |

This example demonstrates how the index fast full scan operation relies on the NOT NULL constraint to be chosen.
Without the constraint, a full scan operation is chosen instead.

Join Methods
If there are multiple tables in your query, after the optimizer determines the access methods most appropriate for
each of the tables, the next step is to determine the way the tables can best be joined together and the proper order
in which to join them. Anytime you have multiple tables in the FROM clause, you have a join. Table relationships are
defined with a condition in the WHERE clause. If no condition is specified, the join is defined implicitly such that each
row in one table is matched with every row in the other table. This is called a Cartesian join and I discuss it in detail
later in this section.

Joins occur between pairs of tables or row sources. When multiple tables exist in the FROM clause, the optimizer
determines which join operation is most efficient for each pair. The join methods are nested loops joins, hash joins,
sort–merge joins, and Cartesian joins. Each join method has specific conditions to which it is best suited. For each
pair, the optimizer must also determine the order in which the tables are joined. Figure 3-6 shows a diagram of how a
query with four tables might be joined.

Figure 3-6.  Join order example diagram

Chapter 3 ■ Access and Join Methods

82

Notice that after the first pair of tables is joined, the next table is joined to the resulting row source from the first
join. After that join is made, the next table is joined to that row source. This continues until all tables have been joined.

Each join method has two children. The first table accessed is typically called the driving table and the second
table is called the inner or driven-to table. The optimizer determines the driving table by using the statistics and the
filter conditions in the WHERE clause to calculate how many rows are returned from each table. The table with the
smallest estimated size (in terms of blocks, rows, and bytes) is typically the driving table. This is true particularly if the
optimizer can determine that one of the tables returns, at most, one row based on a UNIQUE or PRIMARY KEY constraint.
These tables are placed first in the join. Tables with outer join operators (which I discuss later) must come after the
table to which it is joined. Other than these two specific cases, the join order of the other tables is evaluated using their
computed selectivities based on the optimizer’s calculations using available table, column, and index statistics.

Note■■  I use hints (covered in more detail later in the book) in the sections that follow to produce execution plans
for each type of join method. In this way, I demonstrate the differences not only in the plan output, but also in resource
consumption—in particular, logical reads—for each.

Nested Loops Joins
Nested loops joins use each row of the query result reached through one access operation to drive into another table.
These joins are typically most effective if the result set is limited in size and indexes are present on the columns used
for the join. With nested loops, the cost of the operation is based on reading each row of the outer row source and
joining it with the matching row of the inner row source.

A nested loops join is, as its name implies, a loop inside a loop. The outer loop is basically a query against the
driving table that uses only the conditions from the WHERE clause that pertain to that table. As rows pass the outer
conditional check and are confirmed to match the request, they are passed into the second inner loop one at a time.
Each row is then checked to determine whether it matches the joined-to table based on the join column. If the row
matches this second check, it is then passed on to the next step in the plan or is included in the final result set if no
further steps are present.

These kinds of joins are quite robust in that they use very little memory. Because row sets are built one row at a
time, there is little overhead required. For this reason, they are actually good for huge result sets, except for the fact
that building a huge result set one row at a time can take quite a long time. This is why I mentioned earlier that nested
loops are typically best when result sets are smaller. The primary measurement for nested loops is the number of
block accesses required to prepare the final result set.

Let’s take a simple query and break it down into how the nested loop join is processed.
 
select empno, ename, dname, loc
from emp, dept
where emp.deptno = dept.deptno
 

This query is processed as if it is written like the following pseudocode:
 
for each row in (select empno, ename, deptno from emp) loop
for (select dname, loc from dept where deptno = outer.deptno) loop
 If match then pass the row on to the next step
 If inner join and no match then discard the row
 If outer join and no match set inner column values to null
 and pass the row on to the next step
 end loop
end loop
 

Chapter 3 ■ Access and Join Methods

83

Listing 3-18 shows the plan for this query.

Listing 3-18.  Nested Loops

SQL> select /*+ leading (emp, dept) use_nl (emp) */ empno, ename, dname, loc
 2 from emp, dept
 3 where emp.deptno = dept.deptno;
 
--
| Id | Operation | Name | A-Rows | Buffers | Reads |
--
0	SELECT STATEMENT		14	26	8
1	NESTED LOOPS		14	26	8
2	NESTED LOOPS		14	12	7
3	TABLE ACCESS FULL	EMP	14	8	6
* 4	INDEX UNIQUE SCAN	PK_DEPT	14	4	1
5	TABLE ACCESS BY INDEX ROWID	DEPT	14	14	1
--
 
Predicate Information (identified by operation id):

 4 - access("EMP"."DEPTNO"="DEPT"."DEPTNO")
 

The plan shows the nested loops method with the emp table as the driving table and the dept table as the inner
(or driven-to) table. With a nested loops plan, the first table listed after the NESTED LOOPS operation is the driving table.
That table is accessed via the method chosen for it. In this case, it is a full table scan on emp, which means that all the
blocks in the emp table are read using multiblock reads, then each row is accessed one at a time, and the deptno
(the join column) is passed to the inner loop query against the dept table. For an inner join, for each row in which
there is a match on the dept table’s deptno column, the row is returned. For an outer join, each row from emp is
returned and null values are used to populate the columns from dept.

Think about having the emp table as the driving table for this query. The query is asking for all rows in which there
is a match between the two tables on deptno. In my test, the emp table did not have an index on deptno, so the only
way it could be accessed was with a full table scan. Because the way a nested loops join works is to process the inner
join for each row of the outer table, if the dept table had been the driving table, for every row in dept a full table scan
on emp would have occurred. On the other hand, driving the join with the emp table means that only one full table scan
is needed, and because there is an index on deptno in the dept table (it’s the primary key), the inner loop can access
the row it needs directly from dept. Listing 3-19 shows the comparison of the plan with the dept table as the driving
table (note the increase in buffer gets from 26 to 37).

Listing 3-19.  Nested Loops Join Order Comparison

SQL> select /*+ leading (dept, emp) use_nl (dept) */ empno, ename, dname, loc
 2 from scott.emp, scott.dept
 3 where emp.deptno = dept.deptno;

| Id | Operation | Name | A-Rows | Buffers | Reads |

0	SELECT STATEMENT		14	37	5
1	NESTED LOOPS		14	37	5
2	TABLE ACCESS FULL	DEPT	4	8	5
* 3	TABLE ACCESS FULL	EMP	14	29	0

Chapter 3 ■ Access and Join Methods

84

Predicate Information (identified by operation id):

 3 - filter("EMP"."DEPTNO"="DEPT"."DEPTNO")
 

Notice that when the join is driven by dept, the logical reads (Buffers) are higher than when the join is driven by
the emp table. One of the keys to optimizing performance is to make sure that only work that needs to happen is done.
The extra work (in other words, extra logical reads) that would have occurred if the dept table had been the driving
table is avoided with the emp-to-dept join order choice.

Sort–Merge Joins
Sort–merge joins read the two tables to be joined independently, sort the rows from each table (but only those rows
that meet the conditions for the table in the WHERE clause) in order by the join key, and then merge the sorted row sets.
The sort operations are the expensive part of this join method. For large row sources that won’t fit into memory, the
sorts end up using temporary disk space to complete, which can be quite memory and time-consuming. However,
when the row sets are sorted, the merge happens quickly. To merge, the database alternates down the two lists,
compares the top rows, discards rows that are earlier in the sort order than the top of the other list, and only returns
matching rows.

Let’s use the same query used earlier and break it down into how the sort–merge join is processed.
 
select empno, ename, dname, loc
from emp, dept
where emp.deptno = dept.deptno
 

This query is processed as if it is written like the following pseudocode:
 
select empno, ename, deptno from emp order by deptno
 
select dname, loc, deptno from dept order by deptno
 
compare the rowsets and return rows where deptno in both lists match
 
for an outer join, compare the rowsets and return all rows from
the first list
 
setting column values for the other table to null
 

Listing 3-20 shows the plan for this query.

Listing 3-20.  Sort–Merge Join

SQL> select /*+ ordered */ empno, ename, dname, loc
 2 from dept,emp
 3 where emp.deptno = dept.deptno;
 

Chapter 3 ■ Access and Join Methods

85

--
| Id | Operation | Name | A-Rows | Buffers | Reads |
--
0	SELECT STATEMENT		14	11	8
1	MERGE JOIN		14	11	8
2	TABLE ACCESS BY INDEX ROWID	DEPT	4	4	2
3	INDEX FULL SCAN	PK_DEPT	4	2	1
* 4	SORT JOIN		14	7	6
5	TABLE ACCESS FULL	EMP	14	7	6
--
 
Predicate Information (identified by operation id):

 4 - access("EMP"."DEPTNO"="DEPT"."DEPTNO")
 filter("EMP"."DEPTNO"="DEPT"."DEPTNO")
 

I used the same query as before but forced the plan with an ordered hint. Notice how the plan operations show
a MERGE JOIN operation followed by an index access on the dept table and a SORT JOIN operation of a full table scan
on the emp table. The first thing to note is the use of the index scan on dept. In this case, the optimizer chose to read
the table data from the index because the index returns the data in sorted order. This means a separate sort step is
avoided. The emp table was full scanned and required a separate sort step because there was no index on deptno that
could be used. After both row sets were ready and in sorted order, they were merged together.

A sort–merge join accesses the blocks needed and then does the work to sort and merge them in memory
(or by using temporary disk space if there isn’t enough memory). So, when you do a comparison of logical reads for a
sort–merge join with a nested loops join, particularly for a query against a larger row source, you likely find that there
are more block accesses required for the nested loops join. Does this mean that the sort–merge is a better choice?
It depends. You have to take into account all the work required to complete the sort and merge steps, and realize that
work may end up taking much more time than doing more block accesses might.

Sort–merge joins are typically best suited to queries that have limited data filtering and return lots of rows.
They are also often a better choice if there are no suitable indexes that can be used to access the data more directly.
Last, a sort–merge is often the best choice when the join is an inequality. For example, a join condition of
WHERE table1.column1 between table2.column1 and table2.column2 is a candidate for a sort–merge. As we see
in the next section, a hash join is not possible for such a join; if the row sources are large, the sort–merge is likely
the only viable choice.

Hash Joins
Hash joins, like sort–merge joins, first read the two tables to be joined independently and then apply the criteria in the
WHERE clause. When considering a two-table join, based on table and index statistics, the table that is determined to
return the fewest rows is hashed in its entirety (in other words, the selected columns and the columns that are joined
to other the other table) into memory. This hash table includes all the row data for that table and they are loaded into
hash buckets based on a randomizing function that converts the join key to a hash value. As long as there is enough
memory available, this hash table resides in memory. However, if there is not enough memory available, the hash
table may be written to temporary disk space.

The next step is for the other larger table to be read, and the hash function is applied to the join key column. That
hash value is then used to probe the smaller in-memory hash table for the matching hash bucket where the row data
for the first table resides. Each bucket has a list (represented by a bitmap) of the rows in that bucket. The list is checked
for matches with the probing row. If a match is made, the row is returned; otherwise, it is discarded. The larger table
is read only once and each row is checked for a match. This is different from the nested loops join in which the inner
table is read multiple times. So really, in this case, the larger table is the driving table because it is read only once and

Chapter 3 ■ Access and Join Methods

86

the smaller hashed table is probed many times. Unlike a nested loops join plan, however, the tables are listed in the
plan output with the smaller hashed table first and the larger probe table second.

Let’s use the same query used earlier and break it down into how the hash join is processed.
 
select empno, ename, dname, loc
from emp, dept
where emp.deptno = dept.deptno
 

This query is processed as if it is written like the following pseudocode:
 
determine the smaller row set, or in the case of an outer join,
 use the outer joined table
select dname, loc, deptno from dept
hash the deptno column and build a hash table
select empno, ename, deptno from emp
hash the deptno column and probe the hash table
if match made, check bitmap to confirm row match
if no match made, discard the row
 

Listing 3-21 shows the plan for this query.

Listing 3-21.  Hash Join

SQL> select /*+ use_hash(dept,emp) */ empno, ename, dname, loc
 2 from dept,emp
 3 where emp.deptno = dept.deptno;

| Id | Operation | Name | A-Rows | Buffers | Reads |

0	SELECT STATEMENT		14	15	12
* 1	HASH JOIN		14	15	12
2	TABLE ACCESS FULL	DEPT	4	7	6
3	TABLE ACCESS FULL	EMP	14	8	6

Predicate Information (identified by operation id):

 1 - access("EMP"."DEPTNO"="DEPT"."DEPTNO")
 

In the hash join plan, the smaller hash table is listed first and the probe table is listed second. Keep in mind that
the decision regarding which table is the smallest depends not just on the number of rows, but also on the size of
those rows as well, because the entire row must be stored in the hash table.

Hash joins are considered more preferable when the row sources are larger and the result set is larger as well.
Also, if one of the tables in the join is determined always to return the same row source, a hash join is preferable
because it accesses that table only once. If a nested loops join is chosen in this case, the row source is accessed over
and over again, requiring more work than a single, independent access. Last, if the smaller table can fit in memory, a
hash join may be favored.

Blocks are accessed for hash joins similar to how they are accessed for a sort–merge join. The blocks needed
to build the hash table are read and then the rest of the work is done against the hashed data stored in memory
(from temporary disk space if there isn’t enough memory). So, when you do a comparison of logical reads for a hash

Chapter 3 ■ Access and Join Methods

87

join with a sort–merge join, the block accesses are approximately identical. However, the number of logical reads
compared with a nested loops join are less because the blocks are read once and are placed into memory (for the hash
table), where they are then accessed, or they are only read once (for the probe table).

Hash joins are only possible if the join is an equijoin. As mentioned previously, a sort–merge join can be used
to handle joins specified with an inequality condition. The reason why hash joins can’t be chosen unless the join is
an equijoin is that the matches are made on hashed values and it doesn’t make sense to consider hashed values in a
range. Listing 3-22 demonstrates how a computed hash value doesn’t necessarily correspond to the key value being
hashed (in terms of its numeric value, in this case).

Listing 3-22.  Hash Values

SQL> select distinct deptno,
 2 ora_hash(deptno,1000) hv
 3 from emp
 4 order by deptno;
 
 DEPTNO HV
--------------- ---------------
 10 547
 20 486
 30 613
SQL>
SQL> select deptno
 2 from
 3 (
 4 select distinct deptno,
 5 ora_hash(deptno,1000) hv
 6 from emp
 7 order by deptno
 8)
 9 where hv between 100 and 500;
 
 DEPTNO

 20
SQL>
SQL> select distinct deptno,
 2 ora_hash(deptno,1000,50) hv
 3 from emp
 4 order by deptno;
 
 DEPTNO HV
--------------- ---------------
 10 839
 20 850
 30 290
SQL>
SQL> select deptno
 2 from
 3 (
 4 select distinct deptno,
 5 ora_hash(deptno,1000,50) hv

Chapter 3 ■ Access and Join Methods

88

 6 from emp
 7 order by deptno
 8)
 9 where hv between 100 and 500;
 
 DEPTNO

 30
 

I used the ora_hash function to demonstrate how a hash value might be generated. The ora_hash function takes
up to three parameters: an input value of any base type, the maximum hash bucket value (the minimum value is
zero), and a seed value (which also defaults to zero). So, for example, ora_hash(10,1000) returns an integer value
between zero and 1000.

In the two examples, I use the default seed in the first and a seed value of 50 for the second. Notice how the hash
values for each deptno are quite different in each query. So when I try to query a range of hash values for each, I get a
different result. However, in both cases, if I was simply querying a range of the column values, I could easily formulate
what I wanted and be assured of always getting the right answer. This example is a bit forced, but I want to give you a
visual on hash value comparisons so you can understand more completely why they don’t work with inequality joins.

Cartesian Joins
Cartesian joins occur when all the rows from one table are joined to all the rows of another table. Therefore, the
total number of rows resulting from the join equals the number of rows from one table (A) multiplied by the number
of rows in the other table (B) such that A × B = total rows in the result set. Cartesian joins often occur when a join
condition is overlooked or left out, such that there isn’t a specified join column, so the only operation possible is
simply to join everything from one row source to everything from the other.

Let’s use the same query used earlier, but leave off the WHERE clause, and break it down into how the Cartesian
join is processed.
 
select empno, ename, dname, loc
from emp, dept
 

This query is processed as if it is written like the following pseudocode:
 
determine the smaller table
 
select dname, loc from dept
 
select empno, ename from emp
 
for each row in dept match it to every row in emp retaining all rows
 

Listing 3-23 shows the plan for this query.

Chapter 3 ■ Access and Join Methods

89

Listing 3-23.  Cartesian Join

SQL> select empno, ename, dname, loc
 2 from dept, emp ;

| Id | Operation | Name | A-Rows | Buffers | Reads |

0	SELECT STATEMENT		56	17	12
1	MERGE JOIN CARTESIAN		56	17	12
2	TABLE ACCESS FULL	DEPT	4	10	6
3	BUFFER SORT		56	7	6
4	TABLE ACCESS FULL	EMP	14	7	6

Notice the actual rows (A-Rows) in the plan and how the final row estimate is the product of the rows from the
two tables (4 × 14 = 56). What you end up with in this case is likely a result set that has a whole lot more rows than you
want or intended to have. When plans aren’t checked properly while developing SQL, Cartesian joins may end up
causing the result set to appear to have numerous duplicate rows. And, unfortunately, the first thing many people do
is add a distinct operator to the SQL. This has the effect of getting rid of the duplicates so that the result set is correct,
but at a significant cost. The duplicates shouldn’t have been there in the first place, but because they’re there, adding
distinct causes a sort to occur and then all the duplicates are eliminated. This is a lot of wasted work. So, always
make sure to verify the plan for Cartesian joins if you end up with unexpected duplicate rows in your result set before
you simply add distinct out of hand.

One thing you’ll notice about the Cartesian join plan is the presence of the BUFFER SORT operation. This isn’t
really a sort, but because Oracle is joining every row to every row, using the sort buffer mechanism to copy the blocks
from the second row source out of the buffer cache and into private memory has the benefit of not requiring the same
blocks in the buffer cache to be revisited over and over again. These revisits require a lot more logical reads and also
create more opportunity for contention on these blocks in the buffer cache. So, buffering the blocks into a private
memory area can be a much more efficient way to accomplish the repeated join.

Outer Joins
An outer join returns all rows from one table and only those rows from the joined table where the join condition
is met. Oracle uses the + character to indicate an outer join. The + is placed in parentheses on the side of the join
condition with the table where only rows that match is located. As I’ve indicated in each of the join method overviews,
outer joins require that the outer joined table be the driving table. This can mean that join orders that might be
more optimal are not used. So, use outer joins properly and with care because their use has implications related to
performance of the overall plan.

Listing 3-24 shows an example of how outer joins work. In the example, you are asked to produce a count of how
many customers have placed between $0 and $5000 in orders.

Listing 3-24.  Outer Join

SQL> -- Query to show customers with total orders between $0 and $5000
SQL> select c.cust_last_name, nvl(sum(o.order_total),0) tot_orders
 2 from customers c, orders o
 3 where c.customer_id = o.customer_id
 4 group by c.cust_last_name
 5 having nvl(sum(o.order_total),0) between 0 and 5000
 6 order by c.cust_last_name ;
 

Chapter 3 ■ Access and Join Methods

90

CUST_LAST_NAME TOT_ORDERS
-------------------- ---------------
Alexander 309
Chandar 510
George 220
Hershey 48
Higgins 416
Kazan 1233
Sen 4797
Stern 969.2
Weaver 600
 
9 rows selected.
 
SQL> -- To produce just a count, modify the query slightly
SQL> select count(*) ct
 2 from
 3 (
 4 select c.cust_last_name, nvl(sum(o.order_total),0) tot_orders
 5 from customers c, orders o
 6 where c.customer_id = o.customer_id
 7 group by c.cust_last_name
 8 having nvl(sum(o.order_total),0) between 0 and 5000
 9 order by c.cust_last_name
 10);
 
 CT

 9
1 row selected.
SQL> -- What about customers who haven’t placed orders (they would have $0 order amount)?
SQL> -- Change the query to an outer join to include customers without orders
SQL> select count(*) ct
 2 from
 3 (
 4 select c.cust_last_name, nvl(sum(o.order_total),0) tot_orders
 5 from customers c, orders o
 6 where c.customer_id = o.customer_id(+)
 7 group by c.cust_last_name
 8 having nvl(sum(o.order_total),0) between 0 and 5000
 9 order by c.cust_last_name
 10);
 
 CT

 140
1 row selected.
 

Chapter 3 ■ Access and Join Methods

91

--
| Id | Operation | Name | A-Rows |
--
0	SELECT STATEMENT		140
* 1	FILTER		140
2	SORT GROUP BY		176
* 3	HASH JOIN OUTER		377
4	VIEW	index$_join$_001	319
* 5	HASH JOIN		319
6	INDEX FAST FULL SCAN	CUSTOMERS_PK	319
7	INDEX FAST FULL SCAN	CUST_LNAME_IX	319
8	TABLE ACCESS BY INDEX ROWID BATCHED	ORDERS	105
* 9	INDEX RANGE SCAN	ORD_CUSTOMER_IX	105
--
 
Predicate Information (identified by operation id):

 1 - filter((NVL(SUM("O"."ORDER_TOTAL"),0)>=0 AND NVL(SUM("O"."ORDER_TOTAL"),0)<=5000))
 3 - access("C"."CUSTOMER_ID"="O"."CUSTOMER_ID")
 5 - access(ROWID=ROWID)
 9 - access("O"."CUSTOMER_ID">0)
 

The example shows how the original answer wasn’t exactly correct without using an outer join. Because
customers who haven’t yet placed orders would not have rows in the order table, they are not included in the query
result set. Changing the query to be an outer join causes those customers to be included. Also notice the plan
operation on line 5 that specifies the HASH JOIN OUTER. Outer joins can be used with any join method (nested loops,
hash, sort–merge) and are denoted with the word OUTER at the end of the normal operation name.

As mentioned earlier, the use of the (+) operator to denote an outer join is Oracle–specific syntax. The same thing
can be accomplished using ANSI join syntax as well, as shown in Listing 3-25.

Listing 3-25.  Outer Join Using ANSI Join Syntax

SQL> select count(*) ct
 2 from
 3 (
 4 select c.cust_last_name, nvl(sum(o.order_total),0) tot_orders
 5 from customers c
 6 left outer join
 7 orders o
 8 on (c.customer_id = o.customer_id)
 9 group by c.cust_last_name
 10 having nvl(sum(o.order_total),0) between 0 and 5000
 11 order by c.cust_last_name
 12);
 
 CT

 140
 
1 row selected.
 

Chapter 3 ■ Access and Join Methods

92

With ANSI syntax, you simply use the keywords LEFT OUTER JOIN, which indicates that the table on the left
(the first table listed) is the one you want to have all rows included, even if a match on the join condition isn’t found.
You could use RIGHT OUTER JOIN if you wanted to have all rows from orders included even if there was no match
in customers.

Prior to version 12c, when you use the Oracle (+) operator, you have some limitations that do not exist if you use
ANSI syntax. Oracle throws an error if you attempt to outer-join the same table to more than one other table. The error
message you get is “ORA-01417: a table may be outer joined to at most one other table.” Beginning with 12c, as with
ANSI syntax, there is no limit on the number of tables to which a single table can be outer-joined.

Another limitation of Oracle’s outer join syntax still present in version 12c is that it doesn’t support full outer
joins. A full outer join joins two tables from left to right and from right to left. Records that join in both directions are
output once to avoid duplication. To demonstrate a full outer join, Listing 3-26 shows the creation of two tables that
contain a small subset of common data but have some data that are present only in the single table. The full outer join
returns all the rows from both tables that match plus the rows that are unique to each table.

Listing 3-26.  Full Outer Join Using ANSI Join Syntax

SQL> create table e1 as select * from emp where deptno in (10,20);
 
Table created.
 
SQL> create table e2 as select * from emp where deptno in (20,30);
 
Table created.
 
SQL> select e1.ename, e1.deptno, e1.job
 2 ,e2.ename, e2.deptno, e2.job
 3 from e1
 4 full outer join
 5 e2
 6 on (e1.empno = e2.empno);
 
ENAME DEPTNO JOB ENAME DEPTNO JOB
---------- ---------- --------- ---------- ---------- ---------
SMITH 20 CLERK SMITH 20 CLERK
 ALLEN 30 SALESMAN
 WARD 30 SALESMAN
JONES 20 MANAGER JONES 20 MANAGER
 MARTIN 30 SALESMAN
 BLAKE 30 MANAGER
SCOTT 20 ANALYST SCOTT 20 ANALYST
 TURNER 30 SALESMAN
ADAMS 20 CLERK ADAMS 20 CLERK
 JAMES 30 CLERK
FORD 20 ANALYST FORD 20 ANALYST
KING 10 PRESIDENT
CLARK 10 MANAGER
MILLER 10 CLERK
 
14 rows selected.
 

Chapter 3 ■ Access and Join Methods

93

| Id | Operation | Name | A-Rows |

0	SELECT STATEMENT		14
1	VIEW	VW_FOJ_0	14
* 2	HASH JOIN FULL OUTER		14
3	TABLE ACCESS FULL	E1	8
4	TABLE ACCESS FULL	E2	11

Predicate Information (identified by operation id):

 2 - access("E1"."EMPNO"="E2"."EMPNO")
 

Note that rows from both tables appear in the output, even if they do not have a match in the opposite table.
This is what a full outer join does and it can be useful when partial datasets need to be joined. As you can see from
the plan, the full outer join is executed as part of a transformed view named VW_FOJ_0. In previous Oracle versions,
and when using the Oracle–specific syntax (shown in Listing 3-27), the plan actually executes two separate query
blocks and appends the results with UNION ALL. The result set is the same, but the transformation for the ANSI version
provides a cleaner and clearer set of execution operations.

Using the plan from the ANSI full outer join example, you can write an equivalent statement using Oracle’s syntax
that results in the same final result set. Listing 3-27 shows how the statement is coded.

Listing 3-27.  Oracle–Equivalent Syntax for Full Outer Join Functionality

SQL> select e1.ename, e1.deptno, e1.job,
 2 e2.ename, e2.deptno, e2.job
 3 from e1,
 4 e2
 5 where e1.empno (+) = e2.empno
 6 union all
 7 select e1.ename, e1.deptno, e1.job,
 8 e2.ename, e2.deptno, e2.job
 9 from e1, e2
 10 where e1.empno = e2.empno (+)
 11 and e2.rowid is null;
 
ENAME DEPTNO JOB ENAME DEPTNO JOB
---------- ---------- --------- ---------- ---------- ---------
ADAMS 20 CLERK ADAMS 20 CLERK
CLARK 10 MANAGER
FORD 20 ANALYST FORD 20 ANALYST
JONES 20 MANAGER JONES 20 MANAGER
KING 10 PRESIDENT
MILLER 10 CLERK
SCOTT 20 ANALYST SCOTT 20 ANALYST
SMITH 20 CLERK SMITH 20 CLERK
 ALLEN 30 SALESMAN
 BLAKE 30 MANAGER
 JAMES 30 CLERK

Chapter 3 ■ Access and Join Methods

94

 MARTIN 30 SALESMAN
 TURNER 30 SALESMAN
 WARD 30 SALESMAN
 
14 rows selected.
 
--
| Id | Operation | Name | A-Rows |
--
0	SELECT STATEMENT		14
1	UNION-ALL		14
* 2	HASH JOIN OUTER		11
3	TABLE ACCESS FULL	E2	11
4	TABLE ACCESS FULL	E1	8
* 5	FILTER		3
* 6	HASH JOIN OUTER		8
7	TABLE ACCESS FULL	E1	8
8	TABLE ACCESS FULL	E2	11
--
 
Predicate Information (identified by operation id):

 2 - access("E1"."EMPNO"="E2"."EMPNO")
 5 - filter("E2".ROWID IS NULL)
 6 - access("E1"."EMPNO"="E2"."EMPNO")
 

You may have noticed that the Oracle–equivalent plan is different from the ANSI plan. This is why Oracle uses
two outer joins, one in each direction, which is exactly what you asked it to do. So you could use Oracle syntax to
accomplish a full outer join, but the ANSI syntax is certainly more straightforward. Also, keep in mind that full outer
joins can be quite costly in terms of the amount of resources required to execute. Always be sure to understand the
implications of coding such queries and note the performance implications.

Summary
The optimizer must make a few key choices when determining the execution plan for any SQL statement. First, the
best way to access each table used in the statement has to be determined. There are basically two choices: an index
scan or a full table scan. Each access method works differently to access the blocks containing the row data your SQL
statement needs. After the optimizer chooses the access methods, the join methods have to be selected. Tables are
joined together in pairs, with the row source from one join result being used to join to another table until all the tables
are joined to produce the final result set.

Understanding how each access and join method works can help you write your SQL so that the optimizer makes
the most efficient choices. Being able to review the execution plans, understand the operations chosen, and know how
these operations work also helps you notice areas where performance problems might occur. Once again, knowing
what is “under the hood” helps you write better, faster SQL.

95

Chapter 4

SQL Is about Sets

One of the most difficult transitions to make to become highly proficient at writing SQL well is to shift from thinking
procedurally to thinking declaratively (or in sets). It is often hardest to learn to think in sets if you’ve spent time
working with virtually any programming language. If this is the case for you, you are likely very comfortable with
constructs such as IF-THEN-ELSE, WHILE-DO, LOOP-END LOOP, and BEGIN-END. These constructs support working with
logic and data in a very procedural, step-by-step, top-down–type approach. The SQL language is not intended to be
implemented from a procedural point of view, but from a set-oriented one. The longer it takes you to shift to a set-oriented
point of view, the longer it takes for you to become truly proficient at writing SQL that is functionally correct and also
highly optimized to perform well.

In this chapter, we explore common areas where you may need to shift your procedural way of thinking to
nonprocedural ways, which allows you to start to understand how to work with sets of data elements vs. sequential
steps. We also look at several specific set operations (UNION, INTERSECT, MINUS) and how nulls affect set-thinking.

Thinking in Sets
Using a real-world example as a way to help you start thinking in sets, consider a deck of playing cards. A standard
card deck consists of 52 cards, but the deck can be broken into multiple sets as well. How many sets can you make
from the main set of standard playing cards? Your answer depends, in part, on any rules that might be applied to
how a set is defined. So, for our purposes, let’s say there is only one rule for making a set: All cards in a set must have
something in common. With that rule in place, let’s count the sets. There are a total of 22 sets:

Four sets—one for each suit (diamonds, clubs, spades, hearts)•	

Two sets—one for each color (red, black)•	

Thirteen sets—one for each individual card (Ace, 2 through 10, Jack, Queen, King)•	

One set—face cards only (Jack, Queen, King)•	

One set—nonface cards only (Ace, 2 through 10)•	

You might be able to think up some other sets in addition to the 22 I’ve defined, but you get the idea, right? The
idea is that if you think of this example in terms of SQL, there is a table, named DECK, with 52 rows in it. The table could
have several indexes on columns by which we intend to filter regularly. For instance, we could create indexes on the suit
column (diamonds, clubs, spades, hearts), the color column (red, black), the card_name column (Ace, 2 through 10, Jack,
Queen, King), and the card_type column (face card/nonface card). We could write some PL/SQL code to read the
table row by row in a looping construct and to ask for different cards (rows) to be returned or we could write a single
query that returns the specific rows we want. Which method do you think is more efficient?

Consider the PL/SQL code method. You can open a cursor containing all the rows in the DECK table and then read
the rows in a loop. For each row, you check the criteria you want, such as all cards from the suit of hearts. This method

Chapter 4 ■ SQL Is about Sets

96

requires the execution of 52 fetch calls, one for each row in the table. Then, each row is examined to check the value of
the suit column to determine whether it is hearts. If it is hearts, the row is included in the final result; otherwise, it is
rejected. This means that out of 52 rows fetched and checked, only 13 are a match. In the end, 75 percent of the rows
are rejected. This translates to doing 75 percent more work than absolutely necessary.

However, if you think in sets, you can write a single query, SELECT * FROM DECK WHERE SUIT = 'HEARTS', to
solve the problem. Because there is an index on the suit column, the execution of the query uses the index to return
only the 13 cards in the suit of hearts. In this case, the query is executed once and there is nothing rejected. Only the
rows wanted are accessed and returned.

The point of this example is to help you to think in sets. With something you can actually visualize, like a deck
of cards, it seems quite obvious that you should think in sets. It just seems natural. But, if you find it hard to make a
set with a deck of cards, I bet you find it harder to think in sets when writing SQL. Writing SQL works under the same
premise (set-thinking is a must!); it’s just a different game. Now that you’re warmed up to think in sets, let’s look at
several ways to switch procedural thinking to set-thinking.

Moving from Procedural to Set-Based Thinking
The first thing you need to do is to stop thinking about process steps that handle data one row at a time. If you’re
thinking one row at a time, your thinking uses phrases such as “for each row, do x” or “while value is y, do x.” Try
to shift this thinking to use phrases such as “for all.” A simple example of this is adding numbers. When you think
procedurally, you think of adding the number value from one row to the number value from another row until you’ve
added all the rows together. Thinking of summing all rows is different. This is a very simple example, but the same
shift in thinking applies to situations that aren’t as obvious.

For example, if I asked you to produce a list of all employees who spent the same number of years in each job
they held within the company during their employment, how would you do it? If you think procedurally, you look at
each job position, compute the number of years that position was held, and compare it with the number of years any
other positions were held. If the number of years don’t match, you reject the employee from the list. This approach
might lead to a query that uses a self-join, such as the following:
 
select distinct employee_id
 from job_history j1
 where not exists
 (select null
 from job_history j2
 where j2.employee_id = j1.employee_id
 and round(months_between(j2.start_date,j2.end_date)/12,0) <>
 round(months_between(j1.start_date,j1.end_date)/12,0))
 

On the other hand, if you look at the problem from a set-based point of view, you might write the query by
accessing the table only once, grouping rows by employee, and filtering the result to retain only those employees
whose minimum years in a single position match their maximum years in a single position, like this:
 
select employee_id
 from job_history
 group by employee_id
having min(round(months_between(start_date,end_date)/12,0)) =
max(round(months_between(start_date,end_date)/12,0))
 

Listing 4-1 shows the execution of each of these alternatives. You can see that the set-based approach uses fewer
logical reads and has a more concise plan that accesses the job_history table only once instead of twice.

Chapter 4 ■ SQL Is about Sets

97

Listing 4-1.  Procedural vs. Set-Based Approach

SQL> select distinct employee_id
 2 from job_history j1
 3 where not exists
 4 (select null
 5 from job_history j2
 6 where j2.employee_id = j1.employee_id
 7 and round(months_between(j2.start_date,j2.end_date)/12,0) <>
 8 round(months_between(j1.start_date,j1.end_date)/12,0));
 
 EMPLOYEE_ID

 102
 201
 114
 176
 122
 
--
| Id | Operation | Name | A-Rows | Buffers |
--
0	SELECT STATEMENT		5	14
1	HASH UNIQUE		5	14
* 2	HASH JOIN ANTI		6	14
3	TABLE ACCESS FULL	JOB_HISTORY	10	7
4	TABLE ACCESS FULL	JOB_HISTORY	10	7
--
 
Predicate Information (identified by operation id):

 2 - access("J2"."EMPLOYEE_ID"="J1"."EMPLOYEE_ID")
 filter(ROUND(MONTHS_BETWEEN(INTERNAL_FUNCTION("J2"."START_DATE"),
 INTERNAL_FUNCTION("J2"."END_DATE"))/12,0)<>
 ROUND(MONTHS_BETWEEN(INTERNAL_FUNCTION("J1"."START_DATE"),
 INTERNAL_FUNCTION("J1"."END_DATE"))/12,0))
 
SQL> select employee_id
 2 from job_history
 3 group by employee_id
 4 having min(round(months_between(start_date,end_date)/12,0)) =
 5 max(round(months_between(start_date,end_date)/12,0));
 
 EMPLOYEE_ID

 102
 114
 122
 176
 201
 

Chapter 4 ■ SQL Is about Sets

98

--
| Id | Operation | Name | A-Rows | Buffers |
--
0	SELECT STATEMENT		5	4
* 1	FILTER		5	4
2	SORT GROUP BY NOSORT		7	4
3	TABLE ACCESS BY INDEX ROWID	JOB_HISTORY	10	4
4	INDEX FULL SCAN	JHIST_PK	10	2
--
 
Predicate Information (identified by operation id):

 1 - filter(MIN(ROUND(MONTHS_BETWEEN(INTERNAL_FUNCTION("START_DATE"),
 INTERNAL_FUNCTION("END_DATE"))/12,0))=MAX(ROUND(MONTHS_BETWEEN(
 INTERNAL_FUNCTION("START_DATE"),INTERNAL_FUNCTION("END_DATE"))
 /12,0)))
 

The key is to start thinking in terms of completed results, not process steps. Look for group characteristics and
not individual steps or actions. In set-based thinking, everything exists in a state defined by the filters or constraints
applied to the set. You don’t think in terms of process flow but in terms of the state of the set. Figure 4-1 shows a
comparison between a process flow diagram and a nested sets diagram to illustrate my point.

Figure 4-1.  A process flow diagram vs. a nested set diagram

The process flow diagram implies the result set (A) is achieved through a series of steps that build on one another
to produce the final answer. B is built by traversing C and D, and then A is built by traversing B and E. However, the
nested sets diagram views A as a result of a combination of sets.

Another common but erroneous way of thinking is to consider tables to be ordered sets of rows. Just think of how
you typically see table contents listed. They’re shown in a grid or spreadsheet-type view. However, a table represents
a set, and a set has no order. Showing tables in a way that implies a certain order can be confusing. Remember from
Chapter 2 that the ORDER BY clause is applied last when a SQL statement is executed. SQL is based on set theory, and
because sets have no predetermined order to their rows, order has to be applied separately after the rows that satisfy
the query result have been extracted from the set. Figure 4-2 shows a more correct way to depict the content of tables
that doesn’t imply order.

Chapter 4 ■ SQL Is about Sets

99

It may not seem important to make these seemingly small distinctions in how you think, but these small shifts
are fundamental to understanding SQL correctly. Let’s look at an example of writing a SQL statement taking both a
procedural thinking approach and a set-based approach to help clarify the distinctions between the two.

Procedural vs. Set-Based Thinking: An Example
In this example, the task is to compute an average number of days between orders for a customer. Listing 4-2 shows
one way to do this from a procedural thinking approach. To keep the example output shorter, I work with one
customer only, but I could convert this easily to handle all customers.

Listing 4-2.  Procedural Thinking Approach

SQL> -- Show the list of order dates for customer 102
SQL> select customer_id, order_date
 2 from orders
 3 where customer_id = 102 ;
 
 CUSTOMER_ID ORDER_DATE
--------------- -------------------------------
 102 19-NOV-99 06.41.54.696211 PM
 102 14-SEP-99 11.53.40.223345 AM
 102 29-MAR-99 04.22.40.536996 PM
 102 14-SEP-98 09.03.04.763452 AM
SQL>
SQL> -- Determine the order_date prior to the current row’s order_date
SQL> select customer_id, order_date,
 2 lag(order_date,1,order_date)
 3 over (partition by customer_id order by order_date)
 4 as prev_order_date
 5 from orders
 6 where customer_id = 102;
 
 CUSTOMER_ID ORDER_DATE PREV_ORDER_DATE
--------------- -------------------------------- ----------------------------
 102 14-SEP-98 09.03.04.763452 AM 14-SEP-98 09.03.04.763452 AM
 102 29-MAR-99 04.22.40.536996 PM 14-SEP-98 09.03.04.763452 AM
 102 14-SEP-99 11.53.40.223345 AM 29-MAR-99 04.22.40.536996 PM
 102 19-NOV-99 06.41.54.696211 PM 14-SEP-99 11.53.40.223345 AM

Figure 4-2.  The EMP and DEPT sets

Chapter 4 ■ SQL Is about Sets

100

SQL>
SQL> -- Determine the days between each order
SQL> select trunc(order_date) - trunc(prev_order_date) days_between
 2 from
 3 (
 4 select customer_id, order_date,
 5 lag(order_date,1,order_date)
 6 over (partition by customer_id order by order_date)
 7 as prev_order_date
 8 from orders
 9 where customer_id = 102
 10);
 
 DAYS_BETWEEN

 0
 196
 169
 66
SQL>
SQL> -- Put it together with an AVG function to get the final answer
SQL> select avg(trunc(order_date) - trunc(prev_order_date)) avg_days_between
 2 from
 3 (
 4 select customer_id, order_date,
 5 lag(order_date,1,order_date)
 6 over (partition by customer_id order by order_date)
 7 as prev_order_date
 8 from orders
 9 where customer_id = 102
 10);
 
AVG_DAYS_BETWEEN

 107.75
 

This looks pretty elegant, doesn’t it? In this example, I executed several queries one by one to show you how my
thinking follows a step-by-step procedural approach to writing the query. Don’t worry if you’re unfamiliar with the
use of the analytic function LAG; analytic functions are covered in Chapter 8. Briefly, what I’ve done is to read each
order row for customer 102 in order by order_date and, using the LAG function, look back at the prior order row to
get its order_date. When I have both dates—the date for the current row’s order and the date for the previous row’s
order—it’s a simple matter to subtract the two to get the days in between. Last, I use the average aggregate function to
get my final answer.

You can tell that this query is built following a very procedural approach. The best giveaway to knowing the
approach is the way I can walk through several different queries to show how the final result set is built. I can see the
detail as I go along. When you’re thinking in sets, you find that you don’t really care about each individual element.
Listing 4-3 shows the query written using a set-based thinking approach.

Chapter 4 ■ SQL Is about Sets

101

Listing 4-3.  Set-Based Thinking Approach

SQL> select (max(trunc(order_date)) - min(trunc(order_date))) / count(*) as avg_days_between
 2 from orders
 3 where customer_id = 102 ;
 
AVG_DAYS_BETWEEN

 107.75
 

How about that? I really didn’t need anything fancy to solve the problem. All I needed to compute the average days
between orders was the total duration of time between the first and last order, and the number of orders placed. I didn’t
need to go through all that step-by-step thinking as if I was writing a program that would read the data row by row and
compute the answer. I just needed to shift my thinking to consider the problem in terms of the set of data as a whole.

I do not discount the procedural approach completely. There may be times when you have to take that approach
to get the job done. However, I encourage you to shift your thinking. Start by searching for a set-based approach and
move toward a more procedural approach only when and to the degree needed. By doing this, you likely find that you
can come up with simpler, more direct, and often better performing solutions.

Set Operations
Oracle supports four set operators: UNION, UNION ALL, MINUS, and INTERSECT. Set operators combine the results from
two or more SELECT statements to form a single result set. This differs from joins in that joins are used to combine
columns from each joined table into one row. The set operators compare completed rows between the input queries
and return a distinct set of rows. The exception to this is the use of UNION ALL, which returns all rows from both sets,
including duplicates. UNION returns a result set from all input queries with no duplicates. MINUS returns distinct rows
that appear in the first input query result but not in the subsequent ones. INTERSECT returns the distinct rows that
appear in all input queries.

All queries that are used with set operators must conform to the following conditions:

All input queries must retrieve the same number of columns.•	

The data types of each column must match the corresponding column (by order in the •	
column list) for each of the other input queries. It is possible for data types not to match
directly, but only if the data types of all input queries can be converted implicitly to the data
types of the first input query.

The •	 ORDER BY clause may not be used in the individual queries and may only be used at the
end of the query, where it applies to the entire result of the set operation.

Column names are derived from the first input query.•	

Each input query is processed separately and then the set operator is applied. Last, the ORDER BY is applied to the
total result set if one is specified. When using UNION and INTERSECT, the operators are commutative (in other words,
the order of the queries doesn’t matter). However, when using MINUS, the order is important because this set operation
uses the first input query result as the base for comparison with other results. All set operations except for UNION ALL
require that the result set go through a sort/distinct process that means additional overhead to process the query. If
you know that no duplicates ever exist, or you don’t care whether duplicates are present, make sure to use UNION ALL.

UNION and UNION ALL
UNION and UNION ALL are used when the results of two or more separate queries need to be combined to provide a
single, final result set. Figure 4-3 uses Venn diagrams to show how the result set for each type can be visualized.

Chapter 4 ■ SQL Is about Sets

102

The UNION set operation returns the results of both queries but removes duplicates whereas the UNION ALL
returns all rows including duplicates. As mentioned previously, in cases when you need to eliminate duplicates, use
UNION. But, when either you don’t care if duplicates exist or you don’t expect duplicates to occur, choose UNION ALL.
Using UNION ALL has a less resource-intensive footprint than using UNION because UNION ALL does not have to do any
processing to remove duplicates. This processing can be quite expensive in terms of both resources and response time
to complete. Prior to Oracle version 10, a sort operation was used to remove duplicates. Beginning with version 10, an
option to use a HASH UNIQUE operation to remove duplicates is available. The HASH UNIQUE doesn’t sort, but uses hash
value comparisons instead. I mention this to make sure you realize that even if the result set appears to be in sorted
order, the result set is not guaranteed to be sorted unless you explicitly include an ORDER BY clause. UNION ALL avoids
this “distincting” operation entirely, so it is best to use it whenever possible. Listing 4-4 shows examples of using UNION
and UNION ALL.

Listing 4-4.  UNION and UNION ALL Examples

SQL> CREATE TABLE table1 (
 2 id_pk INTEGER NOT NULL PRIMARY KEY,
 3 color VARCHAR(10) NOT NULL);
SQL> CREATE TABLE table2 (
 2 id_pk INTEGER NOT NULL PRIMARY KEY,
 3 color VARCHAR(10) NOT NULL);
SQL> CREATE TABLE table3 (
 2 color VARCHAR(10) NOT NULL);
SQL> INSERT INTO table1 VALUES (1, 'RED');
SQL> INSERT INTO table1 VALUES (2, 'RED');
SQL> INSERT INTO table1 VALUES (3, 'ORANGE');
SQL> INSERT INTO table1 VALUES (4, 'ORANGE');
SQL> INSERT INTO table1 VALUES (5, 'ORANGE');
SQL> INSERT INTO table1 VALUES (6, 'YELLOW');

Figure 4-3.  Venn diagram for UNION and UNION ALL result sets

4

Chapter 4 ■ SQL Is about Sets

103

SQL> INSERT INTO table1 VALUES (7, 'GREEN');
SQL> INSERT INTO table1 VALUES (8, 'BLUE');
SQL> INSERT INTO table1 VALUES (9, 'BLUE');
SQL> INSERT INTO table1 VALUES (10, 'VIOLET');
SQL> INSERT INTO table2 VALUES (1, 'RED');
SQL> INSERT INTO table2 VALUES (2, 'RED');
SQL> INSERT INTO table2 VALUES (3, 'BLUE');
SQL> INSERT INTO table2 VALUES (4, 'BLUE');
SQL> INSERT INTO table2 VALUES (5, 'BLUE');
SQL> INSERT INTO table2 VALUES (6, 'GREEN');
SQL> COMMIT;
SQL>
SQL> select color from table1
 2 union
 3 select color from table2;
 
COLOR

BLUE
GREEN
ORANGE
RED
VIOLET
YELLOW
 
6 rows selected.
 
SQL> select color from table1
 2 union all
 3 select color from table2;
 
COLOR

RED
RED
ORANGE
ORANGE
ORANGE
YELLOW
GREEN
BLUE
BLUE
VIOLET
RED
RED
BLUE
BLUE
BLUE
GREEN
 
16 rows selected.
 

Chapter 4 ■ SQL Is about Sets

104

SQL> select color from table1;
 
COLOR

RED
RED
ORANGE
ORANGE
ORANGE
YELLOW
GREEN
BLUE
BLUE
VIOLET
 
10 rows selected.
 
SQL> select color from table3;
 
no rows selected
 
SQL> select color from table1
 2 union
 3 select color from table3;
 
COLOR

BLUE
GREEN
ORANGE
RED
VIOLET
YELLOW
 
6 rows selected.
 
SQL> -- The first query will return a differen number of columns than the second
SQL> select * from table1
 2 union
 3 select color from table2;
select * from table1
*
ERROR at line 1:
ORA-01789: query block has incorrect number of result columns
 

These examples demonstrate the UNION of two queries. Keep in mind that you can have multiple queries that are
“unioned” together.

Chapter 4 ■ SQL Is about Sets

105

MINUS
MINUS is used when the results of the first input query are used as the base set from which the other input query
result sets are subtracted to end up with the final result set. The use of MINUS has often been used instead of using NOT
EXISTS (antijoin) queries. The problem being solved is something like, “I need to return the set of rows that exists in
row source A but not in row source B.” Figure 4-4 uses a Venn diagram to show how the result set for this operation can
be visualized.

Figure 4-4.  Venn diagram for MINUS result sets

Listing 4-5 shows examples of using MINUS.

Listing 4-5.  MINUS Examples

SQL> select color from table1
 2 minus
 3 select color from table2;
 
COLOR

ORANGE
VIOLET
YELLOW
 
3 rows selected.
 
SQL> -- MINUS queries are equivalent to NOT EXISTS queries
SQL> select distinct color from table1
 2 where not exists (select null from table2 where table2.color = table1.color) ;
 
COLOR

ORANGE
VIOLET
YELLOW
 
3 rows selected.
 
SQL>
SQL> select color from table2
 2 minus
 3 select color from table1;
 

Chapter 4 ■ SQL Is about Sets

106

no rows selected
 
SQL> -- MINUS using an empty table
SQL> select color from table1
 2 minus
 3 select color from table3;
 
COLOR

BLUE
GREEN
ORANGE
RED
VIOLET
YELLOW
 
6 rows selected. 

INTERSECT
INTERSECT is used to return a distinct set of rows that appear in all input queries. The use of INTERSECT has often been
used instead of using EXISTS (semijoin) queries. The problem being solved is something like, “I need to return the
set of rows from row source A only if a match exists in row source B.” Figure 4-5 uses a Venn diagram to show how the
result set for this operation can be visualized.

Figure 4-5.  Venn diagram for INTERSECT result sets

Listing 4-6 shows examples of using INTERSECT.

Listing 4-6.  INTERSECT Examples

SQL> select color from table1
 2 intersect
 3 select color from table2;
 
COLOR

BLUE
GREEN
RED
 
3 rows selected.
 

Chapter 4 ■ SQL Is about Sets

107

SQL> select color from table1
 2 intersect
 3 select color from table3;
 
no rows selected 

Sets and Nulls
You often hear the term null value, but in truth, a null isn’t a value at all. A null is, at best, a marker. I always think of
null as meaning “I don’t know.” The SQL language handles nulls in unintuitive ways—at least from my point of view;
results from their use are often not what I expect in terms of real-world functionality.

IS THE TERM NULL VALUE WRONG?

Strictly speaking, a null is not a value, but rather is the absence of a value. However, the term null value is in wide
use. Work in SQL long enough and you surely encounter someone who pontificates on how wrong it is to use the
term null value.

But is it really wrong to use the term null value?

If you find yourself on the receiving end of such a lecture, feel free to argue right back. The term null value is
widely used in both the ANSI and ISO editions of the SQL standard. Null value is an official part of the description
of the SQL language and thus is fair game for use when discussing the language.

Keep in mind, though, that there is a distinction to be drawn between the SQL language and relational theory.
A really picky person can argue for the use of “null value” when speaking of SQL, and yet argue against that very
same term when speaking of relational theory, on which SQL is loosely based.

NULLs and Unintuitive Results
Listing 4-7 shows a simple query for which I expect a certain result set but end up with something different than my
expectations. I expect that if I query for the absence of a specific value and no matches are found, including when the
column contains a null, Oracle should return that row in the result set.

Listing 4-7.  Examples Using NULL

SQL> -- select all rows from emp table
SQL> select * from scott.emp ;
 
 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
------- ---------- --------- ------- --------- ------ ------ -------
 7369 SMITH CLERK 7902 17-DEC-80 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
 7566 JONES MANAGER 7839 02-APR-81 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
 7782 CLARK MANAGER 7839 09-JUN-81 2450 10

Chapter 4 ■ SQL Is about Sets

108

 7788 SCOTT ANALYST 7566 19-APR-87 3000 20
 7839 KING PRESIDENT 17-NOV-81 5000
 7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
 7876 ADAMS CLERK 7788 23-MAY-87 1100 20
 7900 JAMES CLERK 7698 03-DEC-81 950 30
 7902 FORD ANALYST 7566 03-DEC-81 3000 20
 7934 MILLER CLERK 7782 23-JAN-82 1300 10
 
14 rows selected.
 
SQL> -- select only rows with deptno of 10, 20, 30
SQL> select * from scott.emp where deptno in (10, 20, 30) ;
 
 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
------- ---------- --------- ------- --------- ------ ------ -------
 7369 SMITH CLERK 7902 17-DEC-80 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
 7566 JONES MANAGER 7839 02-APR-81 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
 7782 CLARK MANAGER 7839 09-JUN-81 2450 10
 7788 SCOTT ANALYST 7566 19-APR-87 3000 20
 7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
 7876 ADAMS CLERK 7788 23-MAY-87 1100 20
 7900 JAMES CLERK 7698 03-DEC-81 950 30
 7902 FORD ANALYST 7566 03-DEC-81 3000 20
 7934 MILLER CLERK 7782 23-JAN-82 1300 10
 
13 rows selected.
 
SQL> -- select only rows with deptno not 10, 20, 30
SQL> select * from scott.emp where deptno not in (10, 20, 30) ;
 
no rows selected
 
SQL> -- select only rows with deptno not 10, 20, 30 or null
SQL> select * from scott.emp where deptno not in (10, 20, 30)
 2 or deptno is null;
 
 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
------- ---------- --------- ------- --------- ------ ------ -------
 7839 KING PRESIDENT 17-NOV-81 5000
 
1 row selected.
 

This listing demonstrates what is frustrating to me about nulls: They don’t get included unless specified
explicitly. In my example, 13 of the 14 rows in the table have deptno 10, 20, or 30. Because there are 14 total rows in the
table, I expect a query that asks for rows that do not have a deptno of 10, 20, or 30 to then show the remaining one row.
But, I’m wrong in expecting this, as you can see from the results of the query. If I include explicitly the condition also
to include where deptno is null, I get the full list of employees that I expect.

Chapter 4 ■ SQL Is about Sets

109

I realize what I’m doing when I think this way is considering nulls to be “low values.” I suppose it’s the old
COBOL programmer in me that remembers the days when LOW-VALUES and HIGH-VALUES were used. I also suppose
that my brain wants to make nulls equate with an empty string. But, no matter what my brain wants to make of them,
nulls are nulls. Nulls do not participate in comparisons. Nulls can’t be added, subtracted, multiplied, or divided by
anything. If they are, the return value is null. Listing 4-8 demonstrates this fact about nulls and how they participate in
comparisons and expressions.

Listing 4-8.  NULLs in Comparisons and Expressions

SQL> select * from scott.emp where deptno is null ;
 
 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
------- ---------- --------- ------- --------- ------ ------ -------
 7839 KING PRESIDENT 17-NOV-81 5000
 
1 row selected.
 
SQL>
SQL> select * from scott.emp where deptno = null ;
 
no rows selected
 
SQL> select sal, comm, sal + comm as tot_comp
 2 from scott.emp where deptno = 30;
 
 SAL COMM TOT_COMP
------ ------ ---------------
 1600 300 1900
 1250 500 1750
 1250 1400 2650
 2850
 1500 0 1500
 950
 
6 rows selected.
 

So, when my brain wants rows with a null deptno to be returned in the query from Listing 4-7, I have to remind
myself that when a comparison is made with a null, the answer is always “I don’t know.” It’s the same as you asking me
if there is orange juice in your refrigerator and me answering, “I don’t know.” You might have orange juice there or you
might not, but I don’t know. So, I can’t answer in any different way and be truthful.

The relational model is based on two-value logic (TRUE, FALSE), but the SQL language allows three-value logic
(TRUE, FALSE, UNKNOWN)—and this is where the problem comes in. With that third value in the mix, your SQL returns
the “correct” answer as far as how three-value logic considers the comparison, but the answers may not be correct in
terms of what you expect in the real world. In the example in Listing 4-8, the answer of “no rows selected” is correct in
that, because one deptno column contains a null, you can’t know one way or the other if the column might possibly
be something other than 10, 20, or 30. To answer truthfully, the answer has to be UNKNOWN. It’s just like me knowing
whether you have orange juice in your refrigerator!

So, you have to make sure you keep the special nature of nulls in mind when you write SQL. If you’re not vigilant
in watching out for nulls, you’ll very likely have SQL that returns the wrong answer. At least it is wrong as far as the
answer you expect.

Chapter 4 ■ SQL Is about Sets

110

NULL Behavior in Set Operations
Set operations treat nulls as if they are able to be compared using equality checks. This is an interesting, and perhaps
unexpected, behavior given the previous discussion. Listing 4-9 shows how nulls are treated when used in set
operations.

Listing 4-9.  NULLs and Set Operations

SQL> select null from dual
 2 union
 3 select null from dual
 4 ;
 
N
-
 
1 row selected.
 
SQL> select null from dual
 2 union all
 3 select null from dual
 4 ;
 
N
-
 
2 rows selected.
 
SQL> select null from dual
 2 intersect
 3 select null from dual;
 
N
-
 
1 row selected.
 
SQL> select null from dual
 2 minus
 3 select null from dual;
 
no rows selected
 
SQL> select 1 from dual
 2 union
 3 select null from dual;
 
 1

 1
2 rows selected.
 

Chapter 4 ■ SQL Is about Sets

111

SQL> select 1 from dual
 2 union all
 3 select null from dual;
 
 1

 1
2 rows selected.
 
SQL> select 1 from dual
 2 intersect
 3 select null from dual ;
 
no rows selected
 
SQL> select 1 from dual
 2 minus
 3 select null from dual ;
 
 1

 1
 
1 row selected.
 

In the first example, when you have two rows with nulls that are “unioned,” you end up with only one row, which
implies that the two rows are equal to one another and, therefore, when the union is processed, the duplicate row is
excluded. As you can see, the same is true for how the other set operations behave, so keep in mind that set operations
treat nulls as equals.

NULLs and GROUP BY and ORDER BY
Just as in set operations, the GROUP BY and ORDER BY clauses process nulls as if they are able to be compared using
equality checks. Notice that with both grouping and ordering, nulls are always placed together, just like known values.
Listing 4-10 shows an example of how nulls are handled in the GROUP BY and ORDER BY clauses.

Listing 4-10.  NULLs and GROUP BY and ORDER BY

SQL> select comm, count(*) ctr
 2 from scott.emp
 3 group by comm ;
 
 COMM CTR
------ ---------------
 10
 1400 1
 500 1
 300 1
 0 1
5 rows selected.

Chapter 4 ■ SQL Is about Sets

112

SQL> select comm, count(*) ctr
 2 from scott.emp
 3 group by comm
 4 order by comm ;
 
 COMM CTR
------ ---------------
 0 1
 300 1
 500 1
 1400 1
 10
5 rows selected.
SQL> select comm, count(*) ctr
 2 from scott.emp
 3 group by comm
 4 order by comm
 5 nulls first ;
 
 COMM CTR
------ ---------------
 10
 0 1
 300 1
 500 1
 1400 1
5 rows selected.
 
SQL> select ename, sal, comm
 2 from scott.emp
 3 order by comm, ename ;
 
ENAME SAL COMM
---------- ------ ------
TURNER 1500 0
ALLEN 1600 300
WARD 1250 500
MARTIN 1250 1400
ADAMS 1100
BLAKE 2850
CLARK 2450
FORD 3000
JAMES 950
JONES 2975
KING 5000
MILLER 1300
SCOTT 3000
SMITH 800
 
14 rows selected.
 

Chapter 4 ■ SQL Is about Sets

113

The first two examples show the behavior of nulls within a GROUP BY clause. Because the first query returns the
result in what appears to be descending sorted order by the comm column, I want to issue the second query to make a
point that I made earlier in the book: The only way to ensure order is to use an ORDER BY clause. Just because the first
query result appears to be in a sorted order doesn’t mean it is. When I add the ORDER BY clause in the second query,
the null group moves to the bottom. In the last ORDER BY example, note that the nulls are displayed last. This is not
because nulls are considered to be “high values”; it is because the default for ordered sorting is to place nulls last. If
you want to display nulls first, you simply add the clause NULLS FIRST after your ORDER BY clause, as shown in the
third example.

NULLs and Aggregate Functions
This same difference in the treatment of nulls with some operations such as set operations, grouping, and ordering
also applies to aggregate functions. When nulls are present in columns that have aggregate functions such as SUM,
COUNT, AVG, MIN, or MAX applied to them, they are removed from the set being aggregated. If the set that results is
empty, then the aggregate returns a null.

An exception to this rule involves the use of the COUNT aggregate function. The handling of nulls depends on
whether the COUNT function is formulated using a column name or a literal (such as * or 1). Listing 4-11 demonstrates
how aggregate functions handle nulls.

Listing 4-11.  NULLs and Aggregate Functions

SQL> select count(*) row_ct, count(comm) comm_ct,
 2 avg(comm) avg_comm, min(comm) min_comm,
 3 max(comm) max_comm, sum(comm) sum_comm
 4 from scott.emp ;
 
 ROW_CT COMM_CT AVG_COMM MIN_COMM MAX_COMM SUM_COMM
-------- -------- -------- -------- -------- --------
 14 4 550 0 1400 2200
 
1 row selected.
 

Notice the difference in the value for COUNT(*) and COUNT(comm). Using * produces the answer of 14, which is
the total of all rows, whereas using comm produces the answer of 4, which is only the number of nonnull comm values.
You can also verify easily that nulls are removed prior to the computation of AVG, MIN, MAX, and SUM because all the
functions produce an answer. If nulls aren’t removed, the answers are all null.

Summary
Thinking in sets is a key skill to master to write SQL that is easier to understand and that typically performs better
than SQL written from a procedural approach. When you think procedurally, you attempt to force the SQL language,
which is nonprocedural, to function in ways it shouldn’t need to function. In this chapter, we examined these
two approaches and discussed how to begin to shift your thinking from procedural to set based. As you proceed
through the rest of the book, work to keep a set-based approach in mind. If you find yourself thinking row by row in a
procedural fashion, stop and check yourself. The more you practice, the easier it becomes.

115

Chapter 5

It’s about the Question

“It’s not about the query; it’s about the question.” This is one of my favorite sayings when it comes to writing SQL.
Regardless of your level of proficiency, writing SQL well is as much about questions as it is about queries.

There are many ways that questions play an important role when writing SQL. First, understanding the question
behind the query is often more important than the query syntax itself. If you start with the question the SQL is
intended to answer, you are more likely to think through and understand how best to formulate the query to get the
desired result. Second, it is critical to be able to ask good questions to clarify what the SQL is intended to do, and to
gather all the pertinent information you need to write SQL that is not only functionally correct, but also efficient. Last,
you must be able to create well-formed logical expressions that help answer the questions behind the SQL.

In this chapter, I cover how to go about ferreting out all the information you need to write the query in the best
way possible. The way you do this is by asking good questions. Regardless of whether you are writing a new SQL
statement or modifying an existing one, questions are the heart of the process.

Asking Good Questions
Asking good questions is an intellectual habit, and habits don’t form overnight. Long ago, I read that it takes between
21 days and 28 days to form a new habit. However, a 2009 research study published in the European Journal of Social
Psychology1 suggests that forming new habits actually takes an average of 66 days; however, the more complex the
behavior, the longer it takes for that behavior to become a habit. So, if you’re not already in the habit of asking good
questions, it’s important to understand that learning to do so takes specific effort on your part to gain proficiency.

You may be wondering what any of this has to do with writing SQL. I believe knowing how to ask good questions
and, even more specifically, knowing how to ask questions that allow you to determine the correct question your SQL
statement is intended to answer, is a crucial habit you need to form if you really want to elevate your SQL skills to the
next level.

To write any SQL statement, begin with a question you need to answer. The answer is a result set comprised
from one or more rows of data from the tables in your database. As a starting point, you may be given the answer
being sought in the form of a sample report or screen display. At other times, you may be given a more complete
specification for what the query needs to deliver. You shouldn’t be surprised when I tell you that you get weak query
specifications more often than you get strong, detailed ones. No matter how much information you are given about
the queries you need to write, you need to make sure to ask good questions that ensure you have everything you need
to write SQL that does what it is supposed to—and does it quickly and efficiently.

1See www3.interscience.wiley.com/journal/122513384/abstract?CRETRY=1&SRETRY=0, www.telegraph.co.uk/health/
healthnews/5857845/It-takes-66-days-to-form-a-habit.html, and www.spring.org.uk/2009/09/how-long-to-form-a-
habit.php.

http://www3.interscience.wiley.com/journal/122513384/abstract?CRETRY=1&SRETRY=0
http://www.telegraph.co.uk/health/healthnews/5857845/It-takes-66-days-to-form-a-habit.html
http://www.telegraph.co.uk/health/healthnews/5857845/It-takes-66-days-to-form-a-habit.html
http://www.spring.org.uk/2009/09/how-long-to-form-a-habit.php
http://www.spring.org.uk/2009/09/how-long-to-form-a-habit.php

Chapter 5 ■ It’s about the Question

116

The Purpose of Questions
Questions help you clarify the request and help you probe assumptions that either you or the requestor may hold.
Questions also help you to gather evidence and work out the implications or consequences of implementing code in
certain ways. Questions are gold. Well, I suppose you could say that the answers are the gold, but questions are the
tools you need to mine the gold.

To ask questions that get you the information you need to write functionally correct and optimally performing
SQL, you must be able to formulate your questions properly. Regardless of how much you know, or think you know,
about what you’ve been asked to code, it can be helpful to start with a blank slate and ask questions as if you know
nothing. By doing so, you are more likely to reach greater levels of detail and avoid making assumptions.

Many people think that asking questions makes them appear ignorant. I believe questions are a magic tool.
Asking intelligent, well-crafted questions cause people to think. And when someone thinks, the door is open for new
ideas, new answers, and new possibilities to emerge. When you ask people a question, particularly those who want
something from you, you are letting them know you care about what they want and you want to service their request
in the best way possible. Keeping silent out of a fear of looking dumb has more potential to backfire. If you don’t ask
questions and then deliver something that doesn’t satisfy the request effectively, you call more negative attention to
yourself than asking questions ever could.

I want to point out that you should ask questions even if you ask them only to yourself. As odd as this may sound,
if you happen to be in a situation in which there is no good resource at your disposal, you still need to ask questions
and get answers. The answers have to come from research you do, but if you start by preparing a good list of questions,
you can direct your research more clearly.

Categories of Questions
There are many categorizations of questions. Typically, questions are categorized primarily as open or closed. The
category you choose depends on whether you want a longer, detailed answer or a short, limited answer.

Open questions are intended to open a dialogue and help you engage in a conversation. Answers to open
questions usually provide more detail and can’t be answered with a simple yes or no. Questions that begin with What,
How, Who, When, and Why are open questions. Just be careful when asking Why questions because they may come
across as confrontational. Remember that your questions should be intended to help you get all the detail you need,
but not put anyone on the defensive. For example, asking, “Why would anyone ever choose to do it that way?” has a
very different feeling than “What rationale prompted that choice?” Even if you discover something questionable,
or just plain wrong, you can provide feedback directly and may not need to use Why questions very often.

Most of the time, your questions should be aimed at digging out facts. Objective, open questions ask for specific
information and tend to be answered with facts. However, you must take care to make sure you are getting facts and
not opinions. Formulating a question subjectively by asking someone what they think about something elicits a
response that is more subjective. The difference can be a critical one.

Some open questions are intended to get responses to help you get ideas—in particular, ideas about actions you
should take. These are problem-solving questions. These types of questions are great to aid in brainstorming different
approaches to take. Your colleagues are great people sources for the answers to these types of questions. After you
have the detail you need, don’t hesitate to bounce things off other developers. They often offer solutions you never
would have thought of.

The two most common types of questions you should ask when developing SQL are objective and
problem-solving questions. Here are a few examples:

What is the data model and is a data dictionary or entity relationship diagram (ERD) available?•	

How have other related queries, if any, been written?•	

Who is the subject matter expert for this application?•	

What are the response time requirements for this query?•	

Chapter 5 ■ It’s about the Question

117

How would you implement the request?•	

What steps should I take next?•	

What resources do you suggest I review?•	

If you need a yes or no response or just a short answer, closed questions suit that purpose best. Questions that
begin with Are, Can, Did, or Do elicit short, direct responses. These types of questions should not be ambiguous. You
want to make sure you ask the question so that you don’t end up getting a long response if all you really want is a yes
or no. These kinds of questions are intended to prevent or inhibit long discussions.

Closed questions can be separated into three types: identification, selection, and yes/no. When you use an
identification-type question, you want to know a specific answer but don’t provide choices. A selection-type question
provides a list of two or more choices. The yes/no type asks for a simple yes or no response only.

To demonstrate the differences between these three types, I ask the same question in three different ways:

•	 Identification: What kind of table is employees?

•	 Selection: Is the employees table a heap table or an Index-Organized Table (IOT)?

•	 Yes/no: Is the employees table a heap table?

Of these types, the selection type is the one you need to formulate most carefully. In this example, I provided only two
selections: heap and IOT. But what if the table is a clustered table type? If you don’t include that option in the selection
list, you could end up getting a yes/no answer to the original question. The person answering the question might (rudely)
answer with a simple “No,” and then you have to follow up with an identification question to get the answer you need.

Selecting the right type of question is almost as important as the question itself. You want to get the details
needed as expeditiously as possible. So, remember to use closed questions if you want to keep answers short, and to
use open questions if you want to open up a discussion and get more detail. The most common mistake is asking a
closed question when you really want more detail. For example, “Will you tell me about the project?” is technically a
closed question that should return a yes or no answer. Most people have learned to provide a polite response (with
detail) even when asked the wrong type of question. But, it is truly your responsibility to ask the correct type and style
of question to make it easier for the responder to provide you with the appropriate answer.

Questions about the Question
Developing new queries is usually easier than trying to modify a query that someone else has already written. This
is because when you write a brand new query, you don’t have to worry about interpreting the meaning of someone
else’s code. But, what you do have to worry about is the query specification. Regardless of whether it’s detailed,
it’s your job to make sure you code the SQL to deliver the answer to the question you’ve been handed.

Let’s walk through an example of how this process might work. I’ll play the role of business user and you play the
role of application developer. My request is for you to write a query that provides a list of employees who have held
more than one job in the company. I’d like the output to display only the employee_id and a count of how many total
jobs each employee has held. Listing 5-1 shows the query you create to satisfy my request.

Listing 5-1.  List of Employees Who Have Held Multiple Jobs

SQL> desc job_history
 Name Null? Type
 ----------------------------- -------- --------------------
 EMPLOYEE_ID NOT NULL NUMBER(6)
 START_DATE NOT NULL DATE
 END_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 DEPARTMENT_ID NUMBER(4)
 

Chapter 5 ■ It’s about the Question

118

SQL> select employee_id, count(*) job_ct
 2 from job_history
 3 group by employee_id
 4 having count(*) > 1;
 
 EMPLOYEE_ID JOB_CT
--------------- ---------------
 101 2
 176 2
 200 2
 
3 rows selected.
 

Note that we are making an assumption that the job_history table contains the history of all jobs, including the
current ones. Even though this isn't accurate for this dataset, for purposes of this example, we're going to pretend that
it is. So, that was pretty simple, right? You complete your testing and deliver this code. However, I come back to you
and say it’s wrong. The list is missing some employees who have held more than one job. I produced this list manually
before I came to seek your help, and I know that the following list of employees should be displayed: 101, 102, 114,
122, 176, 200, and 201.

What went wrong? This seems like a fairly simple query, doesn’t it? It went wrong because the solution was
developed without any questions being asked. By not asking questions, you made some assumptions (regardless of
whether you realized it). The assumptions you made caused you to write the query as you did. The way you wrote
the query didn’t provide the result I expected. Admittedly, I could have helped you out more by giving you a more
detailed specification or by providing you with the expected result set initially. Regardless of the quality of the query
specification you have, never forget that it is your job to ferret out the details and make sure you develop code that
answers specifically the real question being asked.

Let’s start over. The query specification I provided asked you to write a query that provides a list of employees
who have held more than one job in the company, displaying the employee_id and a count of how many total jobs
they’ve held. Although at first glance the query request seems straightforward, the apparent simplicity hides several
nuances that you can’t be aware of unless you ask some questions. The following list includes a few questions you
could ask to help clarify the request:

Should the query consider the employee’s current job as part of the count or only jobs held •	
other than the current position?

Where are the data that satisfy the request stored (in other words, in one table or several)?•	

What is the data model and can I get a copy of the data dictionary or an ERD if one exists?•	

Is there an expected typical size of the result set?•	

How are the data stored? In particular, are they stored in some sorted order or not? •	

Must this query meet any response time SLA?•	

How frequently will the query execute?•	

If you receive a request from a business user, it might not be feasible to ask him or her all these questions. Asking
a business user about which tables contain the data he or she wants or whether you can get a copy of the ERD might
be answered with blank stares, because these things aren’t typically in the domain of the business user’s knowledge.
It is important to note whether the request for the query is coming from an application user or an application technical
architect. Many of these questions can be answered only by someone with an understanding of the application
from the technical perspective. Therefore, learn who the “go-to” people are when you need to get detailed technical
information. This may be the database administrator (DBA), the data architect, or perhaps a developer who worked

Chapter 5 ■ It’s about the Question

119

initially on other code in this particular application. Over time, you build the knowledge you need to determine many
of these answers for yourself, but it’s always good to know who the subject matter experts are for any application
you support.

Getting answers to the first three questions in the previous list are the most important, initially. You must know
more than just a description of what the query needs to ask for. Being as familiar as possible with the data model is the
starting point. When writing the original query, an assumption was made that the only table containing information
needed to satisfy the query was the job_history table. If you had asked the first three questions, you’d have found
out that the job_history table is truly a history table; it only contains historical data, not current data. The employees
table contains a job_id column that holds the employees’ current position information. Therefore, to determine how
many positions an employee has held, you need to get their current job from the employees table and their previous
jobs from the job_history table. With this information, you might rewrite the query as shown in Listing 5-2.

Listing 5-2.  The Rewritten Employee Jobs Query

SQL> select employee_id, count(*) job_ct
 2 from
 3 (
 4 select e.employee_id, e.job_id
 5 from employees e
 6 union all
 7 select j.employee_id, j.job_id
 8 from job_history j
 9)
 10 group by employee_id
 11 having count(*) > 1;
 
 
 EMPLOYEE_ID JOB_CT
--------------- ---------------
 102 2
 201 2
 101 3
 114 2
 200 2
 176 2
 122 2
 
7 rows selected.
 

It looks like the answer is correct now. It’s at this point that the answers to the next questions come in to play.
Knowing what to ask for is certainly important, and the first three questions helped me describe the data the query
needed to return. Most people would stop here. However, knowing how to get the data I’m after is just as important.
This is contrary to what most of us are taught about relational databases in general. In one of my college courses on
RDBMSs, I was taught that SQL is used to access data. There is no requirement that I need to know anything about
where or how the data are stored or how the RDBMS processes a SQL statement to access that data. In other words,
SQL is used to describe what is done, not how it is done.

The reality is that knowing how your data are stored and accessed is just as important as describing the data
your query retrieves. Let’s say you need to book a trip from Washington, DC, to Los Angeles, California. You call your
travel agent to handle the booking for you. If the only information you provide to the agent is your departure and
arrival cities and that you want the least expensive fare possible, what could happen? Well, it’s possible that the least
expensive fare involves leaving at 5:30 am from Washington, DC, then making stopovers in Atlanta, Chicago, and
Dallas before finally connecting into Los Angeles at midnight (Los Angeles time, which means it would be 3 am in DC

Chapter 5 ■ It’s about the Question

120

time). Would that be OK with you? Probably not. Personally, I’d be willing to pay extra to get a direct flight from DC to
Los Angeles. Think about it. If you could get a direct flight leaving from DC at 8 am and arriving into Los Angeles at
10 am, wouldn’t it be worth quite a bit to you vs. making multiple stopovers and spending nearly a full day to complete
the trip? And what if the direct flight cost only 10 percent more than the nightmare flight? Your original request to
book the least expensive fare didn’t include any conditions under which you’d be willing to pay more, so your request
was satisfied but you probably won’t be happy with the outcome.

Knowing how the data are stored and how they should be accessed ensures your query not only returns the
correct answer, but also does so as quickly and efficiently as possible. That’s why questions like, “How big is the typical
expected result set?” and “How are the data stored?” and “How fast and how frequently do they need to execute?”
must be asked. Without the answers to these questions, your query may get the correct answer but still be a failure
because of poor performance. Simply getting the right result isn’t enough. To be successful, your query must be right
and it must be fast.

Questions about Data
I hope at this point you agree that you do need to concern yourself with how data are stored and how they should
be accessed. Where do you find this information? The database can give you most of the answers you need when
you execute a few simple queries. After you have this information, you then need to determine how data should be
accessed, which comes from understanding how the various access and join methods work and when it is appropriate
to use each. I’ve already covered access and join methods, so you’ve got the information you need to help you there,
but how do you discover how the data are stored? Let’s walk through the questions you need to ask and queries you
can execute to get the answers.

As a first step, try to think like the optimizer. The optimizer needs statistics and instance parameter values to
be able to compute a plan. Therefore, it’s a good idea for you to put yourself in the optimizer’s place and gather the
information to help formulate the execution plan. Always seek out the answers to the following questions about the
data:

Which tables are needed to gather all the data required?•	

Are any of the tables partitioned and, if so, how are the partitions defined?•	

What columns are in each table?•	

What indexes are available in each table?•	

What are the statistics for each table, column, and index?•	

Are there histograms on any of the columns?•	

Statistics help the optimizer paint a picture of how the various ways of accessing and joining data perform. You
can know what the optimizer knows. All you need to be able to do is query the information from the data dictionary.
One thing to keep in mind when you’re reviewing statistics is that statistics may or may not represent your data
accurately. If the statistics are stale, missing, or poorly collected, it’s possible they may paint the wrong picture. The
optimizer can only know what the statistics tell it. You, on the other hand, have the ability to determine whether the
statistics make sense. For example, if a date column in one of your tables has a high value of six months ago, you can
see this quickly and know that rows exist with current date values. This visual inspection can help you determine
whether statistics need to be updated, but you can’t know these kinds of things unless you look. A key question you
must always ask is whether the statistics represent your data accurately. Listing 5-3 uses a single script named
st-all.sql (previously used in Chapter 2) to answer each of the questions listed previously in one simple script.
The script gives you a single source to review to verify how representative the available statistics really are.

Chapter 5 ■ It’s about the Question

121

Listing 5-3.  Getting All the Statistics Information You Need

SQL> @st-all
Enter the owner name: sh
Enter the table name: sales
==
 TABLE STATISTICS
==
Owner : sh
Table name : sales
Tablespace : EXAMPLE
Partitioned : yes
Last analyzed : 05/31/2013 20:17:03
Sample size : 918843
Degree : 1
Rows : 918843
Blocks : 1769
Empty Blocks : 0
 
Avg Space : 0
Avg Row Length: 29
Monitoring? : yes
==
 PARTITION INFORMATION
==
 Part# Partition Name Sample Size # Rows # Blocks
------ --------------- --------------- --------------- ---------------
 1 SALES_1995 . 0 0
 2 SALES_1996 . 0 0
 3 SALES_H1_1997 . 0 0
 4 SALES_H2_1997 . 0 0
 5 SALES_Q1_1998 43687 43687 90
...
 28 SALES_Q4_2003 . 0 0
 
 Part# Partition Name Partition Bound
------ --------------- ---
 1 SALES_1995 TO_DATE(' 1996-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', ...
 2 SALES_1996 TO_DATE(' 1997-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', ...
 3 SALES_H1_1997 TO_DATE(' 1997-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', ...
 4 SALES_H2_1997 TO_DATE(' 1998-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', ...
 5 SALES_Q1_1998 TO_DATE(' 1998-04-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', ...
...
 28 SALES_Q4_2003 TO_DATE(' 2004-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', ...
==
 COLUMN STATISTICS
==
 Name Null? NDV Density # Nulls # Bkts AvgLen Lo-Hi Values
==
amount_sold N 3586 .000279 0 1 5 6.4 | 1782.72
channel_id N 4 .250000 0 1 3 2 | 9
cust_id N 7059 .000142 0 1 5 2 | 101000

Chapter 5 ■ It’s about the Question

122

prod_id N 72 .000001 0 72 4 13 | 148
promo_id N 4 .000001 0 4 4 33 | 999
quantity_sold N 1 1.000000 0 1 3 1 | 1
time_id N 1460 .000685 0 1 8 01/01/1998 00:00:00 |
 12/31/2001 00:00:00
 
==
 HISTOGRAM STATISTICS Note: Only columns with buckets containing > 5% are shown.
==
 
PROMO_ID (4 buckets)
1 97%
 
==
 INDEX INFORMATION
==
 
Index Name Dstnct Lf/Blks Dt/Blks Cluf Unq? Type Part?
 BLevel Lf Blks # Rows Keys /Key /Key
------------------ ------- ------- ------ ------ ------- ------- ----- ---- ---- -----
SALES_CHANNEL_BIX 1 47 92 4 11 23 92 NO BITM YES
SALES_CUST_BIX 1 475 35808 7059 1 5 35808 NO BITM YES
SALES_PROD_BIX 1 32 1074 72 1 14 1074 NO BITM YES
SALES_PROMO_BIX 1 30 54 4 7 13 54 NO BITM YES
SALES_TIME_BIX 1 59 1460 1460 1 1 1460 NO BITM YES
 
Index Name Pos# Order Column Name
------------------------------ ---------- ----- ------------------------------
sales_channel_bix 1 ASC channel_id
 
sales_cust_bix 1 ASC cust_id
 
sales_prod_bix 1 ASC prod_id
 
sales_promo_bix 1 ASC promo_id
 
sales_time_bix 1 ASC time_id
 
==
 PARTITIONED INDEX INFORMATION
==
 
Index: SALES_CHANNEL_BIX
 Dst LfBlk DtBlk
Part# Partition Name BLevel LfBlks # Rows Keys /Key /Key CluF Partition Bound
----- --------------- ------ ------ ------ ---- ---- ---- ---- ----------------------
 1 SALES_1995 0 0 0 0 0 0 0 TO_DATE('1996-01-01...
 2 SALES_1996 0 0 0 0 0 0 0 TO_DATE('1997-01-01...
 3 SALES_H1_1997 0 0 0 0 0 0 0 TO_DATE('1997-07-01...
 4 SALES_H2_1997 0 0 0 0 0 0 0 TO_DATE('1998-01-01...
 5 SALES_Q1_1998 1 2 5 4 1 1 5 TO_DATE('1998-04-01...
...

Chapter 5 ■ It’s about the Question

123

 28 SALES_Q4_2003 0 0 0 0 0 0 0 TO_DATE('2004-01-01...

Index: SALES_CUST_BIX

 1 SALES_1995 0 0 0 0 0 0 0 TO_DATE('1996-01-01...
 2 SALES_1996 0 0 0 0 0 0 0 TO_DATE('1997-01-01...
 3 SALES_H1_1997 0 0 0 0 0 0 0 TO_DATE('1997-07-01...
 4 SALES_H2_1997 0 0 0 0 0 0 0 TO_DATE('1998-01-01...
 5 SALES_Q1_1998 1 28 3203 3203 1 1 3203 TO_DATE('1998-04-01...
...
 28 SALES_Q4_2003 0 0 0 0 0 0 0 TO_DATE('2004-01-01...

Index: SALES_PROD_BIX

 1 SALES_1995 0 0 0 0 0 0 0 TO_DATE('1996-01-01...
 2 SALES_1996 0 0 0 0 0 0 0 TO_DATE('1997-01-01...
 3 SALES_H1_1997 0 0 0 0 0 0 0 TO_DATE('1997-07-01...
 4 SALES_H2_1997 0 0 0 0 0 0 0 TO_DATE('1998-01-01...
 5 SALES_Q1_1998 1 2 60 60 1 1 60 TO_DATE('1998-04-01...
...
 28 SALES_Q4_2003 0 0 0 0 0 0 0 TO_DATE('2004-01-01...

Index: SALES_PROMO_BIX

 1 SALES_1995 0 0 0 0 0 0 0 TO_DATE('1996-01-01...
 2 SALES_1996 0 0 0 0 0 0 0 TO_DATE('1997-01-01...
 3 SALES_H1_1997 0 0 0 0 0 0 0 TO_DATE('1997-07-01...
 4 SALES_H2_1997 0 0 0 0 0 0 0 TO_DATE('1998-01-01...
 5 SALES_Q1_1998 0 1 3 2 1 1 3 TO_DATE('1998-04-01...
...
 28 SALES_Q4_2003 0 0 0 0 0 0 0 TO_DATE('2004-01-01...

Index: SALES_TIME_BIX

 1 SALES_1995 0 0 0 0 0 0 0 TO_DATE('1996-01-01...
 2 SALES_1996 0 0 0 0 0 0 0 TO_DATE('1997-01-01...
 3 SALES_H1_1997 0 0 0 0 0 0 0 TO_DATE('1997-07-01...
 4 SALES_H2_1997 0 0 0 0 0 0 0 TO_DATE('1998-01-01...
 5 SALES_Q1_1998 1 3 90 90 1 1 90 TO_DATE('1998-04-01...
...
 27 SALES_Q3_2003 0 0 0 0 0 0 0 TO_DATE('2003-10-01...
 28 SALES_Q4_2003 0 0 0 0 0 0 0 TO_DATE('2004-01-01...
 

With this information, you can answer almost any question about the data. It is best if these statistics are
from your production database, where the SQL you are writing is executed. If your development database doesn’t
have a copy of the production statistics, it’s a good idea to request that the production stats be imported into the
development database so that the optimizer is formulating plans based on information that is as close to production
as possible. Even if the data don’t match, remember that it’s the statistics that the optimizer uses to determine
the plan.

Now that you’ve obtained the statistics, you can use the information to ask, and answer, questions about what
you expect the optimizer to do with your SQL. For example, if you were writing a query that needed to return all sales
data for a specified customer (cust_id), you might want to know how many rows the optimizer estimates the query

Chapter 5 ■ It’s about the Question

124

to return. With the statistics information you have queried, you could compute the number of rows estimated to be
returned by the query to be 130 (918,843 total rows × 1/7059 distinct values). You can see there is an index on cust_id,
so the proper access operation to use to satisfy the query should be the SALES_CUST_BIX index. When you execute the
query, you can verify this operation is selected by checking the execution plan.

In Chapter 3, I discussed the index statistic called clustering factor. This statistic helps the optimizer compute
how many blocks of data are accessed. Basically, the closer the clustering factor is to the number of blocks in the table,
the fewer the estimated number of blocks to be accessed when using the index. The closer the clustering factor is to
the number of rows in the table, the greater the estimated number of blocks. The fewer blocks to be accessed, the
lower the cost of using that index and the more likely it is that the optimizer chooses that index for the plan. Therefore,
you can check this statistic to determine how favorable the index will appear. Listing 5-4 shows the clustering factor
statistics for the SALES table.

Listing 5-4.  Index clustering_factor

SQL> select t.table_name||'.'||i.index_name idx_name,
 2 i.clustering_factor, t.blocks, t.num_rows
 3 from user_indexes i, user_tables t
 4 where i.table_name = t.table_name
 5 and t.table_name = 'SALES'
 6 order by t.table_name, i.index_name;
 
IDX_NAME Clustering Factor # Blocks # Rows
------------------------ ----------------- --------------- ---------------
SALES.SALES_CHANNEL_BIX 92 1769 918843
SALES.SALES_CUST_BIX 35808 1769 918843
SALES.SALES_PROD_BIX 1074 1769 918843
SALES.SALES_PROMO_BIX 54 1769 918843
SALES.SALES_TIME_BIX 1460 1769 918843
 
5 rows selected.
 

In this case, the clustering factors for all the indexes for the SALES table have a low value (in other words, closer to
the number of blocks in the table). This is a good indication that when the optimizer computes the cost of using these
indexes, they are not weighted too heavily based on the estimated number of blocks they return if used.

In addition to using statistics, you can execute actual queries against the tables to get an idea of the data and
number of rows to be accessed or returned from a single table. Regardless of how complex a statement is, you can do
just what the optimizer does and break down the statement into single table accesses. For each table involved, simply
execute one or more queries to count and review the data to be returned using the filter conditions your SQL uses.
Always think “divide and conquer.” Breaking down a statement into small increments helps you understand how best
to put it together in the most efficient way to arrive at the final result.

Building Logical Expressions
When you understand the question that the statement you are writing needs to answer, you have to be able to build
the SQL to provide the answer. There are often many possible ways to express the same predicate logic. Being able to
formulate the conditions in a way that is easy to read and efficient requires you to think in ways you may not be used
to. Remember when I discussed the idea of thinking in sets vs. thinking procedurally in Chapter 4? There is a similar
thought shift you may need to make to be able to build predicates for your SQL statements most efficiently.

The key is to learn some good Boolean logic techniques so that you don’t have to rely on only one way to
express conditional logic. You may find that using Boolean logic expressions always produces the most efficient

Chapter 5 ■ It’s about the Question

125

plan operation choices (make sure to test alternatives thoroughly), but it’s good to know how to formulate different
alternatives so you aren’t stuck with a single way to do things.

When I say conditional logic, I mean an expression something like, “if X then Y” where X and Y are both
conditions. In a WHERE clause, you might want to have a condition like if :GetAll <> 1 then empno = :empno.
In other words, if the value of the input bind variable named :GetAll is 1, then you want to return all rows, but if
:GetAll is not 1, then only return rows in which empno is equal to the :empno bind variable supplied. A WHERE clause to
express this logic might be coded like this:
 
WHERE empno = CASE WHEN :GetAll <> 1 THEN :empno ELSE empno END
 

This logic works, but it’s a bit counterintuitive to me. Why would you even want to check empno = empno?
There are other problems with this kind of formulation as well. If you need to check multiple columns, then you
need multiple CASE statements. Plus, if empno is null, this check is going to fail, or at the very least give you a result you
don’t expect.

The key is to change this expression to use a regular Boolean expression that uses only AND, OR, and NOT so that
your “if X then Y” condition is translated to “(Not X) or Y,” which becomes the following:
 
WHERE (:GetAll = 1) OR (empno = :empno)
 

What you are covering with this expression is that if :GetAll = 1, then you don’t even want to bother with
checking any more of the expression. Always remember that when using an OR condition, if one condition evaluates
to TRUE, then the whole expression is TRUE. There is no need to check the remaining expression. This “short-circuit”
mechanism can save time by not requiring some of the code path to be evaluated, which means you won’t burn as
many CPU cycles overall. Only if the first condition that the optimizer chooses to test evaluates to FALSE would the
other expression need to be evaluated. Regardless of the method you choose, each of the options just discussed
results in the optimizer using a full table scan and filtering the data based on your condition.

Although you’re not looking at expressions involving ANDed conditions in these examples, you can apply similar
thinking to the use of ANDed predicates. When using an AND condition, if the first condition evaluates to FALSE, then
the whole expression is FALSE. There is no need to evaluate the second expression because both conditions must
evaluate to TRUE for the whole condition to be TRUE. So, when you’re using AND conditions, it’s a good idea to write
the condition so the expression that is most likely to evaluate to FALSE is placed first. Doing so allows the second
expression evaluation to be short-circuited with similar savings as noted when placing a TRUE expression first in an
OR condition. In reality, the cost-based optimizer evaluates and determines the order in which the conditions are
evaluated. When you write the conditions in a certain order, you are simply helping yourself define your expectations
of what should happen.

A similar way of approaching this type of conditional expression is to use a single bind variable instead of two.
In this case, you would say “if X is not null then Y = X.” This becomes as follows:
 
WHERE empno = NVL(:empno, empno)
 

This is basically the same as writing the CASE expression from the earlier example and can be converted to the
following:
 
WHERE (:empno is null) OR (empno = :empno)
 

In both these cases, the optimizer may have a bit of a dilemma with determining the optimal plan. The reason
is that if the binds you use cause the comparison to end up returning all rows, then the plan operation best suited
for that would likely be a full table scan. However, if you specify binds that end up limiting the result set, an index
scan might be best. Because you’re using bind variables, each time you execute the query, the input bind values
could change. So, the optimizer has to choose a plan that covers both situations. Most likely, you end up with a full
table scan. Listings 5-5 and 5-6 demonstrate one scenario for each of the similar alternatives I covered and show the
execution plan output for each.

Chapter 5 ■ It’s about the Question

126

Listing 5-5.  Using Two Bind Variables to Create a Conditional WHERE Clause

SQL> variable empno number
SQL> variable getall number
SQL>
SQL> exec :empno := 7369;
 
PL/SQL procedure successfully completed.
 
SQL>
SQL> exec :getall := 1;
 
PL/SQL procedure successfully completed.
 
SQL>
SQL> select /* opt1 */ empno, ename from emp
 2 where empno = CASE WHEN :GetAll <> 1 THEN :empno ELSE empno END;
 
 EMPNO ENAME
--------------- ----------
 7369 SMITH
 7499 ALLEN
 7521 WARD
 7566 JONES
 7654 MARTIN
 7698 BLAKE
 7782 CLARK
 7788 SCOTT
 7839 KING
 7844 TURNER
 7876 ADAMS
 7900 JAMES
 7902 FORD
 7934 MILLER
 
14 rows selected.
 
SQL>
SQL> @pln opt1
 
PLAN_TABLE_OUTPUT

SQL_ID gwcmrzfqf8cu2, child number 0

select /* opt1 */ empno, ename from emp where empno = CASE WHEN :GetAll
<> 1 THEN :empno ELSE empno END
 
Plan hash value: 3956160932
 

Chapter 5 ■ It’s about the Question

127

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 14 | 8 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 1 | 14 | 8 |

Predicate Information (identified by operation id):

 1 - filter("EMPNO"=CASE WHEN (:GETALL<>1) THEN :EMPNO ELSE "EMPNO" END)
 
19 rows selected.
 

Listing 5-6.  Using One Bind Variable to Create a Conditional WHERE Clause

SQL> exec :getall := 0;
 
PL/SQL procedure successfully completed.
 
SQL>
SQL> select /* opt5 */ empno, ename from emp
 2 where empno = NVL(:empno, empno);
 
 EMPNO ENAME
--------------- ----------
 7369 SMITH
 
1 row selected.
 
SQL>
SQL> @pln opt5
 
PLAN_TABLE_OUTPUT

SQL_ID 605p3gyjbw82b, child number 0

select /* opt5 */ empno, ename from emp where empno = NVL(:empno, empno)
 
Plan hash value: 1977813858

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

0	SELECT STATEMENT		1		1	2
1	CONCATENATION		1		1	2
* 2	FILTER		1		0	0
3	TABLE ACCESS BY INDEX ROWID	EMP	0	14	0	0
* 4	INDEX FULL SCAN	PK_EMP	0	14	0	0

Chapter 5 ■ It’s about the Question

128

* 5	FILTER		1		1	2
6	TABLE ACCESS BY INDEX ROWID	EMP	1	1	1	2
* 7	INDEX UNIQUE SCAN	PK_EMP	1	1	1	1

Predicate Information (identified by operation id):

 2 - filter(:EMPNO IS NULL)
 4 - filter("EMPNO" IS NOT NULL)
 5 - filter(:EMPNO IS NOT NULL)
 7 - access("EMPNO"=:EMPNO)
 
27 rows selected.
 
SQL>
SQL> select /* opt6 */ empno, ename from emp
 2 where (:empno is null) OR (:empno = empno);
 
 EMPNO ENAME
--------------- ----------
 7369 SMITH
 
1 row selected.
 
SQL>
SQL> @pln opt6
 
PLAN_TABLE_OUTPUT
--
SQL_ID gng6x7nrrrhy9, child number 0

select /* opt6 */ empno, ename from emp where (:empno is null) OR
(:empno = empno)
 
Plan hash value: 3956160932

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 1 | 8 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 2 | 1 | 8 |

Predicate Information (identified by operation id):

 1 - filter((:EMPNO IS NULL OR "EMPNO"=:EMPNO))
 

Note that if you used the format WHERE (:GetAll = 1) OR (empno = :empno) instead, you get the same plan
shown in Listing 5-5. There is no real difference between the two.

Chapter 5 ■ It’s about the Question

129

In this example, note that there is a difference between the plan when you use the first technique of WHERE
empno = NVL(:empno, empno) vs. using WHERE (:empno is null) OR (:empno = empno). For the first example in
Listing 5-5, in which there are two bind variables, notice that the optimizer chooses a full table scan operation. But,
notice what happens when you use only a single variable in Listing 5-6 for the second set of examples. In the second
case, the optimizer uses a CONCATENATION plan for the NVL predicate and full table scan for the Boolean expression.
The CONCATENATION plan is the best in this case because it works such that when the bind variable is null, the plan
executes the INDEX FULL SCAN operation to get all the rows; when the bind variable is not null, the plan executes
the INDEX UNIQUE SCAN operation to get just the one row that is needed. In this way, both options use an optimal
execution path.

In this case, the Boolean logic didn’t give you the best plan, so it’s good to know several alternative ways to
formulate the predicate so you can work to achieve the best possible plan. With this in mind, you actually could have
written the query as shown in Listing 5-7.

Listing 5-7.  Using UNION ALL to Handle Conditional Logic

SQL> select /* opt9 */ empno, ename from emp
 2 where :empno is null
 3 union all
 4 select empno, ename from emp
 5 where :empno = empno;
 
 EMPNO ENAME
--------------- ----------
 7369 SMITH
 
1 row selected.
 
SQL>
SQL> @pln opt9
 
PLAN_TABLE_OUTPUT

SQL_ID ab0juatnpc5ug, child number 0

select /* opt9 */ empno, ename from emp where :empno is null union all
select empno, ename from emp where :empno = empno
 
Plan hash value: 2001993376
 
--
| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |
--
0	SELECT STATEMENT		1		1	2
1	UNION-ALL		1		1	2
* 2	FILTER		1		0	0
3	TABLE ACCESS FULL	EMP	0	14	0	0
4	TABLE ACCESS BY INDEX ROWID	EMP	1	1	1	2
* 5	INDEX UNIQUE SCAN	PK_EMP	1	1	1	1
--
 

Chapter 5 ■ It’s about the Question

130

Predicate Information (identified by operation id):

 2 - filter(:EMPNO IS NULL)
 5 - access("EMPNO"=:EMPNO)
 

Similar to the CONCATENATION plan, in this case you get a plan in which two separate subplans are “unioned”
together to get the result. If the bind variable is null, you get a full scan operation and get all rows returned. When the
bind variable is not null, you get the unique index scan and return only the one row needed. The FILTER operation
acts to determine whether the first subplan should be executed. Notice the Predicate Information section in which
step 2 shows filter(:EMPNO IS NULL), indicating that only if the bind is null does the operation actually happen.

In general, you’ll find that the optimizer is able to make better plan operation choices when AND conditions are
used. As mentioned earlier, this is because an OR condition means there could be two different possible operations
that could be used based on how the expression evaluates. With an AND condition, it is more likely that only a single
choice, or at least choices that are not opposite in nature, are considered. So, if you can figure out a way to formulate
your predicates to use ANDed conditions only, you may find that the SQL produces more efficient plans and is even
easier to maintain.

Also, if you are writing SQL statements inside a larger code body, such as in a PL/SQL procedure, use conditional
constructs in the language and don’t put that logic in the SQL. The simpler you can make your SQL, and the fewer
conditions that have to be handled in the statement directly, the less complexity the optimizer needs to sort through
to determine an optimal plan.

Summary
Questions are an important part of the process of writing good SQL. You begin by understanding the question the
SQL needs to answer, then you follow up by asking questions about the data to formulate a SQL statement that is
functionally correct as well as optimized for performance. The ability to ask good questions is an intellectual habit
that must be developed over time. The more you work to ask questions that clarify and enhance your understanding
of what you need to do, the greater your skills as a writer of high-quality, high-performing SQL become.

131

Chapter 6

SQL Execution Plans

You’ve seen quite a few execution plans in the first chapters of this book, but in this chapter I go into detail about how
to produce and read plans correctly. I’ve built the foundation of knowledge you need to understand the most common
operations you’ll see used in execution plans, but now you need to put this knowledge into practice.

By the end of this chapter, I want you to feel confident that you can break down even the most complex execution
plan and understand how any SQL statement you write is being executed. With the prevalence of development tools
such as SQL Developer, SQL Navigator, and TOAD (just to name a few), which can produce explain plan output (which is
simply the estimated execution plan), it is fairly easy to generate explain plan output. What isn’t as easy is to get execution
plan output. You may be wondering what the difference is between an explain plan and an execution plan. As you’ll see in
this chapter, there can be a significant difference. I’ll walk through the differences between explain plan output and actual
execution plan information. You’ll learn how to compare the estimated plans with the actual plans, and how to interpret
any differences that are present. This is “where the rubber meets the road,” as race car drivers would say.

Explain Plan
The EXPLAIN PLAN statement is used to display the plan operations chosen by the optimizer for a SQL statement.
The first thing I want to clarify is that when you have EXPLAIN PLAN output, you have the estimated execution plan
that should be used when the SQL statement is actually executed. You do not have the actual execution plan and its
associated row-source execution statistics. You have estimates only—not the real thing. Throughout this chapter,
I make the distinction between actual and estimated plan output by referring to estimated information as explain
plan output and calling actual information as execution plan output.

Using Explain Plan
When using EXPLAIN PLAN to produce the estimated execution plan for a query, the output shows the following:

Each of the tables referred to in the SQL statement•	

The access method used for each table•	

The join methods for each pair of joined row sources•	

An ordered list of all operations to be completed•	

A list of predicate information related to steps in the plan•	

For each operation, the estimates for number of rows and bytes manipulated by that step•	

For each operation, the computed cost value•	

If applicable, information about partitions accessed•	

If applicable, information about parallel execution•	

Chapter 6 ■ SQL Execution Plans

132

Listing 6-1 shows how to create and display the explain plan output for a query that joins five tables.

Listing 6-1.  EXPLAIN PLAN Example

SQL> explain plan for
 2 select e.last_name || ', ' || e.first_name as full_name,
 3 e.phone_number, e.email, e.department_id,
 4 d.department_name, c.country_name, l.city, l.state_province,
 5 r.region_name
 6 from hr.employees e, hr.departments d, hr.countries c,
 7 hr.locations l, hr.regions r
 8 where e.department_id = d.department_id
 9 and d.location_id = l.location_id
 10 and l.country_id = c.country_id
 11 and c.region_id = r.region_id;
 
Explained.
 
SQL>select * from table(dbms_xplan.display(format=>'BASIC +COST +PREDICATE'));
 
PLAN_TABLE_OUTPUT
--
Plan hash value: 2352397467

| Id | Operation | Name | Cost (%CPU)|

0	SELECT STATEMENT		3 (0)
1	NESTED LOOPS		
2	NESTED LOOPS		3 (0)
3	NESTED LOOPS		3 (0)
4	NESTED LOOPS		3 (0)
5	NESTED LOOPS		3 (0)
6	TABLE ACCESS FULL	EMPLOYEES	3 (0)
7	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	0 (0)
* 8	INDEX UNIQUE SCAN	DEPT_ID_PK	0 (0)
9	TABLE ACCESS BY INDEX ROWID	LOCATIONS	0 (0)
* 10	INDEX UNIQUE SCAN	LOC_ID_PK	0 (0)
* 11	INDEX UNIQUE SCAN	COUNTRY_C_ID_PK	0 (0)
* 12	INDEX UNIQUE SCAN	REG_ID_PK	0 (0)
13	TABLE ACCESS BY INDEX ROWID	REGIONS	0 (0)

Predicate Information (identified by operation id):

 8 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
 10 - access("D"."LOCATION_ID"="L"."LOCATION_ID")
 11 - access("L"."COUNTRY_ID"="C"."COUNTRY_ID")
 12 - access("C"."REGION_ID"="R"."REGION_ID")
 

Chapter 6 ■ SQL Execution Plans

133

For this example, I used the EXPLAIN PLAN command to generate the explain plan content. I could have used
AUTOTRACE instead to automate the steps to generate a plan so that all you have to do is turn on AUTOTRACE (using
the TRACEONLY EXPLAIN option) and execute a query. The plan is generated and the output is displayed all in one
step. In this example, I use the dbms_xplan.display function to display the output instead (I discuss dbms_xplan in
more detail shortly). When using either method to generate a plan, neither the EXPLAIN PLAN command nor the SET
AUTOTRACE TRACEONLY EXPLAIN option actually executes the query. It only generates the plan that is estimated to be
executed. The development tool you use (SQL Developer, TOAD, and so forth) should also have an option to generate
explain plans. I may be a bit old-fashioned, but I find the text output often easier to read than the semigraphical trees
some of these common development tools use. I don’t particularly need or care to see any little graphical symbols, so
I’m very happy with text output without any of the extra icons and such. But, don’t feel you have to generate explain
plans using these methods if you prefer to use your tool.

The Plan Table
The information you see in explain plan output is generated by the EXPLAIN PLAN command and is stored in a table
named PLAN_TABLE by default. The AUTOTRACE command calls the display function from the supplied package
named dbms_xplan to format the output automatically. I executed the query manually using dbms_xplan when using
EXPLAIN PLAN without turning on AUTOTRACE. For reference, Listing 6-2 shows the table description for the Oracle
version 12c PLAN_TABLE.

Listing 6-2.  PLAN_TABLE

SQL> desc plan_table
 Name Null? Type
 ----------------------------- -------- ------------------
 STATEMENT_ID VARCHAR2(30)
 PLAN_ID NUMBER
 TIMESTAMP DATE
 REMARKS VARCHAR2(4000)
 OPERATION VARCHAR2(30)
 OPTIONS VARCHAR2(255)
 OBJECT_NODE VARCHAR2(128)
 OBJECT_OWNER VARCHAR2(30)
 OBJECT_NAME VARCHAR2(30)
 OBJECT_ALIAS VARCHAR2(65)
 OBJECT_INSTANCE NUMBER(38)
 OBJECT_TYPE VARCHAR2(30)
 OPTIMIZER VARCHAR2(255)
 SEARCH_COLUMNS NUMBER
 ID NUMBER(38)
 PARENT_ID NUMBER(38)
 DEPTH NUMBER(38)
 POSITION NUMBER(38)
 COST NUMBER(38)
 CARDINALITY NUMBER(38)
 BYTES NUMBER(38)
 OTHER_TAG VARCHAR2(255)
 PARTITION_START VARCHAR2(255)
 PARTITION_STOP VARCHAR2(255)
 PARTITION_ID NUMBER(38)
 OTHER LONG

Chapter 6 ■ SQL Execution Plans

134

 OTHER_XML CLOB
 DISTRIBUTION VARCHAR2(30)
 CPU_COST NUMBER(38)
 IO_COST NUMBER(38)
 TEMP_SPACE NUMBER(38)
 ACCESS_PREDICATES VARCHAR2(4000)
 FILTER_PREDICATES VARCHAR2(4000)
 PROJECTION VARCHAR2(4000)
 TIME NUMBER(38)
 QBLOCK_NAME VARCHAR2(30)
 

I’m not going to review every column listed, but I wanted to provide a table description from which you can do
further study if you desire. You can find more information in the Oracle documentation.

The columns from PLAN_TABLE shown in the explain plan output in Listing 6-1 are only a few of the columns from
the table. One of the nice things about the dbms_xplan.display function is that it has intelligence built in so that it
displays the appropriate columns based on the specific plan generated for each SQL statement. For example, if the
plan used partition operations, the PARTITION_START, PARTITION_STOP, and PARTITION_ID columns would appear
in the display. The ability of dbms_xplan.display to determine automatically the columns that should be shown
is a super feature that beats using the old do-it-yourself query against the PLAN_TABLE hands down.

The columns shown in the display for the example query plan are ID, OPERATION, OPTIONS, OBJECT_NAME, COST,
ACCESS_PREDICATES, and FILTER_PREDICATES. These are the columns displayed based on the use of the format
parameter of 'BASIC +COST +PREDICATE'. Table 6-1 provides a brief definition of each of these common columns.

Table 6-1.  Most Commonly Used PLAN_TABLE Columns

Column Description

ID Unique number assigned to each step

OPERATION Internal operation performed by the step

OPTIONS Additional specification for the operation column (appended to OPERATION)

OBJECT_NAME Name of the table or index

COST Weighted cost value for the operation as determined by the optimizer

ACCESS_PREDICATES Conditions used to locate rows in an access structure (typically an index)

FILTER_PREDICATES Conditions used to filter rows after they have been accessed

One of the columns from the PLAN_TABLE that is not displayed in the plan display output when using the
dbms_xplan.display function is the PARENT_ID column. Instead of displaying this column value, the output is
indented to provide a visual cue for the parent–child relationships within the plan. I think it is helpful to include the
PARENT_ID column value as well, for clarity, but you have to write your own query against the PLAN_TABLE to produce
the output to include that column if you want it. I use a script from Randolf Geist’s blog (http://oracle-randolf.
blogspot.com/2011/12/extended-displaycursor-with-rowsource.html) that adds the PARENT_ID column to
the dbms_xplan.display output. Another column, Ord, has also been added to indicate the execution order of the
operations. The script provides lots of other additional output that you can use as well. I recommend reading Geist’s
full blog post and downloading the script for your own use. Although I have elided some of the output available,
Listing 6-3 shows using this script for our previous query executed for Listing 6-1. Note that I had to execute the query
(not just use EXPLAIN PLAN) and capture SQL_ID to supply the correct input parameters to the script (again, see Geist’s
blog for usage details).

http://oracle-randolf.blogspot.com/2011/12/extended-displaycursor-with-rowsource.html
http://oracle-randolf.blogspot.com/2011/12/extended-displaycursor-with-rowsource.html

Chapter 6 ■ SQL Execution Plans

135

Listing 6-3.  Displaying the PARENT_ID and Ord columns using the xpext.sql script

SQL>@xpext cqbz6zv6tu5g3 0 "BASIC +PREDICATE"
EXPLAINED SQL STATEMENT:

select e.last_name | ', ' || e.first_name as full_name,
 e.phone_number, e.email, e.department_id,
d.department_name, c.country_name, l.city, l.state_province,
r.region_name from hr.employees e, hr.departments d, hr.countries c,
 hr.locations l, hr.regions r where e.department_id =
d.department_id and d.location_id = l.location_id and
l.country_id = c.country_id and c.region_id = r.region_id
 
Plan hash value: 2352397467

| Id | Pid | Ord | Operation | Name |E-Rows*Sta|

0		14	SELECT STATEMENT		
1	0	13	NESTED LOOPS		
2	1	11	NESTED LOOPS		106
3	2	9	NESTED LOOPS		106
4	3	7	NESTED LOOPS		106
5	4	4	NESTED LOOPS		106
6	5	1	TABLE ACCESS FULL	EMPLOYEES	107
7	5	3	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	107
* 8	7	2	INDEX UNIQUE SCAN	DEPT_ID_PK	107
9	4	6	TABLE ACCESS BY INDEX ROWID	LOCATIONS	106
* 10	9	5	INDEX UNIQUE SCAN	LOC_ID_PK	106
* 11	3	8	INDEX UNIQUE SCAN	COUNTRY_C_ID_PK	106
* 12	2	10	INDEX UNIQUE SCAN	REG_ID_PK	106
13	1	12	TABLE ACCESS BY INDEX ROWID	REGIONS	106

Predicate Information (identified by operation id):

 8 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
 10 - access("D"."LOCATION_ID"="L"."LOCATION_ID")
 11 - access("L"."COUNTRY_ID"="C"."COUNTRY_ID")
 12 - access("C"."REGION_ID"="R"."REGION_ID")
 

PARENT_ID (shown in the Pid column in Listing 6-3) is helpful because operations in a plan are easiest to read if you
keep in mind the parent–child relationships involved in the plan. Each step in the plan has from zero to two children.
If you break down the plan into smaller chunks of parent–child groupings, it makes it easier to read and understand.

Breaking Down the Plan
When learning how to read plan output, it is important to start with an understanding of how the plan is organized.
In this section, I help you understand the relationships between various elements of a plan and how to break the plan
into smaller groups of related operations. Reading a plan with understanding can be more difficult than it may seem,
particularly if the plan is long. But, by breaking the plan apart, it’s often easier to put it back together in a way that
makes more sense to you.

Chapter 6 ■ SQL Execution Plans

136

Let’s start by considering the relationships between various plan operations. In the example plan, you have
operations with zero, one, and two children. A full table scan operation, for example, doesn’t have any children. See
the line for ID=5 in Listing 6-3. Another example of an operation with zero children is line 3. If you glance down the
Pid column, you can see that neither step 3 nor step 5 show up, which means these operations do not depend on any
other operation to complete. Both operations are children of other operations, however, and they pass the data they
access to their parent step. When an operation has no children, the Rows (CARDINALITY column in the PLAN_TABLE)
estimate represents the number of rows that a single iteration of that operation acquires. This can be a bit confusing
when the operation is providing rows to an iterative parent, but the estimate for the operation doesn’t indicate the
total number of rows accessed in that step. The total is determined by the parent operation. I delve into this in more
detail shortly.

The parent steps for steps 3 and 5—steps 2 and 4—are examples of single-child operations. In general, operations
with only one child can be divided into three categories:

•	 Working operations, which receive a row set from the child operation and manipulate it further
before passing it on to its parent.

•	 Pass-thru operations, which act simply as a pass-thru and don’t alter or manipulate the data
from the child in any way. They basically serve to identify an operation characteristic. The
VIEW operation is a good example of a pass-thru operation.

•	 Iterative operations, which indicate there are multiple executions of the child operation. You
typically see the word ITERATOR, INLIST, or ALL in these types of operation names.

Both step 2 and step 4 are working operations. They take the row sets from their children (steps 3 and 5) and
do some additional work. In step 2, the rowids returned from the index full scan are used to retrieve the DEPARTMENT
table data blocks. In step 4, the rows returned from the full scan of the EMPLOYEES table are sorted in order by the
join column.

Last, operations that have two children operate either iteratively or in succession. When the parent type is
iterative, the child row sources are accessed such that for each row in row source A, B is accessed. For a parent
operation that works on the children in succession, the first child row source is accessed followed by an access of the
second row source. Join types such as NESTED LOOPS and MERGE JOIN are iterative, as is the FILTER operation. All other
operations with two children work in succession on their child row sources.

The reason for this review is to highlight the importance of learning to take a divide-and-conquer approach to
reading and understanding plan output. The larger and more complicated a plan looks, the harder it often is to find
the key problem areas. If you learn to look for parent–child relationships in the plan output, and narrow your focus to
smaller chunks of the plan, you’ll find it much easier to work with what you see.

Understanding How EXPLAIN PLAN Can Miss the Mark
One of the most frustrating things about EXPLAIN PLAN output is that it may not always match the plan that is used
when the statement is actually executed, even when no objects referenced in the query change structurally in
between. There are four things to keep in mind about using EXPLAIN PLAN that make it susceptible to producing plan
output that doesn’t match the actual execution plan:

	 1.	 EXPLAIN PLAN produces plans based on the environment at the moment you use it.

	 2.	 EXPLAIN PLAN doesn’t consider the datatype of bind variables (all binds are VARCHAR2).

	 3.	 EXPLAIN PLAN doesn’t “peek” at bind variable values.

	 4.	 EXPLAIN PLAN only shows the original plan and not the final plan (this references
a 12c feature called adaptive query optimization, which is covered in a later chapter).

For these reasons, as mentioned, it is very possible that EXPLAIN PLAN produces a plan that doesn’t match the
plan that is produced when the statement is actually executed. Listing 6-4 demonstrates the second point about bind
variable datatypes causing EXPLAIN PLAN not to match the actual execution plan.

Chapter 6 ■ SQL Execution Plans

137

Listing 6-4.  EXPLAIN PLAN and Bind Variable Datatypes

SQL>-- Create a test table where primary key column is a string datatype
SQL> create table regions2
 2 (region_id varchar2(10) primary key,
 3 region_name varchar2(25));
 
Table created.
 
SQL>
SQL>-- Insert rows into the test table
SQL> insert into regions2
 2 select * from regions;
 
4 rows created.
 
SQL>
SQL>-- Create a variable and set its value
SQL> variable regid number
SQL> exec :regid := 1
 
PL/SQL procedure successfully completed.
 
SQL>
SQL>-- Get explain plan for the query
SQL> explain plan for select /* DataTypeTest */ *
 2 from regions2
 3 where region_id = :regid;
 
Explained.
SQL> select * from table(dbms_xplan.display(format=>'BASIC +COST +PREDICATE'));
 
Plan hash value: 2358393386
 
--
| Id | Operation | Name | Cost (%CPU)|
--
0	SELECT STATEMENT		1 (0)
1	TABLE ACCESS BY INDEX ROWID	REGIONS2	1 (0)
* 2	INDEX UNIQUE SCAN	SYS_C009951	1 (0)
--
 
Predicate Information (identified by operation id):

 2 - access("REGION_ID"=:REGID)
 
SQL>
SQL>-- Execute the query
SQL> select /* DataTypeTest */ *
 2 from regions2
 3 where region_id = :regid;
 

Chapter 6 ■ SQL Execution Plans

138

REGION_ID REGION_NAME
---------- -------------------------
1 Europe
 
SQL>
SQL>-- Review the actual execution plan
SQL> select * from table(dbms_xplan.display_cursor(null,null,format=>'BASIC +COST +PREDICATE'));
 
EXPLAINED SQL STATEMENT:

select /* DataTypeTest */ * from regions2 where region_id = :regid
 
Plan hash value: 670750275

| Id | Operation | Name | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 3 (100)|
|* 1 | TABLE ACCESS FULL| REGIONS2 | 3 (0)|

Predicate Information (identified by operation id):

 1 - filter(TO_NUMBER("REGION_ID")=:REGID)
 

Did you notice how the explain plan output indicated that the primary key index would be used but the actual
plan really used a full table scan? The reason why is clearly shown in the Predicate Information section. In the
explain plan output, the predicate is "REGION_ID"=:REGID, but in the actual plan, the predicate shows
TO_NUMBER("REGION_ID")=:REGID. This demonstrates how EXPLAIN PLAN doesn’t consider the datatype of a bind
variable and assumes all bind variables are string types. For EXPLAIN PLAN, the datatypes were considered to be the
same (both strings). However, the datatypes were considered when the plan was prepared for the actual execution
of the statement, and Oracle implicitly converted the string datatype for the REGION_ID column to a number to match
the bind variable datatype (NUMBER). This is expected behavior in that, when datatypes being compared don’t match,
Oracle always attempts to convert the string datatype to match the nonstring datatype. By doing so in this example,
the TO_NUMBER function caused the use of the index to be disallowed. This is another expected behavior to keep in
mind: The predicate must match the index definition exactly or else the index is not used.

If you are testing this statement in your development environment and use the explain plan output to confirm
that the index is being used, you are wrong. From the explain plan output, it appears that the plan is using the index,
as you would expect, but when the statement is actually executed, performance is likely to be unsatisfactory because
of the full table scan that really occurs.

Another issue with using explain plan output as your sole source for testing is that you never get a true picture
of how the statement uses resources. Estimates are just that—estimates. To confirm the behavior of the SQL and to
make intelligent choices about whether the statement will provide optimal performance, you need to look at actual
execution statistics. I cover the details of how to capture and interpret actual execution statistics shortly.

Reading the Plan
Before I dive further into capturing actual execution plan data, I want to make sure you are comfortable with reading a
plan. I’ve already discussed the importance of the PARENT_ID column in making it easier for you to break down a long,
complex plan into smaller, more manageable sections. Breaking down a plan into smaller chunks helps you read it,
but you need to know how to approach reading a whole plan from start to finish.

Chapter 6 ■ SQL Execution Plans

139

There are three ways that help you read and understand any plan: (1) learn to identify and separate parent–child
groupings (I discussed this earlier in the “Breaking Down the Plan” section), (2) learn the order in which the plan
operations execute, and (3) learn to read the plan in narrative form. I learned to do these three things so that when
I look at a plan, my eyes move through the plan easily and I notice possible problem areas quickly. The process can
be frustrating and you may be a bit slow at first, but given time and practice, this activity becomes second nature.

Let’s start with execution order. The plan is displayed in order by the sequential ID of operations. However, the
order in which each operation executes isn’t accomplished in a precise top-down fashion. To be precise, the first
operation executed in an execution plan is actually the first operation from the top of the execution plan that has no
child operations. In most cases, using the visual cues of the indentation of the operations, you can scan a plan quickly
and look for the operations that are the most indented. The operation that is most indented is usually the
first operation that is executed. If there are multiple operations at that same level, the operations are executed in a
top-down order. But, in some cases, the visual cue to look for the first most-indented operation won’t work and you
have to remember simply to find the first operation from the top of the execution plan that has no child operations.

For reference, I relist the example plan here in Listing 6-5 so that you don’t have to flip back a few pages to the
original example in Listing 6-1.

Listing 6-5.  EXPLAIN PLAN Example (Repeated)

| Id | Operation | Name | Cost (%CPU)|

0	SELECT STATEMENT		3 (0)
1	NESTED LOOPS		
2	NESTED LOOPS		3 (0)
3	NESTED LOOPS		3 (0)
4	NESTED LOOPS		3 (0)
5	NESTED LOOPS		3 (0)
6	TABLE ACCESS FULL	EMPLOYEES	3 (0)
7	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	0 (0)
* 8	INDEX UNIQUE SCAN	DEPT_ID_PK	0 (0)
9	TABLE ACCESS BY INDEX ROWID	LOCATIONS	0 (0)
* 10	INDEX UNIQUE SCAN	LOC_ID_PK	0 (0)
* 11	INDEX UNIQUE SCAN	COUNTRY_C_ID_PK	0 (0)
* 12	INDEX UNIQUE SCAN	REG_ID_PK	0 (0)
13	TABLE ACCESS BY INDEX ROWID	REGIONS	0 (0)

Predicate Information (identified by operation id):

 8 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
 10 - access("D"."LOCATION_ID"="L"."LOCATION_ID")
 11 - access("L"."COUNTRY_ID"="C"."COUNTRY_ID")
 12 - access("C"."REGION_ID"="R"."REGION_ID")
 

At a glance, you can see that lines 6 and 8 are the most deeply indented. Line 6 executes first, then line 8 executes
next and passes the rowids from the index unique scan to its parent (line 7). Steps continue to execute from the most
indented to the least indented, with each step passing row-source data to its parent until all steps complete. To help
see the execution order more clearly, Listing 6-6 repeats a portion of the output from Listing 6-3 for the xpext.sql
script, which shows the operations in execution order.

Chapter 6 ■ SQL Execution Plans

140

Listing 6-6.  Plan Operations Displayed in Execution Order (from xpext.sql in Listing 6-3)

--
| Id | Pid | Ord | Operation | Name |
--
6	5	1	TABLE ACCESS FULL	EMPLOYEES
8	7	2	INDEX UNIQUE SCAN	DEPT_ID_PK
7	5	3	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS
5	4	4	NESTED LOOPS	
10	9	5	INDEX UNIQUE SCAN	LOC_ID_PK
9	4	6	TABLE ACCESS BY INDEX ROWID	LOCATIONS
4	3	7	NESTED LOOPS	
11	3	8	INDEX UNIQUE SCAN	COUNTRY_C_ID_PK
3	2	9	NESTED LOOPS	
12	2	10	INDEX UNIQUE SCAN	REG_ID_PK
2	1	11	NESTED LOOPS	
13	1	12	TABLE ACCESS BY INDEX ROWID	REGIONS
1	0	13	NESTED LOOPS	
0		14	SELECT STATEMENT	
--
 

I often use an analogy between parent–child relationships in a plan and real life parent–child relationships. A real
child doesn’t just spontaneously combust into being; a parent is required to “instantiate” the child into being. But, as
most any parent will tell you, one of the greatest things about kids is that (sometimes) you can get them to do work for
you. This applies to parent–child operations in a plan. The child takes direction from its parent and goes to do a piece
of work. When the child completes that work, it reports back to the parent with the result. So, even though an index
operation occurs before its parent (for example, step 6 executes before its parent in step 5), the child doesn’t have
meaning or existence without its parent. This is why it’s important always to keep parent–child relationships in mind,
because they help make sense of the execution order.

Access and Filter Predicates
One of the most helpful sections of the explained output is the section named Predicate Information. In this section,
the ACCESS_PREDICATES and FILTER_PREDICATES columns are displayed. These columns are associated with a line
(denoted by the ID column) in the list of plan operations. Notice that for each plan operation that has an access or
filter predicate associated with it, there is an asterisk (*)next to the ID. When you see the asterisk, you know to look for
that ID number in the Predicate Information section to see which predicate (condition in the WHERE clause) is related
to that operation. Using this information, you can confirm that columns are used correctly (or not) for index access
and also you can determine where a condition was filtered.

An access predicate is either going to be an index operation or a join operation. An access predicate is simply a
more direct way to access the data by retrieving only the rows in the table that match a condition in the WHERE clause
or when matching the columns that join two tables. Filter predicates are a less exact way to retrieve the data in that,
when a filter predicate is applied, all rows in the current row source must be checked to determine whether they pass
the filter. On the other hand, an access predicate only places rows into a resulting row source when there is an exact
match. Thus, access predicates are often thought of as more efficient because they typically only gather rows that
match the condition vs. hitting all the rows and throwing away what doesn’t match.

Filtering late is a common performance inhibitor. For example, if you want to move a pile of 100 rocks from the
front yard to your backyard but only need rocks that weigh 5 to 10 pounds, would you move all 100 rocks and then
remove the ones you need? Or would you simply move those that are the correct weight? In general, you want to take
only the rocks you need, right?

Chapter 6 ■ SQL Execution Plans

141

Using the filter predicate information can help you verify that unneeded rows are filtered out of your result set
as early as possible in the plan. Just like it doesn’t make much sense to carry a whole bunch of extra rocks to the
backyard, it doesn’t make much sense to carry rows through a whole set of plan operations that ultimately are not
included in the final result set. Use the filter information to verify that each condition is applied as early in the plan
as possible. If a filter is applied too late, you can adjust your SQL or take other steps (such as verifying that statistics
are up to date) to ensure your plan isn’t working harder than it needs to.

Reading the Plan as a Narrative
Last, learning to read the plan as if it is a narrative can be extremely helpful. For many people, converting the set
of plan operations into a paragraph of text facilitates understanding how the plan executes better than any other
method. Let’s convert the example plan into a narrative and see whether it makes it easier for you to read and
understand. The following paragraph is a sample narrative for the example plan.

To produce the result set for this SELECT statement, rows from the DEPARTMENTS table are accessed using a
full scan of the index on the DEPARTMENTS.LOCATION_ID column. Using a full scan of the LOCATIONS table, rows are
retrieved and sorted by LOCATION_ID and then merged with the rows from DEPARTMENTS to produce a joined result set
of matching rows containing both DEPARTMENTS and LOCATIONS data. This row set, which we call DEPT_LOC, is joined
to the COUNTRIES table and matches iteratively one row from DEPT_LOC using COUNTRY_ID to find a matching row
in COUNTRIES. This result set, which we call DEPT_LOC_CTRY, now contains data from DEPARTMENTS, LOCATIONS, and
COUNTRIES, and is hashed into memory and matched with the REGIONS table data using REGION_ID. This result set,
DEPT_LOC_CTRY_REG, is hashed into memory and matched with the EMPLOYEES table using DEPARTMENT_ID to produce
the final result set of rows.

To produce this narrative, I simply walk through the steps of the plan in execution order and write out the
description of the steps and how they link (join) to each other. I progress through each set of parent–child operations
until all the steps are complete. You may find that creating a narrative helps you grasp the overall plan with a bit more
clarity. For more complex plans, you may find that breaking out just a few key portions of the whole plan and writing
them out in narrative form will help you understand the flow of operations more completely. The key is to use the
narrative to help make better sense of the plan. If you find it harder to do this, then just stick with the plan as it is. But,
taking time to learn to convert a plan into a narrative form is a good skill to learn, because it can help you describe
what your query is doing in a way that doesn’t require anyone even looking at plan output. It’s similar to giving verbal
directions on how to get to the nearest shopping mall. You don’t necessarily have to have the map to be able to get
from point A to point B.

Execution Plans
The actual execution plan for a SQL statement is produced when a statement is executed. After the statement is hard
parsed, the plan that is chosen is stored in the library cache for later reuse. The plan operations can be viewed by
querying V$SQL_PLAN, which has basically the same definition as PLAN_TABLE, except that it has several columns that
contain the information on how to identify and find the statement in the library cache. These additional columns are
ADDRESS, HASH_VALUE, SQL_ID, PLAN_HASH_VALUE, CHILD_ADDRESS, and CHILD_NUMBER. You can find any SQL statement
using one or more of these values.

Viewing Recently Generated SQL
Listing 6-7 shows a query against V$SQL for recently executed SQL for the SCOTT user and the identifying values for
each column.

Chapter 6 ■ SQL Execution Plans

142

Listing 6-7.  V$SQL Query to Get Recently Executed SQL

SQL>select /* recentsql */ sql_id, child_number,
 2 hash_value, address, executions, sql_text
 3 from v$sql
 4 where parsing_user_id = (select user_id
 5 from all_users
 6 where username = 'SCOTT')
 7 and command_type in (2,3,6,7,189)
 8 and UPPER(sql_text) not like UPPER('%recentsql%');
 
SQL_ID CHILD_NUMBER HASH_VALUE ADDRESS EXECUTIONS SQL_TEXT
------------- ------------ ---------- -------- ---------- --------------------
g5wp7pwtq4kwp 0 862079893 3829AE54 1 select * from emp
1gg46m60z7k2p 0 2180237397 38280AD0 1 select * from bonus
4g0qfgmtb7z70 0 4071881952 38281D68 1 select * from dept
 
3 rows selected.
 

After connecting as user SCOTT, you execute the three queries shown. Then, when you run the query against
V$SQL, you can see they are now loaded into the library cache and each has identifiers associated with it. The SQL_ID
and CHILD_NUMBER columns contain the identifying information that you’ll use most often to retrieve a statement’s
plan and execution statistics.

Viewing the Associated Execution Plan
There are several ways to view the execution plan for any SQL statement that has been previously executed and still
remains in the library cache. The easiest way is to use the dbms_xplan.display_cursor function. Listing 6-8 shows
how to use dbms_xplan.display_cursor to show the execution plan for the most recently executed SQL statement
(note that some output columns have been elided for brevity).

Listing 6-8.  Using dbms_xplan.display_cursor

SQL>select /*+ gather_plan_statistics */ empno, ename from scott.emp where ename = 'KING' ;
 
 EMPNO ENAME
---------- ----------
 7839 KING
SQL>
SQL>set serveroutput off
SQL>select * from table(dbms_xplan.display_cursor(null,null,'ALLSTATS LAST'));
 
PLAN_TABLE_OUTPUT

SQL_ID 2dzsuync8upv0, child number 0

select empno, ename from scott.emp where ename = 'KING'
 
Plan hash value: 3956160932
 

Chapter 6 ■ SQL Execution Plans

143

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 1 | 8 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 1 | 1 | 8 |

Predicate Information (identified by operation id):

 1 - filter("ENAME"='KING')
 

First, note the use of the gather_plan_statistics hint in the query. To capture row-source execution statistics
for the plan, you must tell Oracle to gather this information as the statement executes. The row-source execution
statistics include the number of rows, number of consistent reads, number of physical reads, number of physical
writes, and the elapsed time for each operation on a row. This information can be gathered using this hint on a
statement-by-statement basis, or you can set the STATISTICS_LEVEL instance parameter to ALL. Capturing these
statistics does add some overhead to the execution of a statement, and so you may not want to have it “always on.”
The hint allows you to use it when you need to—and only for the individual statements you choose. The presence of
this hint collects the information and shows it in the Starts, A-Rows, and Buffers columns. Listing 6-9 shows how the
plan output appears if you don’t use the hint (or set the parameter value to ALL).

Listing 6-9.  Using dbms_xplan.display_cursor without the gather_plan_statistics hint

SQL>select ename from scott.emp where ename = 'KING' ;
 
ENAME

KING
 
SQL>select * from table(dbms_xplan.display_cursor(null,null,'ALLSTATS LAST'));
 
PLAN_TABLE_OUTPUT
--
SQL_ID 32rvc78ypwhn8, child number 0

select ename from scott.emp where ename = 'KING'
 
Plan hash value: 3956160932

| Id | Operation | Name | E-Rows |

| 0 | SELECT STATEMENT | | |
|* 1 | TABLE ACCESS FULL| EMP | 1 |

Predicate Information (identified by operation id):

 1 - filter("ENAME"='KING')
 

Chapter 6 ■ SQL Execution Plans

144

Note

 - Warning: basic plan statistics not available. These are only collected when:
 * hint 'gather_plan_statistics' is used for the statement or
 * parameter 'statistics_level' is set to 'ALL', at session or system level
 

As you can see, a note is displayed that indicates the plan statistics aren’t available and it tells you what to do to
collect them.

Collecting the Plan Statistics
The plan operations shown when no plan statistics are available is essentially the same as the output from
EXPLAIN PLAN. To get to the heart of how well the plan worked, you need the plan’s row-source execution statistics.
These values tell you what actually happened for each operation in the plan. These data are pulled from the
V$SQL_PLAN_STATISTICS view, which links each operation row for a plan to a row of statistics data. A composite
view named V$SQL_PLAN_STATISTICS_ALL contains all the columns from V$SQL_PLAN plus the columns from
V$SQL_PLAN_STATISTICS as well as a few additional columns containing information about memory usage.
Listing 6-10 describes the V$SQL_PLAN_STATISTICS_ALL view columns.

Listing 6-10.  The V$SQL_PLAN_STATISTICS_ALL View Description

SQL> desc v$sql_plan_statistics_all
 Name Null? Type
 ----------------------------------- -------- ------------------------
 ADDRESS RAW(8)
 HASH_VALUE NUMBER
 SQL_ID VARCHAR2(13)
 PLAN_HASH_VALUE NUMBER
 FULL_PLAN_HASH_VALUE NUMBER
 CHILD_ADDRESS RAW(8)
 CHILD_NUMBER NUMBER
 TIMESTAMP DATE
 OPERATION VARCHAR2(30)
 OPTIONS VARCHAR2(30)
 OBJECT_NODE VARCHAR2(40)
 OBJECT# NUMBER
 OBJECT_OWNER VARCHAR2(30)
 OBJECT_NAME VARCHAR2(30)
 OBJECT_ALIAS VARCHAR2(65)
 OBJECT_TYPE VARCHAR2(20)
 OPTIMIZER VARCHAR2(20)
 ID NUMBER
 PARENT_ID NUMBER
 DEPTH NUMBER
 POSITION NUMBER
 SEARCH_COLUMNS NUMBER
 COST NUMBER
 CARDINALITY NUMBER
 BYTES NUMBER
 OTHER_TAG VARCHAR2(35)
 PARTITION_START VARCHAR2(64)

Chapter 6 ■ SQL Execution Plans

145

 PARTITION_STOP VARCHAR2(64)
 PARTITION_ID NUMBER
 OTHER VARCHAR2(4000)
 DISTRIBUTION VARCHAR2(20)
 CPU_COST NUMBER
 IO_COST NUMBER
 TEMP_SPACE NUMBER
 ACCESS_PREDICATES VARCHAR2(4000)
 FILTER_PREDICATES VARCHAR2(4000)
 PROJECTION VARCHAR2(4000)
 TIME NUMBER
 QBLOCK_NAME VARCHAR2(30)
 REMARKS VARCHAR2(4000)
 OTHER_XML CLOB
 EXECUTIONS NUMBER
 LAST_STARTS NUMBER
 STARTS NUMBER
 LAST_OUTPUT_ROWS NUMBER
 OUTPUT_ROWS NUMBER
 LAST_CR_BUFFER_GETS NUMBER
 CR_BUFFER_GETS NUMBER
 LAST_CU_BUFFER_GETS NUMBER
 CU_BUFFER_GETS NUMBER
 LAST_DISK_READS NUMBER
 DISK_READS NUMBER
 LAST_DISK_WRITES NUMBER
 DISK_WRITES NUMBER
 LAST_ELAPSED_TIME NUMBER
 ELAPSED_TIME NUMBER
 POLICY VARCHAR2(10)
 ESTIMATED_OPTIMAL_SIZE NUMBER
 ESTIMATED_ONEPASS_SIZE NUMBER
 LAST_MEMORY_USED NUMBER
 LAST_EXECUTION VARCHAR2(10)
 LAST_DEGREE NUMBER
 TOTAL_EXECUTIONS NUMBER
 OPTIMAL_EXECUTIONS NUMBER
 ONEPASS_EXECUTIONS NUMBER
 MULTIPASSES_EXECUTIONS NUMBER
 ACTIVE_TIME NUMBER
 MAX_TEMPSEG_SIZE NUMBER
 LAST_TEMPSEG_SIZE NUMBER
 CON_ID NUMBER
 CON_DBID NUMBER
 

The columns containing the pertinent statistics information that relates to the output from dbms_xplan.
display_cursor all begin with the prefix LAST_. When you use the format option of ALLSTATS LAST, the plan shows
these column values for each row in the plan. So, for each operation, you know exactly how many rows it returns
(LAST_OUTPUT_ROWS is shown in the A-Rows column), how many consistent reads occur (LAST_CR_BUFFER_GETS is
shown in the Buffers column), how many physical reads occur (LAST_DISK_READS is shown in the Reads column),
and the number of times a step is executed (LAST_STARTS is shown in the Starts column). There are several other
columns that display, depending on the operations that take place, but these are the most common.

Chapter 6 ■ SQL Execution Plans

146

The dbms_xplan.display_cursor call signature is as follows:
 
FUNCTION DISPLAY_CURSOR RETURNS DBMS_XPLAN_TYPE_TABLE
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 SQL_ID VARCHAR2 IN DEFAULT
 CURSOR_CHILD_NO NUMBER(38) IN DEFAULT
 FORMAT VARCHAR2 IN DEFAULT
 

In the example from Listing 6-8, the three parameters used were SQL_ID => null, CURSOR_CHILD_NO => null,
and FORMAT => ALLSTATS LAST. The use of nulls for the SQL_ID and CURSOR_CHILD_NO parameters indicates that the
plan for the last executed statement should be retrieved. Therefore, you should be able to execute a statement, then
execute the following:
 
select * from table(dbms_xplan.display_cursor(null,null,'ALLSTATS LAST'));
 

This gives you the plan output as shown in Listing 6-8.

Caution■■   You may have noticed that I executed the SQL*Plus command SET SERVEROUTPUT OFF before executing
the call to dbms_xplan.display_cursor. This is a slight oddity that might catch you off-guard if you don’t know about it.
Whenever you execute a statement and SERVEROUTPUT is ON, a call to dbms_output is executed implicitly. If you don’t use
SERVEROUTPUT OFF, then the last statement executed is this dbms_output call. Using nulls for the first two parameters
does not give you the SQL statement you executed, but instead attempts to give you the plan for the dbms_output call.
Simply turning this setting to OFF stops the implicit call and ensures you get the plan for your most recently executed
statement.

Identifying SQL Statements for Later Plan Retrieval
If you want to retrieve a statement that was executed in the past, you can retrieve the SQL_ID and CHILD_NUMBER from
V$SQL as demonstrated in Listing 6-7. To simplify finding the correct statement identifiers, especially when I’m testing,
I add a unique comment that identifies each statement I execute. Then, whenever I want to grab that plan from the
library cache, all I have to do is query V$SQL to locate the statement text that includes the comment I used. Listing 6-11
shows an example of this and the query I use to subsequently find the statement I want.

Listing 6-11.  Using a Comment to Identify a SQL Statement Uniquely

SQL>select /* KM-EMPTEST1 */ empno, ename
 2 from emp
 3 where job = 'MANAGER' ;
 
 EMPNO ENAME
---------- ----------
 7566 JONES
 7698 BLAKE
 7782 CLARK
 

Chapter 6 ■ SQL Execution Plans

147

SQL>select sql_id, child_number, sql_text
 2 from v$sql
 3 where sql_text like '%KM-EMPTEST1%';
 
SQL_ID CHILD_NUMBER SQL_TEXT
------------- ------------ ---
9qu1dvthfcqsp 0 select /* KM-EMPTEST1 */ empno, ename
 from emp where job = 'MANAGER'
a7nzwn3t522mt 0 select sql_id, child_number, sql_text from
 v$sql where sql_text like '%KM-EMPTEST1%'
  
SQL>select * from table(dbms_xplan.display_cursor('9qu1dvthfcqsp',0,'ALLSTATS LAST'));
 
PLAN_TABLE_OUTPUT
--
SQL_ID 9qu1dvthfcqsp, child number 0

select /* KM-EMPTEST1 */ empno, ename from emp where job = 'MANAGER'
 
Plan hash value: 3956160932

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 3 | 8 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 3 | 3 | 8 |

Predicate Information (identified by operation id):

 1 - filter("JOB"='MANAGER')
 

Notice that when I query V$SQL, two statements show up. One is the SELECT statement I executed to find the entry
in V$SQL and one is the query I executed. Although this series of steps gets the job done, I find it easier to automate
the whole process into a single script. In this script, I find the statement I want in V$SQL by weeding out the query
I’m running to find it and also by ensuring that I find the most recently executed statement that uses my identifying
comment. Listing 6-12 shows the script I use in action.

Listing 6-12.  Automating Retrieval of an Execution Plan for Any SQL Statement

SQL>select /* KM-EMPTEST2 */
 2 empno, ename
 3 from emp
 4 where job = 'CLERK' ;
 
 EMPNO ENAME
---------- ----------
 7369 SMITH
 7876 ADAMS
 7900 JAMES
 7934 MILLER
 

Chapter 6 ■ SQL Execution Plans

148

SQL>
SQL>get pln.sql
 1 SELECT xplan.*
 2 FROM
 3 (
 4 select max(sql_id) keep
 5 (dense_rank last order by last_active_time) sql_id
 6 , max(child_number) keep
 7 (dense_rank last order by last_active_time) child_number
 8 from v$sql
 9 where upper(sql_text) like '%&1%'
 10 and upper(sql_text) not like '%FROM V$SQL WHERE UPPER(SQL_TEXT) LIKE %'
 11) sqlinfo,
 12 table(DBMS_XPLAN.DISPLAY_CURSOR(sqlinfo.sql_id, sqlinfo.child_number, 'ALLSTATS LAST')) xplan ;
 
SQL>@pln KM-EMPTEST2
 
PLAN_TABLE_OUTPUT

SQL_ID bn37qcafkwkt0, child number 0

select /* KM-EMPTEST2 */ empno, ename from emp where job = 'CLERK'
 
Plan hash value: 3956160932

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 4 | 8 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 3 | 4 | 8 |

Predicate Information (identified by operation id):

 1 - filter("JOB"='CLERK')
 

This script returns the execution plan associated with the most recently executed SQL statement that matches the
pattern you enter. As I mentioned, it is easier to find a statement if you make an effort to use a comment to identify it,
but it works to find any string of matching text you enter. However, if there are multiple statements with matching text,
this script only displays the most recently executed statement matching the pattern. If you want a different statement,
you have to issue a query against V$SQL such as the one in Listing 6-11 and then feed the correct SQL_ID and
CHILD_NUMBER to the dbms_xplan.display_cursor call.

Understanding DBMS_XPLAN in Detail
The DBMS_XPLAN package is supplied by Oracle and can be used to simplify the retrieval and display of plan output,
as I have demonstrated. To use all the procedures and functions in this package fully, you need to have privileges to
certain fixed views. A single grant on SELECT_CATALOG_ROLE ensures you have access to everything you need; but, at a
minimum, you should have select privileges for VSQL, VSQL_PLAN, V$SESSION, and V$SQL_PLAN_STATISTICS_ALL to
execute just the display and display_cursor functions properly. In this section, I cover a few more details about the
use of this package and, in particular, the format options for the display and display_cursor functions.

Chapter 6 ■ SQL Execution Plans

149

The dbms_xplan package has grown since it first appeared in Oracle version 9. At that time, it contained only the
display function. In Oracle version 12c, the package includes 26 functions, although only eight of them are included
in the documentation. These functions can be used to display not only explain plan output, but plans for statements
stored in the Automatic Workload Repository (AWR), SQL tuning sets, cached SQL cursors, and SQL plan baselines.
The main table functions used to display plans from each of these areas are as follows:

•	 DISPLAY

•	 DISPLAY_CURSOR

•	 DISPLAY_AWR

•	 DISPLAY_SQLSET

•	 DISPLAY_SQL_PATCH_PLAN

•	 DISPLAY_SQL_PROFILE_PLAN

•	 DISPLAY_SQL_PLAN_BASELINE

These table functions all return the DBMS_XPLAN_TYPE_TABLE type, which is made up of 300-byte strings. This type
accommodates the variable formatting needs of each table function to display the plan table columns dynamically
as needed. The fact that these are table functions means that, to call them, you must use the table function to cast the
return type properly when used in a SELECT statement. A table function is simply a stored PL/SQL function that behaves
like a regular query to a table. The benefit is that you can write code in the function that performs transformations to
data before it is returned in the result set. In the case of queries against the PLAN_TABLE or V$SQL_PLAN, the use of a table
function makes it possible to do all the dynamic formatting needed to output only the columns pertinent for a given
SQL statement instead of having to try and create multiple queries to handle different needs.

Each of the table functions accepts a FORMAT parameter as input. The FORMAT parameter controls the information
included in the display output. The following is a list of documented values for this parameter:

•	 BASIC displays only the operation name and its option.

•	 TYPICAL displays the relevant information and variably display options such as partition and
parallel usage only when applicable. This is the default.

•	 SERIAL is the same as TYPICAL, but it always excludes parallel information.

•	 ALL displays the maximum amount of information in the display.

In addition to the basic format parameter values, there are several additional more granular options that can be
used to customize the default behavior of the base values. You can specify multiple keywords separated by a comma
or a space and use the prefix of a plus sign (+)to indication inclusion or a minus sign/hyphen (-)to indicate exclusion
of that particular display element. All these options display the information only if relevant. The following is a list of
optional keywords:

•	 ADVANCED shows the same as ALL plus the Outline section and the Peeked Binds section.

•	 ALIAS shows the Query Block Name/Object Alias section.

•	 ALL shows the Query Block Name/Object Alias section, the Predicate section, and the Column
Projection section.

•	 ALLSTATS* is equivalent to IOSTATS LAST.

•	 BYTES shows the estimated number of bytes.

•	 COST is the cost information computed by the optimizer.

Chapter 6 ■ SQL Execution Plans

150

•	 IOSTATS* shows IO statistics for executions of the cursor.

•	 LAST* shows only the plan statistics for the last execution of the cursor (the default is ALL and
is cumulative).

•	 MEMSTATS* shows the memory management statistics for memory-intensive operations such
as hash joins, sorts, or some bitmap operators.

•	 NOTE shows the Note section.

•	 OUTLINE shows the Outline section (set of hints that reproduce the plan).

•	 PARALLEL shows parallel execution information.

•	 PARTITION shows partition pruning information.

•	 PEEKED_BINDS shows bind variable values.

•	 PREDICATE shows the Predicate section.

•	 PROJECTION shows the Column Projection section (which columns have been passed to their
parent by each line, and the size of those columns).

•	 REMOTE shows distributed query information.

The keywords followed by an asterisk are not available for use with the DISPLAY function because they use
information from V$SQL_PLAN_STATISTICS_ALL, which exists only after a statement has been executed. Listing 6-13
shows several examples of the various options in use (note that the Time column has been elided for brevity from each
of the examples).

Listing 6-13.  Display Options Using Format Parameters

This example shows the output when using the ALL format parameter:
SQL> explain plan for
 2 select * from emp e, dept d
 3 where e.deptno = d.deptno
 4 and e.ename = 'JONES' ;
 
Explained.
 
SQL> select * from table(dbms_xplan.display(format=>'ALL'));
 
PLAN_TABLE_OUTPUT

Plan hash value: 3625962092

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		1	59	4 (0)
1	NESTED LOOPS				
2	NESTED LOOPS		1	59	4 (0)
* 3	TABLE ACCESS FULL	EMP	1	39	3 (0)
* 4	INDEX UNIQUE SCAN	PK_DEPT	1		0 (0)
5	TABLE ACCESS BY INDEX ROWID	DEPT	1	20	1 (0)

Chapter 6 ■ SQL Execution Plans

151

Query Block Name / Object Alias (identified by operation id):

 1 - SEL$1
 3 - SEL$1 / E@SEL$1
 4 - SEL$1 / D@SEL$1
 5 - SEL$1 / D@SEL$1
Predicate Information (identified by operation id):

 3 - filter("E"."ENAME"='JONES')
 4 - access("E"."DEPTNO"="D"."DEPTNO")
 
Column Projection Information (identified by operation id):

 1 - (#keys=0) "E"."EMPNO"[NUMBER,22], "E"."ENAME"[VARCHAR2,10],
 "E"."JOB"[VARCHAR2,9], "E"."MGR"[NUMBER,22], "E"."HIREDATE"[DATE,7],
 "E"."SAL"[NUMBER,22], "E"."COMM"[NUMBER,22], "E"."DEPTNO"[NUMBER,22],
 "D"."DEPTNO"[NUMBER,22], "D"."DNAME"[VARCHAR2,14], "D"."LOC"[VARCHAR2,13]
 2 - (#keys=0) "E"."EMPNO"[NUMBER,22], "E"."ENAME"[VARCHAR2,10],
 "E"."JOB"[VARCHAR2,9], "E"."MGR"[NUMBER,22], "E"."HIREDATE"[DATE,7],
 "E"."SAL"[NUMBER,22], "E"."COMM"[NUMBER,22], "E"."DEPTNO"[NUMBER,22],
 "D".ROWID[ROWID,10], "D"."DEPTNO"[NUMBER,22]
 3 - "E"."EMPNO"[NUMBER,22], "E"."ENAME"[VARCHAR2,10], "E"."JOB"[VARCHAR2,9],
 "E"."MGR"[NUMBER,22], "E"."HIREDATE"[DATE,7], "E"."SAL"[NUMBER,22],
 "E"."COMM"[NUMBER,22], "E"."DEPTNO"[NUMBER,22]
 4 - "D".ROWID[ROWID,10], "D"."DEPTNO"[NUMBER,22]
 5 - "D"."DNAME"[VARCHAR2,14], "D"."LOC"[VARCHAR2,13]
 

This example shows the output when using the ALLSTATS LAST –COST –BYTES format parameter:
 
SQL> select empno, ename from emp e, dept d
 2 where e.deptno = d.deptno
 3 and e.ename = 'JONES' ;
 
 EMPNO ENAME
---------- ----------
 7566 JONES
 
1 row selected.
SQL> select * from table(dbms_xplan.display_cursor(null,null,format=>'ALLSTATS LAST -COST -BYTES'));
 
PLAN_TABLE_OUTPUT

SQL_ID 3mypf7d6npa97, child number 0

select empno, ename from emp e, dept d where e.deptno = d.deptno and
e.ename = 'JONES'
 

Chapter 6 ■ SQL Execution Plans

152

Plan hash value: 3956160932
 
--
| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers | Reads|
--
| 0 | SELECT STATEMENT | | 1 | | 1 | 8 | 6|
|* 1 | TABLE ACCESS FULL| EMP | 1 | 1 | 1 | 8 | 6|
--
 
Predicate Information (identified by operation id):

 1 - filter(("E"."ENAME"='JONES' AND "E"."DEPTNO" IS NOT NULL))
 

This example shows the output when using the +PEEKED_BINDS format parameter to show the values of the
bind variables:
 
SQL> variable v_empno number
SQL> exec :v_empno := 7566 ;
 
PL/SQL procedure successfully completed.
 
SQL> select empno, ename, job, mgr, sal, deptno from emp where empno = :v_empno ;
 
EMPNO ENAME JOB MGR SAL DEPTNO
------ ---------- --------- ------- -------- --------
 7566 JONES MANAGER 7839 3272.5 20
 
1 row selected.
 
SQL> select * from table(dbms_xplan.display_cursor(null,null,format=>'+PEEKED_BINDS'));
 
PLAN_TABLE_OUTPUT

SQL_ID 9q17w9umt58m7, child number 0

select * from emp where empno = :v_empno
 
Plan hash value: 2949544139

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT				1 (100)
1	TABLE ACCESS BY INDEX ROWID	EMP	1	39	1 (0)
* 2	INDEX UNIQUE SCAN	PK_EMP	1		0 (0)

Chapter 6 ■ SQL Execution Plans

153

Peeked Binds (identified by position):

 1 - :V_EMPNO (NUMBER): 7566
 
Predicate Information (identified by operation id):

 2 - access("EMPNO"=:V_EMPNO)
 

This example shows the output when using the BASIC +PARALLEL +PREDICATE format parameters to display
parallel-query execution plan details:
 
SQL> select /*+ parallel(d, 4) parallel (e, 4) */
 2 d.dname, avg(e.sal), max(e.sal)
 3 from dept d, emp e
 4 where d.deptno = e.deptno
 5 group by d.dname
 6 order by max(e.sal), avg(e.sal) desc;
 
DNAME AVG(E.SAL) MAX(E.SAL)
-------------- --------------- ---------------
SALES 1723.3333333333 3135
RESEARCH 2392.5 3300
ACCOUNTING 3208.3333333333 5500
 
SQL> select * from table(dbms_xplan.display_cursor(null,null,'BASIC +PARALLEL +PREDICATE'));
 
PLAN_TABLE_OUTPUT

SQL_ID gahr597f78j0d, child number 0

select /*+ parallel(d, 4) parallel (e, 4) */ d.dname, avg(e.sal),
max(e.sal) from dept d, emp e where d.deptno = e.deptno group by
d.dname order by max(e.sal), avg(e.sal) desc
 
Plan hash value: 3078011448
 

Chapter 6 ■ SQL Execution Plans

154

| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |

0	SELECT STATEMENT				
1	PX COORDINATOR				
2	PX SEND QC (ORDER)	:TQ10004	Q1,04	P->S	QC (ORDER)
3	SORT ORDER BY		Q1,04	PCWP	
4	PX RECEIVE		Q1,04	PCWP	
5	PX SEND RANGE	:TQ10003	Q1,03	P->P	RANGE
6	HASH GROUP BY		Q1,03	PCWP	
7	PX RECEIVE		Q1,03	PCWP	
8	PX SEND HASH	:TQ10002	Q1,02	P->P	HASH
9	HASH GROUP BY		Q1,02	PCWP	
10	HASH JOIN		Q1,02	PCWP	
11	PX RECEIVE		Q1,02	PCWP	
12	PX SEND HYBRID HASH	:TQ10000	Q1,00	P->P	HYBRID HASH
13	STATISTICS COLLECTOR		Q1,00	PCWC	
14	PX BLOCK ITERATOR		Q1,00	PCWC	
15	TABLE ACCESS FULL	DEPT	Q1,00	PCWP	
16	PX RECEIVE		Q1,02	PCWP	
17	PX SEND HYBRID HASH (SKEW)	:TQ10001	Q1,01	P->P	HYBRID HASH
18	PX BLOCK ITERATOR		Q1,01	PCWC	
19	TABLE ACCESS FULL	EMP	Q1,01	PCWP	

Predicate Information (identified by operation id):

 10 - access("D"."DEPTNO"="E"."DEPTNO")
 15 - access(:Z>=:Z AND :Z<=:Z)
 19 - access(:Z>=:Z AND :Z<=:Z)

Using SQL Monitor Reports
Since its inclusion in Oracle 11g, SQL Monitor Reports provide another way for you to review execution plan row-
source execution statistics to determine how time and resources are used for a given SQL statement. Although it is
similar to using the DBMS_XPLAN.DISPLAY_CURSOR function that we already reviewed in detail, it offers several unique
features. One key thing to note about the availability of SQL Monitor Reports is that they are on by default, even when
the STATISTICS_LEVEL parameter is set to TYPICAL (the default). Furthermore, any statement that consumes more
than five seconds of CPU or IO time, as well as any statement using parallel execution, is monitored automatically.

There are two hints—MONITOR and NO_MONITOR—that can be used to override the default behavior. When using
the DBMS_XPLAN.DISPLAY_CURSOR function to display row-source execution statistics, you are required to use either
a GATHER_PLAN_STATISTICS hint or to set the STATISTICS_LEVEL parameter equal to ALL. The fact that monitoring
of statements can happen without either of these settings eliminates some of the overhead. However, if you want to
make sure to capture information for SQL statements that may execute for less than five seconds, you need to specify
the MONITOR hint in the SQL.

One of the nicest features of SQL Monitor Reports is the ability to request the report in real time. This means
that the DBA or performance analyst can monitor a SQL statement while it is executing. Everything from CPU and IO
times to number of output rows and memory or temp space used are updated in almost real time while the statement
is executing. The V$SQL_MONITOR and V$SQL_PLAN_MONITOR views expose these statistics, and the real-time SQL
Monitoring Report is produced using the DBMS_SQLTUNE.REPORT_SQL_MONITOR function, which accesses the data in
these views. The output can be formatted as TEXT (the default), HTML, XML, or ACTIVE.

Chapter 6 ■ SQL Execution Plans

155

The dbms_sqltune.report_sql_monitor call signature is as follows:
 
FUNCTION REPORT_SQL_MONITOR RETURNS CLOB
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 SQL_ID VARCHAR2 IN DEFAULT
 SESSION_ID NUMBER IN DEFAULT
 SESSION_SERIAL NUMBER IN DEFAULT
 SQL_EXEC_START DATE IN DEFAULT
 SQL_EXEC_ID NUMBER IN DEFAULT
 INST_ID NUMBER IN DEFAULT
 START_TIME_FILTER DATE IN DEFAULT
 END_TIME_FILTER DATE IN DEFAULT
 INSTANCE_ID_FILTER NUMBER IN DEFAULT
 PARALLEL_FILTER VARCHAR2 IN DEFAULT
 PLAN_LINE_FILTER NUMBER IN DEFAULT
 EVENT_DETAIL VARCHAR2 IN DEFAULT
 BUCKET_MAX_COUNT NUMBER IN DEFAULT
 BUCKET_INTERVAL NUMBER IN DEFAULT
 BASE_PATH VARCHAR2 IN DEFAULT
 LAST_REFRESH_TIME DATE IN DEFAULT
 REPORT_LEVEL VARCHAR2 IN DEFAULT
 TYPE VARCHAR2 IN DEFAULT
 SQL_PLAN_HASH_VALUE NUMBER IN DEFAULT
 CON_NAME VARCHAR2 IN DEFAULT
 REPORT_ID NUMBER IN DEFAULT
 DBOP_NAME VARCHAR2 IN DEFAULT
 DBOP_EXEC_ID NUMBER IN DEFAULT
 

As you can see, there are numerous parameters that can be used to produce the report. However, if you simply
want to report on the last statement monitored by Oracle, you can just execute the function using all defaults,
as shown in Listing 6-14.

Listing 6-14.  Displaying a SQL Monitor Report

SQL> select /*+ monitor */ * from employees2 where email like 'S%';
... 3625 lines of output omitted
 
SQL> select dbms_sqltune.report_sql_monitor() from dual;
 
SQL Monitoring Report
 
SQL Text

select /*+ monitor */ * from employees2 where email like 'S%'
 

Chapter 6 ■ SQL Execution Plans

156

Global Information

 Status : DONE (ALL ROWS)
 Instance ID : 1
 Session : HR (91:44619)
 SQL ID : 4mxtbapapgfj7
 SQL Execution ID : 16777216
 Execution Started : 05/30/2013 21:41:02
 First Refresh Time : 05/30/2013 21:41:02
 Last Refresh Time : 05/30/2013 21:41:07
 Duration : 5s
 Module/Action : SQL*Plus/-
 Service : SYS$USERS
 Program : sqlplus@ora12c (TNS V1-V3)
 Fetch Calls : 243
 
Global Stats
===
| Elapsed | Cpu | IO | Other | Fetch | Buffer | Read | Read |
| Time(s) | Time(s) | Waits(s) | Waits(s) | Calls | Gets | Reqs | Bytes |
===
| 0.04 | 0.02 | 0.01 | 0.01 | 243 | 807 | 27 | 4MB |
===
 
SQL Plan Monitoring Details (Plan Hash Value=2513133951)
==
| Id | Operation | Name | Rows | Cost | Time | Start |
| | | | (Estim) | | Active(s) | Active|
==
| 0 | SELECT STATEMENT | | | | 6 | +0|
| 1 | TABLE ACCESS FULL | EMPLOYEES2 | 1628 | 171 | 6 | +0|
==
 
SQL Plan Monitoring Details (Plan Hash Value=2513133951)
===
| Id | Execs | Rows | Read | Read | Activity | Activity Detail |
| | | (Actual) | Reqs | Bytes | (%) | (# samples) |
===
| 0 | 1 | 3625 | | | | |
| 1 | 1 | 3625 | 1 | 8192 | | |
===
 

I split the SQL Plan Monitoring Details section into two sections to get it to fit on the page properly and repeated
the Id column to help identify the rows. As you can see, the information captured is similar to what you get when
using dbms_xplan.display_cursor. The main differences are that you don’t get buffer gets per operation and you get
some additional columns for Active Session History (ASH) data (the Activity and Activity Detail columns). Just
as with the dbms_xplan.display_cursor, various columns are visible depending on the type of plan executed (for
example, a parallel execution plan). One of the key pieces of information you need when using execution plan data
for problem diagnosis is the comparison of estimated rows with actual rows, and you can see both are provided in the
SQL Monitor Report (Figure 6-1) just as in the dbms_xplan output.

Chapter 6 ■ SQL Execution Plans

157

There are a couple limitations you should keep in mind regarding SQL Monitor Reports. Although SQL statement
monitoring happens by default, as already mentioned, there are limits to how much monitoring data remain
available. The hidden parameter _sqlmon_max_plan controls the size of the memory area dedicated to holding SQL
monitoring information. By default, this parameter value is set to 20 times the number of CPUs. Therefore, if there
are many different SQL statements being executed in your environment, it is entirely possible that the SQL statement
monitoring data you are looking for may have already been pushed out because of newer SQL monitoring data

Figure 6-1.  An HTML SQL Monitor Report

Chapter 6 ■ SQL Execution Plans

158

needing space. Of course, you can increase this value if you want to attempt to keep monitoring data available for
longer periods of time. But, as with changing any hidden parameter, you should do so with extreme caution and not
without input from Oracle Support.

The second parameter that may cause you to not be able to produce a SQL Monitor Report for a given SQL
statement is _sqlmon_max_planlines. This parameter defaults to 300 and limits the number of plan lines beyond
which a statement is not monitored. In this case, if you have an extremely long execution plan of more than 300 lines,
even if it is hinted with the MONITOR hint or if it runs long enough to be monitored normally automatically, it is not. As
soon as the number of lines in the plan exceeds the 300 limit, monitoring is disabled.

You can use either a SQL Monitor Report or dbms_xplan.display_cursor output, as you prefer. I’ve started
using SQL Monitor Reports more regularly because they require a bit less overhead to produce (because the
STATISTICS_LEVEL parameter doesn’t need to be set to ALL to capture the statistics). Also, if you happen to be working
on an Exadata platform, the SQL Monitor Report displays a column to include offload percentage, which tells you
when full table scan operations use Exadata smart scan technology, and is a key indicator of performance on Exadata
machines. This information isn’t present when using dbms_xplan.

Using Plan Information for Solving Problems
Now that you know how to access the various bits of information, what do you do with them? The plan information,
particularly the plan statistics, helps you confirm how the plan is performing. You can use the information to
determine whether there are any trouble spots, so you can then adjust the way the SQL is written, add or modify
indexes, or even use the data to support a need to update statistics or adjust instance parameter settings.

Determining Index Deficiencies
If, for example, there is a missing or suboptimal index, you can see this in the plan. The next few listings walk through
two examples: one shows how to determine whether an index is suboptimal (Listings 6-15 and 6-16) and the other
shows how to determine an index is missing (Listing 6-17).

In each of these examples, there are two keys to look for. I made these example queries short and simple to keep
the output easy to view, but regardless of how complex the plan, the way to spot a missing or suboptimal index is to
look for (1) a TABLE ACCESS FULL operation with a filter predicate that shows a small A-Rows value (in other words,
small in comparison with the total rows in the table) and (2) an index scan operation with a large A-Rows value
compared with the parent TABLE ACCESS BY INDEX ROWID A-Rows value.

Listing 6-15.  Using Plan Information to Determine Suboptimal Indexes

SQL> -- Example 1: sub-optimal index
SQL>
SQL> select /* KM1 */ job_id, department_id, last_name
 2 from employees
 3 where job_id = 'SA_REP'
 4 and department_id is null ;
 
JOB_ID DEPARTMENT_ID LAST_NAME
---------- --------------- -------------------------
SA_REP . Grant
 
SQL> @pln KM1
 

Chapter 6 ■ SQL Execution Plans

159

PLAN_TABLE_OUTPUT

SQL_ID 0g7fpbvvbgvd2, child number 0

select /* KM1 */ job_id, department_id, last_name from hr.employees
where job_id = 'SA_REP' and department_id is null
 
Plan hash value: 2096651594

| Id | Operation | Name | E-Rows | A-Rows | Buffers |

0	SELECT STATEMENT			1	4
* 1	TABLE ACCESS BY INDEX	EMPLOYEES	1	1	4
	ROWID BATCHED				
* 2	INDEX RANGE SCAN	EMP_JOB_IX	6	30	2

Predicate Information (identified by operation id):

 1 - filter("DEPARTMENT_ID" IS NULL)
 2 - access("JOB_ID"='SA_REP')
 

So, how do we know the EMP_JOB_IX index is suboptimal? In Listing 6-15, notice the A-Rows statistic for each
operation. The INDEX RANGE SCAN uses the job_id predicate to return 30 row IDs from the index leaf blocks that
match ’SA_REP’. The parent step, TABLE ACCESS BY INDEX ROWID, retrieves rows by accessing the blocks as specified
in the 30 row IDs it received from the child INDEX RANGE SCAN operation. When these 30 rows are retrieved, then
the next condition for department_id is null must be checked. In the end, after all 30 rows (requiring four buffer
accesses, as shown in the Buffers column) have been checked, only one row is actually a match to be returned in
the query result set. This means that 97 percent of the rows that were accessed weren’t needed. From a performance
perspective, this isn’t very effective. In this example, because the table is small (only 107 rows in five blocks), the
problem this could cause isn’t really noticeable in terms of response time. But, why incur all that unnecessary work?
That’s where creating a better index comes in. If we simply include both columns in the index definition, the index
returns only one row ID, and the parent step does not have to access any data blocks that it has to throw away.
Listing 6-16 shows how adding the additional column to the index decreases the total amount of rows accessed.

Listing 6-16.  Adding a Column to an Index to Improve a Suboptimal Index

SQL> create index emp_job_dept_ix on employees (department_id, job_id) compute statistics ;
SQL>
SQL> select /* KM2 */ job_id, department_id, last_name
 2 from employees
 3 where job_id = 'SA_REP'
 4 and department_id is null ;
 
JOB_ID DEPARTMENT_ID LAST_NAME
---------- --------------- -------------------------
SA_REP . Grant
 
SQL> @pln KM2
 

Chapter 6 ■ SQL Execution Plans

160

PLAN_TABLE_OUTPUT

SQL_ID a65qqjrawsbfx, child number 0

select /* KM2 */ job_id, department_id, last_name from hr.employees
where job_id = 'SA_REP' and department_id is null
 
Plan hash value: 1551967251
 
--
| Id | Operation | Name | E-Rows | A-Rows | Buffers |
--
0	SELECT STATEMENT			1	2
1	TABLE ACCESS BY INDEX	EMPLOYEES	1	1	2
	ROWID BATCHED				
* 2	INDEX RANGE SCAN	EMP_JOB_DEPT_IX	1	1	1
--
 
Predicate Information (identified by operation id):

 2 - access("DEPARTMENT_ID" IS NULL AND "JOB_ID"='SA_REP')
 filter("JOB_ID"='SA_REP')
 

As you can see, by simply adding the department_id column to the index, the amount of work required to
retrieve the query result set is minimized. The number of rowids passed from the child INDEX RANGE SCAN to the
parent TABLE ACCESS BY INDEX ROWID step drops from 30 to just one, and the total buffer accesses is cut in half from
four to two.

What about when no useful index exists? Again, this is a concern for performance. It may even be more of a
concern than having a suboptimal index, because without any useful index at all, the only option the optimizer
has is to use a full table scan. As the size of data increases, the responses are likely to keep increasing. So, you may
“accidentally” miss creating an index in development when you are dealing with small amounts of data, but when
data volumes increase in production, you’ll likely figure out you need an index pretty quick! Listing 6-17 demonstrates
how to identify a missing index.

Listing 6-17.  Using Plan Information to Determine Missing Indexes

SQL> -- Example 2: missing index
SQL>
SQL> select /* KM3 */ last_name, phone_number
 2 from employees
 3 where phone_number = '650.507.9822';
 
LAST_NAME PHONE_NUMBER
------------------------- --------------------
Feeney 650.507.9822
SQL>
SQL> @pln KM3
 

Chapter 6 ■ SQL Execution Plans

161

PLAN_TABLE_OUTPUT

SQL_ID 26ry1z7z20cat, child number 0

select /* KM3 */ last_name, phone_number from hr.employees where
phone_number = '650.507.9822'
 
Plan hash value: 1445457117

| Id | Operation | Name | E-Rows | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | | 1 | 7 |
|* 1 | TABLE ACCESS FULL| EMPLOYEES | 1 | 1 | 7 |

Predicate Information (identified by operation id):

 1 - filter("PHONE_NUMBER"='650.507.9822')
 
SQL> column column_name format a22 heading 'Column Name'
SQL> column index_name heading 'Index Name'
SQL> column column_position format 999999999 heading 'Pos#'
SQL> column descend format a5 heading 'Order'
SQL> column column_expression format a40 heading 'Expression'
SQL>
SQL> break on index_name skip 1
SQL>
SQL> -- Check current indexes
SQL>
SQL> select lower(b.index_name) index_name, b.column_position,
 2 b.descend, lower(b.column_name) column_name
 3 from all_ind_columns b
 4 where b.table_owner = 'HR'
 5 and b.table_name = 'EMPLOYEES'
 6 order by b.index_name, b.column_position, b.column_name
 7 /
 
Index Name Pos# Order Column Name
------------------------------ ---------- ----- ------------------
emp_department_ix 1 ASC department_id
 
emp_email_uk 1 ASC email
 
emp_emp_id_pk 1 ASC employee_id
 
emp_job_dept_ix 1 ASC department_id
 2 ASC job_id
 
emp_job_ix 1 ASC job_id
 

w

Chapter 6 ■ SQL Execution Plans

162

emp_manager_ix 1 ASC manager_id
 
emp_name_ix 1 ASC last_name
 2 ASC first_name
 

In this example, the access operation chosen was a full table scan. By querying the ALL_IND_COLUMNS view, we
can verify which indexes exist and on which columns. In this case, there is no index on the phone_number column, so
the optimizer has no other choice than to use a full table scan and then filter the rows to locate any with a matching
number. What is a bit difficult to tell just by looking is how much extra work it is to do the full scan and filter. In this
case, the EMPLOYEES table has 107 rows, but the estimated number of rows only reflects how many rows are to be
returned, not how many have to be accessed to check the filter condition. Because the query returned only one
matching row for the phone number specified, this means 106 (virtually all) rows were rejected. Again, why incur all
this work if having an index allows just the data you need to be accessed directly? Listing 6-18 shows what happens
when the index is available.

Listing 6-18.  Creating a New Index to Improve Performance

SQL> -- Create new index on phone_number
SQL>
SQL> create index hr.emp_phone_ix on hr.employees (phone_number) compute statistics ;
SQL>
SQL> select /* KM4 */ last_name, phone_number
 2 from employees
 3 where phone_number = '650.507.9822';
 
LAST_NAME PHONE_NUMBER
------------------------- --------------------
Feeney 650.507.9822
 
SQL> @pln KM4
 
PLAN_TABLE_OUTPUT
--
SQL_ID cs0bvb2zrsp66, child number 0

select /* KM4 */ last_name, phone_number from hr.employees where
phone_number = '650.507.9822'
 
Plan hash value: 2867517494
 
--
| Id | Operation | Name | E-Rows | A-Rows | Buffers |
--
0	SELECT STATEMENT			1	3
1	TABLE ACCESS BY INDEX	EMPLOYEES	1	1	3
	ROWID BATCHED				
* 2	INDEX RANGE SCAN	EMP_PHONE_IX	1	1	2
--
 

Chapter 6 ■ SQL Execution Plans

163

Predicate Information (identified by operation id):

 2 - access("PHONE_NUMBER"='650.507.9822')
 

With the index in place, the optimizer chooses it to access the rows needed to satisfy the query. Now, instead of
having to check all 107 rows in the table, only the one row that matches the requested phone number is accessed via the
index. The number of blocks accessed was cut by more than half from seven to three. Imagine if this table was larger!

Index Deficiencies Wrap-up
In both cases (either finding a missing index or determining the need for a new index), the main thing to watch out for
is excess throwaway. The more blocks that have to be accessed to check filter conditions on rows that are ultimately
not included in the result set, the poorer the performance becomes. You may not even notice it if data volume is low
in the beginning, but the larger the tables become, the more effect accessing unneeded blocks has on response time.

Determining Stale Statistics
Another way plan information can help you is by making it easy to spot when statistics might be out of date.
Listing 6-19 shows an example of how plan information can point out stale statistics.

Listing 6-19.  Using Plan Information to Determine When Statistics May Be out of Date

SQL> -- Check current column statistics (collected at 100%)
SQL>
SQL> select column_name, num_distinct, density
 2 from user_tab_cols
 3 where table_name = 'MY_OBJECTS' ;
 
Column Name NUM_DISTINCT DENSITY
------------------- --------------- ---------------
OWNER 29 .03448275862069
OBJECT_NAME 44245 .00002260142389
SUBOBJECT_NAME 161 .00621118012422
OBJECT_ID 72588 .00001377638177
DATA_OBJECT_ID 7748 .00012906556531
OBJECT_TYPE 44 .02272727272727
CREATED 1418 .00070521861777
LAST_DDL_TIME 1480 .00067567567568
TIMESTAMP 1552 .00064432989691
STATUS 1 1
TEMPORARY 2 .5
GENERATED 2 .5
SECONDARY 2 .5
NAMESPACE 21 .04761904761905
EDITION_NAME 0 0
 

Chapter 6 ■ SQL Execution Plans

164

SQL> -- Execute query for object_type = 'TABLE'
SQL>
SQL> select /* KM7 */ object_id, object_name
 2 from my_objects
 3* where object_type = 'TABLE';
...
365056 rows selected.
 
SQL> @pln KM7
 
PLAN_TABLE_OUTPUT

SQL_ID 7xphu2p2m9hdr, child number 0

select /* KM7 */ object_id, object_name from my_objects where
object_type = 'TABLE'
 
Plan hash value: 2785906523
 
--
| Id | Operation | Name | E-Rows | A-Rows | Buffers |
--
0	SELECT STATEMENT			365K	55697
1	TABLE ACCESS BY INDEX	MY_OBJECTS	1650	365K	55697
	ROWID BATCHED				
* 2	INDEX RANGE SCAN	OBJECT_TYPE_IX	1650	365K	26588
--
 
Predicate Information (identified by operation id):

 2 - access("OBJECT_TYPE"='TABLE')
 

In this example, the optimizer computed that only 1650 rows would be returned by the query for OBJECT_TYPE =
'TABLE' when, in reality, the query returned more than 365,000 rows. Because I built the data for this table, I can tell
you that this was because the statistics had been gathered prior to the addition of a few hundred thousand rows. When
the plan was chosen, the optimizer didn’t have the updated information and it selected a plan using an index scan
on the object_type index based on the old statistics. However, in reality, there were more than 474,000 total rows in
the table and more than 365,000 of them matched the filter criteria. So, how do we correct the problem? Listing 6-20
shows one way you can identify the difference between the actual number of rows and the statistics value.

Listing 6-20.  Identifying Difference Between Actual Rows and Statistics Rows Value

SQL> -- Compare statistic to actual
SQL>
SQL> select num_rows
 2 from dba_tables
 3 where table_name = 'MY_OBJECTS';
 

Chapter 6 ■ SQL Execution Plans

165

 NUM_ROWS

 72588
 
1 row selected.
 
SQL> select count(*)
 2 from my_objects ;
 
 COUNT(*)

 434792
 
1 row selected.
 
SQL> -- Update statistics
SQL>
SQL> exec dbms_stats.gather_table_stats(user,'MY_OBJECTS',estimate_percent=>100,
cascade=>true,method_opt=>'FOR ALL COLUMNS SIZE 1');
 
PL/SQL procedure successfully completed. 
SQL> select /* KM8 */ object_id, object_name
 2 from my_objects
 3* where object_type = 'TABLE';
...
365056 rows selected.
 
SQL> @pln KM8
 
PLAN_TABLE_OUTPUT
--
SQL_ID 2qq7ram92zc85, child number 0

select /* KM8 */ object_id, object_name from my_objects where
object_type = 'TABLE'
 
Plan hash value: 2785906523
 
--
| Id | Operation | Name | E-Rows | A-Rows | Buffers |
--
0	SELECT STATEMENT			365K	54553
1	TABLE ACCESS BY INDEX	MY_OBJECTS	9882	365K	54553
	ROWID BATCHED				
* 2	INDEX RANGE SCAN	OBJECT_TYPE_IX	9882	365K	25444
--
 
Predicate Information (identified by operation id):

 2 - access("OBJECT_TYPE"='TABLE')
 

Chapter 6 ■ SQL Execution Plans

166

As this listing shows, when you determine that the actual number of rows in the table is significantly different
than the number of rows captured by the statistics, a new collection is made and the query is executed again. This
time, the estimate goes up to 9882 rows, but this is still an incorrect estimate compared with the actual rows returned.
What happened? You collected fresh statistics and even used a 100 percent estimate, so everything should be correct,
right? Well, the problem was that you didn’t collect histogram statistics, which tell the optimizer about the heavy
skew in the distribution of values of the object_type column. You need to use a method_opt parameter that collects
histograms. Actually, you need to use just the default method_opt parameter, which is FOR ALL COLUMNS SIZE AUTO.
This value collects histograms on columns automatically. Listing 6-21 shows what happens after collecting histogram
statistics and executing the query again.

Listing 6-21.  Collecting Histogram Statistics

SQL> -- Collect histogram statistics
SQL>
SQL> exec dbms_stats.gather_table_stats(user,'MY_OBJECTS',estimate_percent=>100,
cascade=>true,method_opt=>'FOR ALL COLUMNS SIZE AUTO');
 
PL/SQL procedure successfully completed.
 
SQL> select /* KM9 */ object_id, object_name
 2 from my_objects
 3* where object_type = 'TABLE';
...
365056 rows selected.
 
SQL> @pln KM9
 
PLAN_TABLE_OUTPUT

SQL_ID dbvrtvutuyp6z, child number 0

select /* KM9 */ object_id, object_name from my_objects where
object_type = 'TABLE'
 
Plan hash value: 880823944
 
--
| Id | Operation | Name | E-Rows | A-Rows | Buffers |
--
| 0 | SELECT STATEMENT | | | 365K| 30000 |
|* 1 | TABLE ACCESS FULL| MY_OBJECTS | 365K| 365K| 30000 |
--
 
Predicate Information (identified by operation id):

 1 - filter("OBJECT_TYPE"='TABLE')
 

Chapter 6 ■ SQL Execution Plans

167

So, you did the collection again and this time used method_opt=>'FOR ALL COLUMNS SIZE AUTO'. This setting
allows Oracle to collect a histogram properly on the object_type column. Now when you execute the query, the
estimate is right on target and you get a full table scan plan instead. In this case, the full scan operation is the best
choice because the query returns nearly 80 percent of all the rows in the table and a full scan accesses fewer blocks
than an index scan plan would. We examine histograms and how statistics are used by the optimizer in a later chapter.

By the way, you could also check the STALE_STATS column value for the table in the DBA_TAB_STATISTICS view to
determine whether statistics are out of date. This column shows a value of YES if there have been enough changes to
the table to exceed a ten-percent threshold.

Summary
There is a wealth of information contained in plan output for every SQL statement. In this chapter, you saw how
plan output can be obtained using EXPLAIN PLAN to get only estimated information, or how plan output can be
obtained after executing the statement and extracting the plan information from the library cache using DBMS_XPLAN.
In addition, plan information can be displayed using a SQL Monitor Report. At times, you may only be able to use
EXPLAIN PLAN output, particularly if a query is very long-running and it is not easy or possible to wait to execute the
query and get its actual execution data. However, to have the best information possible from which to make decisions
about indexing, query syntax changes, or the need to update statistics or parameter settings, the use of actual plan
execution statistics is the way to go. And, by using the active SQL Monitoring Report, you can even see the plan data
while the statement is still executing, so you don’t have to wait until it completes to determine where the most time
and resources are being consumed.

I covered some of the ways you can use plan information to help diagnose and solve performance problems for
a SQL statement. By carefully reviewing plan output, you can uncover suboptimal or missing indexes and determine
whether statistics are stale and need to be updated. Using the knowledge you’ve gained about the various plan
operations for accessing and joining data, and understanding how to read and use plan information effectively, you
are equipped not only to solve problems quickly and efficiently when they arise, but also to verify the characteristics
and performance footprint of any SQL statement so that you can write well-behaved SQL from the start.

169

Chapter 7

Advanced Grouping

The GROUP BY clause is a venerable member of the SQL statement family. After learning basic SELECT statements,
it is one of first specialized parts of SQL that many practitioners cut their teeth on when learning to create aggregations
from raw data and transforming that data into useful information.

At times in this chapter, you may think the examples seem trivial. These examples are constructed with the
purpose of demonstrating the results of different facets of the GROUP BY clause, without any requirement to focus
needlessly on the values in the output. Although there are many excellent examples based on financial data
throughout the Oracle documentation, those examples are sometimes difficult to follow because too much attention
is focused on the output values rather than how they were obtained. The goal in this chapter is to help you see the
tremendous possibilities for how grouping techniques can assist you in summarizing data easily and effectively.

Basic GROUP BY Usage
If you needed to know the number of employees in each department of your company, you might use SQL such as
that in Listing 7-1, because it produces one row of output for each row in the DEPT table plus a count of the employees
from each department. The output includes the OPERATIONS department, which does not have any employees. This row
would not appear in the output from a standard JOIN, so the LEFT OUTER JOIN statement was used to include rows
from the DEPT table that do not have any matching rows in the EMP table.

Listing 7-1.  Basic GROUP BY

SQL> select d.dname, count(empno) empcount
 2 from scott.dept d
 3 left outer join scott.emp e on d.deptno = e.deptno
 4 group by d.dname
 5 order by d.dname;
 
DNAME EMPCOUNT
-------------- ----------
ACCOUNTING 3
OPERATIONS 0
RESEARCH 5
SALES 6
 

The columns used in the GROUP BY must match the set of columns in the SELECT statement on which no aggregation
functions are used. In Listing 7-1, for example, there are two columns in the SELECT list, deptno and empno. The COUNT()
function is used to perform aggregation on the EMPNO column so that the total number of employees in each department
can be determined. The only other column in the SELECT list, deptno, must then be included in the GROUP BY clause.
Failure to include the correct columns results in an error condition, as seen in Listing 7-2.

Chapter 7 ■ Advanced Grouping

170

Listing 7-2.  GROUP BY Columns Requirement

SQL>select d.dname, d.loc, count(empno) empcount
 2 from scott.emp e
 3 join scott.dept d on d.deptno = e.deptno
 4 group by d.dname;
select d.dname, d.loc, count(empno) empcount
 *
ERROR at line 1:
ORA-00979: not a GROUP BY expression
 

There is a very important point you need to understand about GROUP BY: Although the output of a SELECT
statement that includes a GROUP BY clause may always appear to be sorted, you cannot expect GROUP BY always to
return your data in sorted order. If the output must be sorted, you must use an ORDER BY clause. This has always been
the case with Oracle, and this behavior has been documented since at least Oracle 7.0.

Although the sorting behavior of GROUP BY is not mentioned specifically in the Oracle 7 documentation, there
was little room for doubt when the 9i documentation was published, which specifically states that GROUP BY does not
guarantee the order of the result set.

Listing 7-3 provides a good example of GROUP BY not returning results in sorted order. Notice that the data are
not sorted. The only way to guarantee sorted data is by including the ORDER BY clause, which must follow the
GROUP BY clause.

Listing 7-3.  GROUP BY Not Sorted

SQL> select deptno, count(*)
 2 from emp
 3 group by deptno;
 
 DEPTNO COUNT(*)
---------- ----------
 30 6
 20 5
 10 3
 

The GROUP BY clause may just be one of the most underappreciated workhorses of all the SELECT clauses. It is
quite easy to take it for granted, because after you understand how to include it in a SELECT statement, it is quite easy
to use. Perhaps a better appreciation for just how much work it does (and how much work it saves you from doing)
can be gained by trying to write the SELECT statement in Listing 7-1 without using the GROUP BY clause. There are likely
many different methods by which this can be done.

Think for just a moment about how you might write that SELECT statement. One such attempt was made by me,
your intrepid author, and this attempt is in Listing 7-4. This is not SQL that most people would care to maintain. As you
can see, it does create nearly the same output as that found in Listing 7-1. In addition to being somewhat convoluted,
you must ask yourself: What happens when a new department is added to the DEPT table? Just so there’s no mistake,
when I say this example is convoluted, I actually should say, “Don’t do this!” Although this query may provide the
correct result set, it is a very poor way to get the job done; it is more of an example of how not to write a query.

The answer to the question “What happens when a new department is added to the DEPT table?,” of course, is
that you then need to modify the SQL statement in Listing 7-4 to accommodate the change in the data. Although it
is possible to use dynamic SQL to duplicate the functionality of the SQL to cope with changes to the DEPT table data,
doing so creates a piece of SQL that is even more difficult to follow and even harder to maintain.

Chapter 7 ■ Advanced Grouping

171

Listing 7-4.  Convoluted SQL

SQL> select /* lst7-4 */
 2 distinct dname, decode(
 3 d.deptno,
 4 10, (select count(*) from emp where deptno= 10),
 5 20, (select count(*) from emp where deptno= 20),
 6 30, (select count(*) from emp where deptno= 30),
 7 (select count(*) from emp where deptno not in (10,20,30))
 8) dept_count
 9 from (select distinct deptno from emp) d
 10 join dept d2 on d2.deptno = d.deptno;
 
DNAME DEPT_COUNT
-------------- ----------
SALES 6
ACCOUNTING 3
RESEARCH 5
 
SQL> @pln lst7-4
--
| Id | Operation | Name | Starts | E-Rows | A-Rows |
--
0	SELECT STATEMENT		1		3
1	SORT AGGREGATE		1	1	1
* 2	TABLE ACCESS FULL	EMP	1	3	3
3	SORT AGGREGATE		1	1	1
* 4	TABLE ACCESS FULL	EMP	1	5	5
5	SORT AGGREGATE		1	1	1
* 6	TABLE ACCESS FULL	EMP	1	6	6
7	SORT AGGREGATE		0	1	0
* 8	TABLE ACCESS FULL	EMP	0	4	0
9	HASH UNIQUE		1	3	3
10	MERGE JOIN SEMI		1	3	3
11	TABLE ACCESS BY INDEX ROWID	DEPT	1	4	4
12	INDEX FULL SCAN	PK_DEPT	1	4	4
* 13	SORT UNIQUE		4	14	3
14	TABLE ACCESS FULL	EMP	1	14	14
--
 
Predicate Information (identified by operation id):

 2 - filter("DEPTNO"=10)
 4 - filter("DEPTNO"=20)
 6 - filter("DEPTNO"=30)
 8 - filter(("DEPTNO"<>30 AND "DEPTNO"<>20 AND "DEPTNO"<>10))
 13 - access("D2"."DEPTNO"="DEPTNO")
 filter("D2"."DEPTNO"="DEPTNO")
 

Chapter 7 ■ Advanced Grouping

172

In addition to simplifying immensely the SQL that must be written, the GROUP BY clause eliminates unnecessary
IO in the database. Take another look at Listing 7-4. Notice that a full table scan was performed on the EMP table five
times. If you think this seems rather excessive, you are on the right track. Listing 7-5 shows the same SQL as executed
in Listing 7-1. There is still a full table scan taking place against the EMP table, but it takes place only once—not five
times, as in the convoluted SQL in Listing 7-4.

Listing 7-5.  GROUP BY Execution Plan

SQL> select /* lst7-5 */
 2 d.dname
 3 , count(empno) empcount
 4 from scott.emp e
 5 join scott.dept d on d.deptno = e.deptno
 6 group by d.dname
 7 order by d.dname;
DNAME EMPCOUNT
-------------- ----------
ACCOUNTING 3
RESEARCH 5
SALES 6
 
SQL> @pln lst7-5
 
--
| Id | Operation | Name | Starts | E-Rows | A-Rows |
--
0	SELECT STATEMENT		1		3
1	SORT GROUP BY		1	4	3
2	MERGE JOIN		1	14	14
3	TABLE ACCESS BY INDEX ROWID	DEPT	1	4	4
4	INDEX FULL SCAN	PK_DEPT	1	4	4
* 5	SORT JOIN		4	14	14
6	TABLE ACCESS FULL	EMP	1	14	14
--
 
Predicate Information (identified by operation id):

 5 - access("D"."DEPTNO"="E"."DEPTNO")
 filter("D"."DEPTNO"="E"."DEPTNO")
 

Don’t underestimate the power of the GROUP BY clause! As seen in this section, the GROUP BY clause does
the following:

Makes the SQL more readable.•	

Is easier to write than using many correlated subqueries.•	

Eliminates the need to access the same objects repeatedly (which leads to better •	
performance).

Chapter 7 ■ Advanced Grouping

173

HAVING Clause
Results generated by GROUP BY may be restricted by the criteria found in the HAVING clause. The HAVING clause is quite
versatile, resembling the WHERE clause in the conditions that may be used. Functions, operators, and subqueries may
all be used in the HAVING clause. Listing 7-6 shows a query that returns all departments that have hired at least five
employees since the beginning of the first full year after hiring began.

It’s important to note that the HAVING clause applies to the data after they are grouped. On the other hand, the
WHERE clause acts on the rows as they are fetched, before they are grouped. That the HAVING operation is executed after
all data have been fetched can be seen as FILTER in step 1 of the execution plan shown in Listing 7-6. Notice that an
operator, a function, and subqueries have all been used in the HAVING clause.

Listing 7-6.  HAVING Clause

SQL> select /* lst7-6 */
 2 d.dname
 3 , trunc(e.hiredate,'YYYY') hiredate
 4 , count(empno) empcount
 5 from scott.emp e
 6 join scott.dept d on d.deptno = e.deptno
 7 group by d.dname, trunc(e.hiredate,'YYYY')
 8 having
 9 count(empno) >= 5
 10 and trunc(e.hiredate,'YYYY') between
 11 (select min(hiredate) from scott.emp)
 12 and
 13 (select max(hiredate) from scott.emp)
 14 order by d.dname;
 
DNAME HIREDATE EMPCOUNT
-------------- ------------------- ----------
SALES 01/01/1981 00:00:00 6
 
SQL> @pln lst7-6

| Id | Operation | Name | Starts | E-Rows | A-Rows |

0	SELECT STATEMENT		1		1
* 1	FILTER		1		1
2	SORT GROUP BY		1	1	6
3	MERGE JOIN		1	14	14
4	TABLE ACCESS BY INDEX ROWID	DEPT	1	4	4
5	INDEX FULL SCAN	PK_DEPT	1	4	4
* 6	SORT JOIN		4	14	14
7	TABLE ACCESS FULL	EMP	1	14	14
8	SORT AGGREGATE		1	1	1
9	TABLE ACCESS FULL	EMP	1	14	14
10	SORT AGGREGATE		1	1	1
11	TABLE ACCESS FULL	EMP	1	14	14

Chapter 7 ■ Advanced Grouping

174

Predicate Information (identified by operation id):

 1 - filter((COUNT(*)>=5 AND TRUNC(INTERNAL_FUNCTION("E"."HIREDATE"),
 'fmyyyy')>= AND TRUNC(INTERNAL_FUNCTION("E"."HIREDATE"),'fmyyyy')<=))
 6 - access("D"."DEPTNO"="E"."DEPTNO")
 filter("D"."DEPTNO"="E"."DEPTNO") 

“New” GROUP BY Functionality
At times, it’s necessary to write SQL that appears as unruly as the convoluted example in Listing 7-4 so that the desired
output can be obtained. The need for writing such unwieldy SQL has become much less frequent because of the
advanced functionality Oracle has included in SQL during the past few years. Much of what is covered in this chapter
is not actually new; it has been available for quite some time.

You can start exploring some of the advanced grouping functionality in Oracle Database by experimenting with
the CUBE and ROLLUP extensions to GROUP BY, and the GROUPING function. It takes a little effort to get started, because
the benefits of newer functionality are not always clear until you spend some time learning to use them.

CUBE Extension to GROUP BY
The CUBE extension is not exactly a newcomer to Oracle. It was first introduced in Oracle 8i in 1999. When used
with a GROUP BY clause, it causes all possible combinations of the elements included in the arguments to CUBE to be
considered for each row. This operation generates more rows than actually exist in the table.1

Let’s look at an example that generates all possible combinations of FIRST_NAME and LAST_NAME for each row in
the HR.EMPLOYEES table. The CUBE function was intended for use in generating cross-tab reports with lots of numbers
and dollar signs. When trying to understand new functionality, I find it helps to dumb down the SQL a bit so I can see
what’s going on without getting distracted with subtotals.

Examine Listing 7-7 to see the results of using CUBE as described with the HR.EMPLOYEES table. Notice there are
three rows returned for most employees. In other words, there are 301 rows returned, even though there are only 107
rows in the table. The first query in the listing shows the basic GROUP BY, and resulting data, for comparison.

Listing 7-7.  CUBE Operation on HR.EMPLOYEES

SQL>select last_name
 , first_name
 3 from hr.employees
 4 group by first_name,last_name;
 
LAST_NAME FIRST_NAME
------------------------- --------------------
Abel Ellen
Ande Sundar
Atkinson Mozhe
Austin David
Baer Hermann
Baida Shelli
Banda Amit

1If there are no rows in the table, GROUP BY CUBE() returns zero rows.

Chapter 7 ■ Advanced Grouping

175

Bates Elizabeth
Bell Sarah
Bernstein David
Bissot Laura
Bloom Harrison
Bull Alexis
Cabrio Anthony
Cambrault Gerald
Cambrault Nanette
Chen John
Chung Kelly
Colmenares Karen
Davies Curtis
De Haan Lex
Dellinger Julia
Dilly Jennifer
Doran Louise
Ernst Bruce
Errazuriz Alberto
Everett Britney
Faviet Daniel
Fay Pat
Feeney Kevin
Fleaur Jean
Fox Tayler
Fripp Adam
Gates Timothy
Gee Ki
Geoni Girard
Gietz William
Grant Douglas
Grant Kimberely
Greenberg Nancy
Greene Danielle
Hall Peter
Hartstein Michael
Higgins Shelley
Himuro Guy
Hunold Alexander
Hutton Alyssa
Johnson Charles
Jones Vance
Kaufling Payam
Khoo Alexander
King Janette
King Steven
Kochhar Neena
Kumar Sundita
Ladwig Renske
Landry James
Lee David

Chapter 7 ■ Advanced Grouping

176

Livingston Jack
Lorentz Diana
Mallin Jason
Markle Steven
Marlow James
Marvins Mattea
Matos Randall
Mavris Susan
McCain Samuel
McEwen Allan
Mikkilineni Irene
Mourgos Kevin
Nayer Julia
OConnell Donald
Olsen Christopher
Olson TJ
Ozer Lisa
Partners Karen
Pataballa Valli
Patel Joshua
Perkins Randall
Philtanker Hazel
Popp Luis
Rajs Trenna
Raphaely Den
Rogers Michael
Russell John
Sarchand Nandita
Sciarra Ismael
Seo John
Sewall Sarath
Smith Lindsey
Smith William
Stiles Stephen
Sullivan Martha
Sully Patrick
Taylor Jonathon
Taylor Winston
Tobias Sigal
Tucker Peter
Tuvault Oliver
Urman Jose Manuel
Vargas Peter
Vishney Clara
Vollman Shanta
Walsh Alana
Weiss Matthew
Whalen Jennifer
Zlotkey Eleni
 
107 rows selected.
 

Chapter 7 ■ Advanced Grouping

177

SQL> set autotrace on statistics
 
SQL> with emps as (
 2 select /* lst7-7 */
 3 last_name
 4 , first_name
 5 from hr.employees
 6 group by cube(first_name,last_name)
 7)
 8 select rownum
 9 , last_name
 10 , first_name
 11 from emps;
 
 ROWNUM LAST_NAME FIRST_NAME
---------- ------------------------- --------------------
 1
 2 Ki
 3 TJ
 4 Den
 5 Guy
 6 Lex
 7 Pat
...
 231 Vargas
 232 Vargas Peter
 233 Whalen
 234 Whalen Jennifer
 235 De Haan
 236 De Haan Lex
 237 Everett
 238 Everett Britney
...
301 rows selected.
 
Statistics

 759 recursive calls
 0 db block gets
 188 consistent gets
 9 physical reads
 0 redo size
 5990 bytes sent via SQL*Net to client
 557 bytes received via SQL*Net from client
 5 SQL*Net roundtrips to/from client
 7 sorts (memory)
 0 sorts (disk)
 301 rows processed
 

Chapter 7 ■ Advanced Grouping

178

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Starts | E-Rows | A-Rows |

0	SELECT STATEMENT		1		301
1	COUNT		1		301
2	VIEW		1	107	301
3	SORT GROUP BY		1	107	301
4	GENERATE CUBE		1	107	428
5	SORT GROUP BY NOSORT		1	107	107
6	INDEX FULL SCAN	EMP_NAME_IX	1	107	107

Table 7-1 shows why there are three rows returned for each name pair. For each LAST_NAME, FIRST_NAME pair,
CUBE substitutes NULL for each element in turn. The rows generated by CUBE are referred to in the Oracle documentation
as superaggregate rows, which are recognizable by the NULL values placed in the columns being operated in. The results
described in Table 7-1 appear in the output in Listing 7-7 as a result of the GROUP BY CUBE(FIRST_NAME,LAST_NAME)
operation.

Table 7-1.  CUBE Operation

First Name Last Name

Vance Jones

Vance NULL

NULL Jones

Did you notice that the first row returned in Listing 7-7 contains NULL for both LAST_NAME and FIRST_NAME? When
considering all possible combinations of a pair of arguments to CUBE, as seen in Listing 7-7, there is a combination
of (NULL, NULL) that is returned for each row in the GENERATE CUBE operation. These 428 rows are then processed by
the SORT GROUP BY operation, which removes all but one of the NULL pair of columns to produce the final 301 rows to
satisfy the query.

Knowing how CUBE operates, you can predict how many rows should be created when using GROUP BY CUBE.
Listing 7-8 shows that the number of rows returned can be predicted by adding the count for three different, distinct
combinations of names, and adding one to that to account for the null pair.

Listing 7-8.  Predicting CUBE Return Rows

SQL> with counts as (
 2 select
 3 count(distinct first_name) first_name_count
 4 , count(distinct last_name) last_name_count
 5 , count(distinct(first_name||last_name)) full_name_count
 6 from hr.employees
 7)
 8 select first_name_count
 9 ,last_name_count
 10 ,full_name_count
 11 ,first_name_count + last_name_count
 12 + full_name_count + 1 total_count
 13 from counts;
 

Chapter 7 ■ Advanced Grouping

179

FIRST_NAME_COUNT LAST_NAME_COUNT FULL_NAME_COUNT TOTAL_COUNT
---------------- --------------- --------------- -----------
 91 102 107 301
 

You can simulate the operation of CUBE by using SQL to reproduce the steps taken by the database, both to see
how the operation works and to see just how much work the database is saving you by using GROUP BY CUBE.

By examining the execution plan shown in Listing 7-7, you can see that the SORT GROUP BY NOSORT operation
(step 5) returns 107 rows to the GENERATE CUBE operation (step 4), which in turn generates 428 rows. Why are 428
rows generated? Listing 7-9 shows that 428 is the expected number of rows if all combinations of LAST_NAME and
FIRST_NAME are generated. The GROUP BY then reduces the output to 301 rows, just as the CUBE extension did, but with
an important difference: The manual method of UNION ALL and GROUP BY used in Listing 7-9 required three full scans
of the EMP_NAME_IX index and one full scan of the EMP_EMAIL_UK index. Contrast this with the single full scan of the
EMP_NAME_IX index in Listing 7-7 as performed by the GROUP BY extension.

The CUBE extension didn’t merely reduce the SQL required to generate the same data as the UNION ALL and GROUP BY
combination, it also reduced the number of full index scans from four to one. The optimizer chose to use index
EMP_EMAIL_UK rather than the EMP_NAME_IX index, resulting in ten physical reads rather than the nine seen in Listing 7-7.
Using the small dataset in the Oracle demo schemas does not cause a large difference in execution time for the
example queries. With large datasets, however, the effect of using four INDEX FULL SCAN operations rather than just
one is quite obvious.

Listing 7-9.  Generate CUBE Rows with UNION ALL

SQL> with emps as (
 2 select last_name, first_name from hr.employees
 3) ,
 4 mycube as (
 5 select last_name, first_name from emps
 6 union all
 7 select last_name, null first_name from emps
 8 union all
 9 select null last_name, first_name from emps
 10 union all
 11 select null last_name, null first_name from emps
 12)
 13 select /*+ gather_plan_statistics */ *
 14 from mycube
 15 group by last_name, first_name;
 
LAST_NAME FIRST_NAME
------------------------- --------------------
Atkinson Mozhe
Bissot Laura
Grant Kimberely
...
301 rows selected.
 

Chapter 7 ■ Advanced Grouping

180

Statistics
--
 759 recursive calls
 0 db block gets
 191 consistent gets
 10 physical reads
 0 redo size
 5477 bytes sent via SQL*Net to client
 557 bytes received via SQL*Net from client
 5 SQL*Net roundtrips to/from client
 6 sorts (memory)
 0 sorts (disk)
 301 rows processed
 
PLAN_TABLE_OUTPUT

| Id | Operation | Name | Starts | E-Rows | A-Rows

| 0 | SELECT STATEMENT | | 1 | | 301
| 1 | HASH GROUP BY | | 1 | 428 | 301
| 2 | VIEW | | 1 | 428 | 428
| 3 | UNION-ALL | | 1 | | 428
| 4 | INDEX FULL SCAN| EMP_NAME_IX | 1 | 107 | 107
| 5 | INDEX FULL SCAN| EMP_NAME_IX | 1 | 107 | 107
| 6 | INDEX FULL SCAN| EMP_NAME_IX | 1 | 107 | 107
| 7 | INDEX FULL SCAN| EMP_EMAIL_UK | 1 | 107 | 107
-- 

Putting CUBE to Work
When teaching us a new word in fourth grade English class, Mrs. Draper would say, “Now use it in a sentence.” Much
like that, you now need to put the CUBE extension to practical use. It was fun to see what it is doing and just how much
work it saves you, but now you need to see its practical use.

When using the GROUP BY clause to perform aggregations, you probably write several similar SQL
statements—just so you can see the aggregations based on different sets of columns, much like what is included
in Listing 7-9. You already know that the CUBE extension can eliminate a lot of work in the database, so now let’s
put it to “real-world” practice, using the test demo test data created earlier.

The SALES_HISTORY schema contains sales data for the years 1998 to 2001. You need to provide a report to satisfy
the following request: Please show me all sales data for the year 2001. I would like to see sales summarized by product
category, with aggregates based on ten-year customer age ranges, income levels, as well as summaries broken out by
income level regardless of age group, and by age group regardless of income levels.

Your task probably seems daunting at first, but you know all the data are available. You need to build a query
using the COSTS, CUSTOMERS, PRODUCTS, SALES, and TIMES tables. (Now would be a good time to put this book down
and try your hand at building such a query.) Perhaps you create a query like the one in Listing 7-10, because it is a
common type of solution for such a request. Prior to the introduction of the CUBE extension, Listing 7-10 is the style of
query that would most often be used to satisfy the request.

Chapter 7 ■ Advanced Grouping

181

Listing 7-10.  UNION ALL Query of Sales Data

SQL> with tsales as (
 2 select /* lst7-10 */
 3 s.quantity_sold
 4 , s.amount_sold
 5 , to_char(mod(cust_year_of_birth,10) * 10) || '-' ||
 6 to_char((mod(cust_year_of_birth,10) * 10) + 10) age_range
 7 , nvl(c.cust_income_level,'A: Below 30,000') cust_income_level
 8 , p.prod_name
 9 , p.prod_desc
 10 , p.prod_category
 11 , (pf.unit_cost * s.quantity_sold) total_cost
 12 , s.amount_sold - (pf.unit_cost * s.quantity_sold) profit
 13 from sh.sales s
 14 join sh.customers c on c.cust_id = s.cust_id
 15 join sh.products p on p.prod_id = s.prod_id
 16 join sh.times t on t.time_id = s.time_id
 17 join sh.costs pf on
 18 pf.channel_id = s.channel_id
 19 and pf.prod_id = s.prod_id
 20 and pf.promo_id = s.promo_id
 21 and pf.time_id = s.time_id
 22 where (t.fiscal_year = 2001)
 23)
 24 , gb as (
 25 select -- Q1 - all categories by cust income and age range
 26 'Q1' query_tag
 27 , prod_category
 28 , cust_income_level
 29 , age_range
 30 , sum(profit) profit
 31 from tsales
 32 group by prod_category, cust_income_level, age_range
 33 union all
 34 select -- Q2 - all categories by cust age range
 35 'Q2' query_tag
 36 , prod_category
 37 , 'ALL INCOME' cust_income_level
 38 , age_range
 39 , sum(profit) profit
 40 from tsales
 41 group by prod_category, 'ALL INCOME', age_range
 42 union all
 43 select -- Q3 – all categories by cust income
 44 'Q3' query_tag
 45 , prod_category
 46 , cust_income_level
 47 , 'ALL AGE' age_range
 48 , sum(profit) profit
 49 from tsales
 50 group by prod_category, cust_income_level, 'ALL AGE'

Chapter 7 ■ Advanced Grouping

182

 51 union all
 52 select -- Q4 - all categories
 53 'Q4' query_tag
 54 , prod_category
 55 , 'ALL INCOME' cust_income_level
 56 , 'ALL AGE' age_range
 57 , sum(profit) profit
 58 from tsales
 59 group by prod_category, 'ALL INCOME', 'ALL AGE'
 60)
 61 select *
 62 from gb
 63 order by prod_category, profit;
 
QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------ -------------------- -------- ---------------
...
Q2 Hardware K: 250,000 - 299,999 ALL AGE $26,678.00
Q2 Hardware L: 300,000 and above ALL AGE $28,974.28
Q1 Hardware F: 110,000 - 129,999 70-80 $30,477.16
Q2 Hardware J: 190,000 - 249,999 ALL AGE $43,761.47
Q2 Hardware B: 30,000 - 49,999 ALL AGE $53,612.04
Q2 Hardware A: Below 30,000 ALL AGE $55,167.88
Q2 Hardware I: 170,000 - 189,999 ALL AGE $57,089.05
Q2 Hardware C: 50,000 - 69,999 ALL AGE $76,612.64
Q3 Hardware ALL INCOME 60-70 $85,314.04
Q3 Hardware ALL INCOME 10-20 $90,849.87
Q3 Hardware ALL INCOME 0-10 $92,207.47
Q3 Hardware ALL INCOME 50-60 $93,811.96
Q3 Hardware ALL INCOME 80-90 $95,391.82
Q2 Hardware H: 150,000 - 169,999 ALL AGE $95,437.74
Q3 Hardware ALL INCOME 40-50 $97,492.51
Q3 Hardware ALL INCOME 20-30 $101,140.69
Q2 Hardware D: 70,000 - 89,999 ALL AGE $102,940.44
Q3 Hardware ALL INCOME 30-40 $102,946.85
Q3 Hardware ALL INCOME 90-100 $110,310.69
Q2 Hardware G: 130,000 - 149,999 ALL AGE $112,688.64
Q3 Hardware ALL INCOME 70-80 $117,920.88
Q2 Hardware E: 90,000 - 109,999 ALL AGE $135,154.59
Q2 Hardware F: 110,000 - 129,999 ALL AGE $199,270.01
Q4 Hardware ALL INCOME ALL AGE $987,386.78
...
714 rows selected.
Elapsed: 00:00:14.53
 

Chapter 7 ■ Advanced Grouping

183

Statistics
--
 18464 recursive calls
 4253 db block gets
 22759 consistent gets
 10521 physical reads
 4216 redo size
 25086 bytes sent via SQL*Net to client
 601 bytes received via SQL*Net from client
 9 SQL*Net roundtrips to/from client
 174 sorts (memory)
 0 sorts (disk)
 714 rows processed
 
PLAN_TABLE_OUTPUT
--
| Id |Operation |Name |Starts |E-Rows |A-Rows |
--
0	SELECT STATEMENT		1		714
1	TEMP TABLE TRANSFORMATION		1		714
2	LOAD AS SELECT		1		0
* 3	HASH JOIN		1	17116	258K
4	TABLE ACCESS FULL	PRODUCTS	1	72	72
* 5	HASH JOIN		1	17116	258K
* 6	HASH JOIN		1	17116	258K
* 7	TABLE ACCESS FULL	TIMES	1	304	364
8	PARTITION RANGE AND		1	82112	259K
* 9	HASH JOIN		4	82112	259K
10	TABLE ACCESS FULL	COSTS	4	82112	29766
11	TABLE ACCESS FULL	SALES	4	918K	259K
12	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500
13	SORT ORDER BY		1	16	714
14	VIEW		1	16	714
15	UNION-ALL		1		714
16	HASH GROUP BY		1	3	599
17	VIEW		1	17116	258K
18	TABLE ACCESS FULL	SYS_TEMP_0FD9D6620	1	17116	258K
19	HASH GROUP BY		1	4	60
20	VIEW		1	17116	258K
21	TABLE ACCESS FULL	SYS_TEMP_0FD9D6620	1	17116	258K
22	HASH GROUP BY		1	4	50
23	VIEW		1	17116	258K
24	TABLE ACCESS FULL	SYS_TEMP_0FD9D6620	1	17116	258K
25	HASH GROUP BY		1	5	5
26	VIEW		1	17116	258K
27	TABLE ACCESS FULL	SYS_TEMP_0FD9D6620	1	17116	258K
--
 

Looking at Listing 7-10, notice four separate queries joined by the UNION ALL operator. These queries are labeled
Q1 through Q4. The output from the query includes a QUERY_TAG column so that the results from each separate query
can be identified clearly in the output. The customer is happy; the output is exactly the output asked for. The query
can also be changed easily to report data for any year.

Chapter 7 ■ Advanced Grouping

184

The operations folks that run the data center, however, are not so happy with this new report. When you take a
look at the query statistics for the SQL, you can understand why they may not hold this report in high regard. Maybe
it’s the 10,521 physical reads that concerns them. If the query was run only once, this would not be problem, but the
marketing folks are running this query multiple times daily to report on different years, trying to discover sales trends,
and it is causing all sorts of havoc as IO rates and response times increase for other users of the database.

Notice there are four table scans taking place in the execution plan. The factored subquery tsales allows the
optimizer to create a temporary table that can then be used by all the queries in the gb subquery, but the use of UNION
ALL makes it necessary to do four full table scans on that table, resulting in a lot of database IO.

Thinking back on your earlier experiment with CUBE, you know that multiple queries, each doing a GROUP BY
and joined by UNION ALL, can be replaced with one query using GROUP BY with the CUBE extension. This is because of
the requirement to create summaries based on all possible combinations of the CUST_INCOME_LEVEL and AGE_RANGE
columns output from the tsales subquery. The CUBE extension can accomplish the same result, but with less code
and less database IO.

Although the difference in IO rate and timing in our earlier experiment was not very significant, notice now,
that when used with larger datasets, the difference can be substantial. Listing 7-11 shows the query after it has been
modified to use the CUBE extension to GROUP BY.

Listing 7-11.  Replace UNION ALL with CUBE

SQL> with tsales as (
 2 select /*+ gather_plan_statistics */
 3 s.quantity_sold
 4 , s.amount_sold
 5 , to_char(mod(cust_year_of_birth,10) * 10) || '-' ||
 6 to_char((mod(cust_year_of_birth,10) * 10) + 10) age_range
 7 , nvl(c.cust_income_level,'A: Below 30,000') cust_income_level
 8 , p.prod_name
 9 , p.prod_desc
 10 , p.prod_category
 11 , (pf.unit_cost * s.quantity_sold) total_cost
 12 , s.amount_sold - (pf.unit_cost * s.quantity_sold) profit
 13 from sh.sales s
 14 join sh.customers c on c.cust_id = s.cust_id
 15 join sh.products p on p.prod_id = s.prod_id
 16 join sh.times t on t.time_id = s.time_id
 17 join sh.costs pf on
 18 pf.channel_id = s.channel_id
 19 and pf.prod_id = s.prod_id
 20 and pf.promo_id = s.promo_id
 21 and pf.time_id = s.time_id
 22 where (t.fiscal_year = 2001)
 23)
 24 select
 25 'Q' || decode(cust_income_level,
 26 null,decode(age_range,null,4,3),
 27 decode(age_range,null,2,1)
 28) query_tag
 29 , prod_category
 30 , cust_income_level
 31 , age_range
 32 , sum(profit) profit

Chapter 7 ■ Advanced Grouping

185

 33 from tsales
 34 group by prod_category, cube(cust_income_level,age_range)
 35 order by prod_category, profit;
 
QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------ -------------------- -------- ---------------
...
Q2 Hardware K: 250,000 - 299,999 $26,678.00
Q2 Hardware L: 300,000 and above $28,974.28
Q1 Hardware F: 110,000 - 129,999 70-80 $30,477.16
Q2 Hardware J: 190,000 - 249,999 $43,761.47
Q2 Hardware B: 30,000 - 49,999 $53,612.04
Q2 Hardware A: Below 30,000 $55,167.88
Q2 Hardware I: 170,000 - 189,999 $57,089.05
Q2 Hardware C: 50,000 - 69,999 $76,612.64
Q3 Hardware 60-70 $85,314.04
Q3 Hardware 10-20 $90,849.87
Q3 Hardware 0-10 $92,207.47
Q3 Hardware 50-60 $93,811.96
Q3 Hardware 80-90 $95,391.82
Q2 Hardware H: 150,000 - 169,999 $95,437.74
Q3 Hardware 40-50 $97,492.51
Q3 Hardware 20-30 $101,140.69
Q2 Hardware D: 70,000 - 89,999 $102,940.44
Q3 Hardware 30-40 $102,946.85
Q3 Hardware 90-100 $110,310.69
Q2 Hardware G: 130,000 - 149,999 $112,688.64
Q3 Hardware 70-80 $117,920.88
Q2 Hardware E: 90,000 - 109,999 $135,154.59
Q2 Hardware F: 110,000 - 129,999 $199,270.01
Q4 Hardware $987,386.78
...
714 rows selected.
Elapsed: 00:00:08.98
 
Statistics
--
 17901 recursive calls
 0 db block gets
 5935 consistent gets
 2169 physical reads
 260 redo size
 24694 bytes sent via SQL*Net to client
 601 bytes received via SQL*Net from client
 9 SQL*Net roundtrips to/from client
 174 sorts (memory)
 0 sorts (disk)
 714 rows processed
 

Chapter 7 ■ Advanced Grouping

186

PLAN_TABLE_OUTPUT

| Id |Operation | Name | Sts | E-Rows| A-Rows|

0	SELECT STATEMENT		1		714
1	SORT ORDER BY		1	2251	714
2	SORT GROUP BY		1	2251	714
3	GENERATE CUBE		1	2251	2396
4	SORT GROUP BY		1	2251	599
* 5	HASH JOIN		1	17116	258K
6	VIEW	index$_join$_004	1	72	72
* 7	HASH JOIN		1		72
8	INDEX FAST FULL SCAN	PRODUCTS_PK	1	72	72
9	INDEX FAST FULL SCAN	PRODUCTS_PCAT_IX	1	72	72
* 10	HASH JOIN		1	17116	258K
* 11	HASH JOIN		1	17116	258K
* 12	TABLE ACCESS FULL	TIMES	1	304	364
13	PARTITION RANGE AND		1	82112	259K
* 14	HASH JOIN		4	82112	259K
15	TABLE ACCESS FULL	COSTS	4	82112	29766
16	TABLE ACCESS FULL	SALES	4	918K	259K
17	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500

After running the new query, the first thing to look at are the statistics and the execution plan. Removing the entire
gb subquery and using GROUP BY CUBE on the output from the tsales subquery reduced logical IO (consistent gets)
from 22,759 to 5935 (by nearly a factor of four) and reduced physical IO from 10,521 physical reads to 2169 (by nearly a
factor of five). Generally speaking, comparing logical IO is the relevant comparison for SQL. If your SQL is written so that
it requests fewer blocks, both the logical and physical reads should be reduced. But, for the most part, when comparing
performance of different SQL statements, the prime metric is logical IO (consistent gets). The reduction in physical reads
alone is enough to recommend the use of CUBE; the fact that it results in much less SQL to write is a bonus.

Eliminate NULLs with the GROUPING() Function
There seems to be a problem with the output from the new query seen in Listing 7-11. Although the numbers match
the earlier query that used the UNION ALL operator, some of the rows have NULL values for the CUST_INCOME_LEVEL and
AGE_RANGE rows, and one row has a NULL in both of these columns. You saw this type of result earlier in Table 7-1 as an
expected part of the operation of CUBE. When generating the combinations of all columns included in the arguments
to CUBE, a NULL value is generated n – 1 times for each column, where n is the number of columns in the list. In the
example query, there are two columns, so you can expect to see a NULL value for CUST_INCOME_LEVEL generated once
for each distinct value of AGE_RANGE. The same rule applies to the AGE_RANGE column.

These NULL values2 can be a problem if there are rows in the data that have NULL values for either of these
columns. How do you discern between NULLs in the data and NULLs inserted by the CUBE extension? The GROUPING()
function was introduced in Oracle 8i, and it can be used to identify these superaggregate rows. The expression used as
an argument to the GROUPING() function must match an expression that appears in the GROUP BY clause. For example,
write decode(grouping(age_range),1,'ALL AGE',age_range) age_range to detect whether age_range is null as a
result of a row generated by CUBE, or whether it is null as a result of a row in the database. The value returned is 1 if the
current row is a superaggregate row generated by CUBE; the value is 0 for all other cases.

2The NVL() function is used to provide a default value for sh.customers.cust_income_level so that output of examples may be
easier to compare.

Chapter 7 ■ Advanced Grouping

187

When used in combination with a CASE expression or the DECODE() function, the NULL values in superaggregate
rows can be replaced with values that are useful in a report. In this case, DECODE() appears to be a better choice
because of its simplicity and the fact that there are only two possible return values for the GROUPING() function.
Listing 7-12 shows how GROUPING() was used to modify the SQL found in Listing 7-11. The relevant before-and-after
parts of the SQL are shown, along with the output. Now the report is easier to read, and superaggregate NULLs are
discernible from NULLs occurring in the data.

Listing 7-12.  GROUPING() Function

Without GROUPING():
 
27 , cust_income_level
28 , age_range
 

With GROUPING():
 
27 -- either CASE or DECODE() works here. I prefer DECODE() for this
28 , case grouping(cust_income_level)
29 when 1 then 'ALL INCOME'
30 else cust_income_level
31 end cust_income_level
32 , decode(grouping(age_range),1,'ALL AGE',age_range) age_range
 
QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------ -------------------- -------- ---------------
...
Q2 Hardware K: 250,000 - 299,999 ALL AGE $26,678.00
Q2 Hardware L: 300,000 and above ALL AGE $28,974.28
Q1 Hardware F: 110,000 - 129,999 70-80 $30,477.16
Q2 Hardware J: 190,000 - 249,999 ALL AGE $43,761.47
Q2 Hardware B: 30,000 - 49,999 ALL AGE $53,612.04
Q2 Hardware A: Below 30,000 ALL AGE $55,167.88
Q2 Hardware I: 170,000 - 189,999 ALL AGE $57,089.05
Q2 Hardware C: 50,000 - 69,999 ALL AGE $76,612.64
Q3 Hardware ALL INCOME 60-70 $85,314.04
Q3 Hardware ALL INCOME 10-20 $90,849.87
Q3 Hardware ALL INCOME 0-10 $92,207.47
Q3 Hardware ALL INCOME 50-60 $93,811.96
Q3 Hardware ALL INCOME 80-90 $95,391.82
Q2 Hardware H: 150,000 - 169,999 ALL AGE $95,437.74
Q3 Hardware ALL INCOME 40-50 $97,492.51
Q3 Hardware ALL INCOME 20-30 $101,140.69
Q2 Hardware D: 70,000 - 89,999 ALL AGE $102,940.44
Q3 Hardware ALL INCOME 30-40 $102,946.85
Q3 Hardware ALL INCOME 90-100 $110,310.69
Q2 Hardware G: 130,000 - 149,999 ALL AGE $112,688.64
Q3 Hardware ALL INCOME 70-80 $117,920.88
Q2 Hardware E: 90,000 - 109,999 ALL AGE $135,154.59
Q2 Hardware F: 110,000 - 129,999 ALL AGE $199,270.01
Q4 Hardware ALL INCOME ALL AGE $987,386.78
 

Chapter 7 ■ Advanced Grouping

188

Extending Reports with GROUPING()
Another use of GROUPING() is in the HAVING clause, where it can be used to control which aggregation levels appear
in the output. The report seen in previous examples creates about five pages of output, which may be more than the
customer cares to see. By using the GROUPING() function, these aggregations can be condensed to roll up the totals for
either or all the columns used in the CUBE extension. Several variations of GROUPING() have been used to modify the
previous SQL. The modifications and resulting output are shown in Listing 7-13.

Examining the data in Listing 7-13, notice that applying GROUPING() to the CUST_INCOME_LEVEL column creates
aggregates from all AGE_RANGE values to be accumulated across all income levels. Doing so for the AGE_RANGE column
has similar effects, with totals aggregated for all values of INCOME_LEVEL without regard for the value of AGE_RANGE.
Including all the columns from the CUBE extension as arguments to the GROUPING() function causes the aggregations
to be condensed to a single row, similar to what could be done with SUM(PROFIT) and a simple GROUP BY PROD_
CATEGORY. Using the CUBE extension, however, allows simple changes to the HAVING clause to create several
different reports.

Listing 7-13.  GROUPING() in the HAVING Clause

CUST_INCOME_LEVEL
 
35 group by prod_category, cube(cust_income_level,age_range)
36 having grouping(cust_income_level)=1
 
QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------ -------------------- -------- ---------------
Q3 Hardware ALL INCOME 60-70 $85,314.04
Q3 Hardware ALL INCOME 10-20 $90,849.87
Q3 Hardware ALL INCOME 0-10 $92,207.47
...
Q4 Hardware ALL INCOME ALL AGE $987,386.78
 
AGE_RANGE
 
35 group by prod_category, cube(cust_income_level,age_range)
36 having grouping(age_range)=1
 
QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------ -------------------- -------- ---------------
Q2 Hardware K: 250,000 - 299,999 ALL AGE $26,678.00
Q2 Hardware L: 300,000 and above ALL AGE $28,974.28
Q2 Hardware J: 190,000 - 249,999 ALL AGE $43,761.47
...
Q4 Hardware ALL INCOME ALL AGE $987,386.78
 
CUST_INCOME_LEVEL, AGE_RANGE
 
35 group by prod_category, cube(cust_income_level,age_range)
36 having grouping(cust_income_level)=1 and grouping(age_range)=1
 

Chapter 7 ■ Advanced Grouping

189

QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ---------------------------- ------------ -------- -------------
Q4 Electronics ALL INCOME ALL AGE $838,994.19
Q4 Hardware ALL INCOME ALL AGE $987,386.78
Q4 Peripherals and Accessories ALL INCOME ALL AGE $1,751,079.16
Q4 Photo ALL INCOME ALL AGE $1,570,866.04
Q4 Software/Other ALL INCOME ALL AGE $873,603.25 

Extending Reports with GROUPING_ID()
The GROUPING_ID() is relatively new compared with the GROUPING() function, having been introduced in Oracle 9i,
and is somewhat similar to the GROUPING() function. Although GROUPING() evaluates the expression and returns a
value of 0 or 1, the GROUPING_ID() function evaluates an expression, determines which, if any, of the columns in its
arguments are being used to generate a superaggregate row, creates a bit vector, and returns that value as an integer.

Perhaps it is simpler to see how GROUPING_ID() works with an example. The SQL in Listing 7-14 first creates
a single row consisting of two columns, BIT_1 and BIT_0, with values of 1 and 0, respectively. The subquery cubed
uses GROUP BY CUBE to generate four rows from the single row of input. The GROUPING_ID() function returns to the
current row the decimal value of the bit vector that represents the actions of CUBE. The first two uses of the GROUPING()
function then create a 1 or 0 based on the actions of CUBE on the row, and they are used to create a bit vector in
the final output. The next two GROUPING() functions then create values displayed in the final output that indicate
on which column CUBE is currently working. The final output displays the decimal bit vector as well as a binary
representation of the vector. As expected with two binary digits, there are four rows of output.

Listing 7-14.  GROUPING_ID() Bit Vector

SQL> with rowgen as (
 2 select 1 bit_1, 0 bit_0
 3 from dual
 4),
 5 cubed as (
 6 select
 7 grouping_id(bit_1,bit_0) gid
 8 , to_char(grouping(bit_1)) bv_1
 9 , to_char(grouping(bit_0)) bv_0
 10 , decode(grouping(bit_1),1,'GRP BIT 1') gb_1
 11 , decode(grouping(bit_0),1,'GRP BIT 0') gb_0
 12 from rowgen
 13 group by cube(bit_1,bit_0)
 14)
 15 select
 16 gid
 17 , bv_1 || bv_0 bit_vector
 18 , gb_1
 19 , gb_0
 20 from cubed
 21 order by gid;
 

Chapter 7 ■ Advanced Grouping

190

 BIT GROUPING GROUPING
 GID VECTOR BIT 1 BIT 0
---- ------ --------- ---------
 0 00
 1 01 GRP BIT 0
 2 10 GRP BIT 1
 3 11 GRP BIT 1 GRP BIT 0
 

So, what good is this? You already know how to use GROUPING() to control output via the HAVING clause, why learn
another way? These are fair questions when you consider that the examples in Listing 7-13 can already create the
output needed.

In the interest of database efficiency, a single GROUPING_ID() call can be used to replace all the different HAVING
GROUPING() clauses from Listing 7-13. The GROUPING() function is limited in its ability to discriminate rows; it can
return only a 0 or a 1. Because the GROUPING_ID() function returns a decimal value based on a bit vector, it can be
used easily to make many different comparisons without any changes to the SQL.

Why should you care about changing comparisons without changing the SQL? If you are building an application
based on the sales history examples, the user may be given four choices of output, and any one or more of them may
be chosen. The user choices can be used as inputs to a single SQL statement that uses HAVING GROUPING_ID(), rather
than multiple SQL statements based on different combinations of HAVING GROUPING(), so it requires less parsing of
SQL by the database. It also results in fewer SQL statements to execute, less IO, and less memory usage.

Just as using CUBE eliminates multiple SQL statements joined by UNION ALL, GROUPING_ID() can eliminate
multiple SQL statements in your application. The choices given to the user are as follows:

All data: Display all income level and age range aggregations.

All age: Aggregate all age ranges together.

All income: Aggregate all income levels together.

Summary: Display a summary only.

The application, a SQL*Plus script in this case, assigns to variables values corresponding to the user’s choices.
The SQL statement, in turn, evaluates those variables via HAVING GROUPING_ID() to output the requested rows.
Listing 7-15 simulates the choices a user might make and demonstrates how to use these inputs in the SQL. In the
example, the only rows to be output are those that are aggregates of all income levels regardless of age group
(ALL_AGE) and the summary columns for each product category (ALL_AGE and ALL_INCOME_LEVEL). This is
accomplished by setting N_AGE_RANGE and N_SUMMARY to 2 and 4, respectively. These values correspond to the bit
vector generated by the GROUPING_ID() function found in the HAVING clause.

As used in the HAVING clause, one is added to the value generated by GROUPING_ID(), which enables some
consistency in setting the values of the variables that control the output. Without adding one to the value, the N_ALL_DATA
variable would be set to 0 to enable output, and some other value, such as –1, to disable it. Increasing this comparison
value by one makes it possible to use 0 consistently as a value to disable output.

Listing 7-15.  GROUPING_ID() to Control Report Output

SQL> variable N_ALL_DATA number
SQL> variable N_AGE_RANGE number
SQL> variable N_INCOME_LEVEL number
SQL> variable N_SUMMARY number
SQL>
SQL> begin
 2 -- set values to 0 to disable
 3 :N_ALL_DATA := 0; -- 1 to enable
 4 :N_AGE_RANGE := 2; -- 2 to enable
 5 :N_INCOME_LEVEL := 0; -- 3 to enable

Chapter 7 ■ Advanced Grouping

191

 6 :N_SUMMARY := 4; -- 4 to enable
 7 end;
 8 /
 
SQL> with tsales as (
 2 select /* lst7-15 */
 3 s.quantity_sold
 4 , s.amount_sold
 5 , to_char(mod(cust_year_of_birth,10) * 10) || '-' ||
 6 to_char((mod(cust_year_of_birth,10) * 10) + 10) age_range
 7 , nvl(c.cust_income_level,'A: Below 30,000') cust_income_level
 8 , p.prod_name
 9 , p.prod_desc
 10 , p.prod_category
 11 , (pf.unit_cost * s.quantity_sold) total_cost
 12 , s.amount_sold - (pf.unit_cost * s.quantity_sold) profit
 13 from sh.sales s
 14 join sh.customers c on c.cust_id = s.cust_id
 15 join sh.products p on p.prod_id = s.prod_id
 16 join sh.times t on t.time_id = s.time_id
 17 join sh.costs pf on
 18 pf.channel_id = s.channel_id
 19 and pf.prod_id = s.prod_id
 20 and pf.promo_id = s.promo_id
 21 and pf.time_id = s.time_id
 22 where (t.fiscal_year = 2001)
 23)
 24 select
 25 'Q' || to_char(grouping_id(cust_income_level,age_range)+1) query_tag
 26 , prod_category , decode(grouping(cust_income_level),1,
 27 'ALL INCOME',cust_income_level) cust_income_level
 28 , decode(grouping(age_range),1,'ALL AGE',age_range) age_range
 29 , sum(profit) profit
 30 from tsales
 31 group by prod_category, cube(cust_income_level,age_range)
 32 having grouping_id(cust_income_level,age_range)+1
 33 in(:N_ALL_DATA,:N_AGE_RANGE,:N_INCOME_LEVEL,:N_SUMMARY)
 34 order by prod_category, profit;
 
QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------ -------------------- -------- ---------------
...
Q2 Hardware K: 250,000 - 299,999 ALL AGE $26,678.00
Q2 Hardware L: 300,000 and above ALL AGE $28,974.28
Q2 Hardware J: 190,000 - 249,999 ALL AGE $43,761.47
...
Q2 Hardware E: 90,000 - 109,999 ALL AGE $135,154.59
Q2 Hardware F: 110,000 - 129,999 ALL AGE $199,270.01
Q4 Hardware ALL INCOME ALL AGE $987,386.78
...
65 rows selected.
 

Chapter 7 ■ Advanced Grouping

192

To be fair, it is possible to achieve the same results using the GROUPING() function, but it requires several tests
to be placed in the HAVING clause. The queries of sample sales history data include only two columns in the CUBE
arguments. The total number of tests required in the HAVING clause is four, because the GROUPING() clause returns
either a 1 or a 0, so there are two possible values for each of your columns, resulting in four tests. This doesn’t seem
too bad, but consider what happens when there are three columns; the number of tests goes up to nine. The number
of tests required is 2n, where n is the number of columns or expressions in arguments to CUBE.

Listing 7-16 shows the HAVING clause as it might appear using GROUPING() rather than GROUPING_ID(). This
approach soon becomes unwieldy if there are many arguments required for the CUBE extension. The four separate
tests shown should not be too much trouble to maintain. However, if the number of columns in the CUBE arguments
increases from two to three, there are then nine tests. This is not code that lends itself well to maintenance.

Listing 7-16.  Using GROUPING() instead of GROUPING_ID()

32 having -- bin_to_num() requires 9i+
33 (bin_to_num(grouping(cust_income_level), grouping(age_range))+1 = :N_ALL_DATA)
34 or (bin_to_num(grouping(cust_income_level), grouping(age_range))+1 = :N_AGE_RANGE)
35 or (bin_to_num(grouping(cust_income_level), grouping(age_range))+1 = :N_INCOME_LEVEL)
36 or (bin_to_num(grouping(cust_income_level), grouping(age_range))+1 = :N_SUMMARY)
 

EXPERIMENT WITH GROUPING() AND GROUPING_ID()

As an exercise, modify the code from Listing 7-15 so that it adds another column to the arguments to CUBE. Then,
modify the call to GROUPING_ID() in the HAVING clause to work with the new column. This requires a new variable
as well in the PL/SQL block.

After you have that working, replace the GROUPING_ID() call with all the tests needed to accomplish the same
output control with GROUPING(). Do you like the results? Is this code you would like to maintain?

GROUPING SETS () and ROLLUP()
There is yet another method that may be used to obtain the results seen in the previous two examples. The GROUPING
SETS() extension to GROUP BY made its debut with Oracle 9i. The entire GROUP BY . . . HAVING clause of the previous
example can be replaced with GROUP BY GROUPING SETS(). However, just because you can do something doesn’t
mean you should. Let’s look at an example to understand just why you may not want to use GROUPING SETS().
Lines 31 through 33 in Listing 7-15 can be replaced with lines 31 through 36 in Listing 7-17.

Listing 7-17.  GROUPING SETS()

SQL> with tsales as (
 2 select /* lst7-17 */
 3 s.quantity_sold
 4 , s.amount_sold
 5 , to_char(mod(cust_year_of_birth,10) * 10) || '-' ||
 6 to_char((mod(cust_year_of_birth,10) * 10) + 10) age_range
 7 , nvl(c.cust_income_level,'A: Below 30,000') cust_income_level
 8 , p.prod_name
 9 , p.prod_desc
 10 , p.prod_category
 11 , (pf.unit_cost * s.quantity_sold) total_cost

Chapter 7 ■ Advanced Grouping

193

 12 , s.amount_sold - (pf.unit_cost * s.quantity_sold) profit
 13 from sh.sales s
 14 join sh.customers c on c.cust_id = s.cust_id
 15 join sh.products p on p.prod_id = s.prod_id
 16 join sh.times t on t.time_id = s.time_id
 17 join sh.costs pf on
 18 pf.channel_id = s.channel_id
 19 and pf.prod_id = s.prod_id
 20 and pf.promo_id = s.promo_id
 21 and pf.time_id = s.time_id
 22 where (t.fiscal_year = 2001)
 23)
 24 select
 25 'Q' || to_char(grouping_id(cust_income_level,age_range)+1) query_tag
 26 , prod_category, decode(grouping(cust_income_level),1,
 27 'ALL INCOME',cust_income_level) cust_income_level
 28 , decode(grouping(age_range),1,'ALL AGE',age_range) age_range
 29 , sum(profit) profit
 30 from tsales
 31 group by prod_category, grouping sets(
 32 rollup(prod_category), -- sub total by product category
 33 (cust_income_level), -- agg by category and income levels only
 34 (age_range), -- agg by category and age only
 35 (cust_income_level,age_range) -- agg by category, all age and income
 36)
 37 --having group_id() < 1
 38 order by prod_category, profit;
 
QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------ -------------------- -------- ---------------
...
Q2 Software/Other E: 90,000 - 109,999 ALL AGE $124,416.04
Q2 Software/Other F: 110,000 - 129,999 ALL AGE $169,482.11
Q4 Software/Other ALL INCOME ALL AGE $873,603.25
Q4 Software/Other ALL INCOME ALL AGE $873,603.25
 
756 rows selected.
 

The output shown in Listing 7-17 is similar to that seen when the SQL from Listing 7-15 is executed with all
the output categories enabled. This is a major difference between using GROUP BY CUBE HAVING GROUPING_ID()
and GROUP BY GROUPING SETS. The former may be used to modify the output easily simply by setting variables
to the correct values, whereas output from the latter cannot be modified except by modifying or generating the
SQL dynamically. Modifying the SQL means there is more code to maintain and more resources consumed in the
database. Generating the SQL dynamically is, well, usually just not a good idea if it can be avoided; it consumes more
database resources and it is much harder to troubleshoot when problems arise.

As mentioned previously, the output in Listing 7-17 is similar to that in Listing 7-15, but it is not the same. The
last two lines of the output shown in Listing 7-17 are duplicates. Sometimes, the GROUPING_SETS() extension can
cause duplicates to appear in the output. In this case, the duplicates are caused by the ROLLUP(PROD_CATEGORY) line.
You can prove this to yourself by removing ROLLUP()from the code in Listing 7-17 and rerunning it. The duplicate lines
no longer appear. However, the totals for each product category no longer appear either. The solution is to use the
GROUP_ID() function to identify the duplicate rows, and insert it into a HAVING clause.

Chapter 7 ■ Advanced Grouping

194

The HAVING clause can be seen commented out in Listing 7-17. If you “uncomment” it and then rerun the script,
the output appears as expected, without the duplicate rows. Interestingly, if the ROLLUP(PROD_CATEGORY) line is
replaced with (NULL), the HAVING clause can be removed and the output appears as expected.

The ROLLUP() extension to GROUP BY can also be used by itself to create running subtotals that otherwise require
multiple queries joined by UNION ALL. Suppose that someone from the sales department asks you to create a report
showing totals of all purchases by customers whose last name begins with Sul. In addition, there need to be subtotals
for each year by customer, each product category by customer, and a grand total of all sales. This kind of task is
handled easily by ROLLUP(). Listing 7-18 shows one way to write a query to satisfy this request.

Notice that the DECODE()and GROUPING()functions are again used to indicate subtotal rows. Also, the grand
total is forced to appear at the end of the report by the use of GROUPING(M.CUST_NAME). Because the only time this
value is greater than 0 is when the total for all customers is calculated, the grand total appears at the end of the
report, as expected.

Listing 7-18.  ROLLUP() Subtotals

SQL> with mysales as (
 2 select
 3 c.cust_last_name ||',' || c.cust_first_name cust_name
 4 , p.prod_category
 5 , to_char(trunc(time_id,'YYYY'),'YYYY') sale_year
 6 , p.prod_name
 7 , s.amount_sold
 8 from sh.sales s
 9 join sh.products p on p.prod_id = s.prod_id
 10 join sh.customers c on c.cust_id = s.cust_id
 11 where c.cust_last_name like 'Sul%'
 12 --where s.time_id = to_date('01/01/2001','mm/dd/yyyy')
 13)
 14 select
 15 decode(grouping(m.cust_name),1,'GRAND TOTAL',m.cust_name) cust_name
 16 ,decode(grouping(m.sale_year),1,'TOTAL BY YEAR',m.sale_year) sale_year
 17 ,decode(grouping(m.prod_category),1,'TOTAL BY CATEGORY',
 18 m.prod_category) prod_category, sum(m.amount_sold) amount_sold
 19 from mysales m
 20 group by rollup(m.cust_name, m.prod_category, m.sale_year)
 21 order by grouping(m.cust_name), 1,2,3;
 
CUSTOMER SALE_YEAR PRODUCT CATEGORY AMT SOLD
-------------- ------------- ----------------------------- ------------
...
Sullivan,Rue 1998 Peripherals and Accessories $259.90
Sullivan,Rue 1998 Software/Other $19.59
Sullivan,Rue 2000 Electronics $2,213.30
Sullivan,Rue 2000 Hardware $1,359.06
Sullivan,Rue 2000 Peripherals and Accessories $1,169.94
Sullivan,Rue 2000 Photo $331.33
Sullivan,Rue 2000 Software/Other $933.87
Sullivan,Rue TOTAL BY YEAR Electronics $2,213.30
Sullivan,Rue TOTAL BY YEAR Hardware $1,359.06
Sullivan,Rue TOTAL BY YEAR Peripherals and Accessories $1,429.84
Sullivan,Rue TOTAL BY YEAR Photo $331.33

Chapter 7 ■ Advanced Grouping

195

Sullivan,Rue TOTAL BY YEAR Software/Other $953.46
Sullivan,Rue TOTAL BY YEAR TOTAL BY CATEGORY $6,286.99
GRAND TOTAL TOTAL BY YEAR TOTAL BY CATEGORY $86,994.89
 
68 rows selected. 

GROUP BY Restrictions
Our study of GROUP BY is incomplete without considering what it cannot do. The list of restrictions placed on GROUP
BY is not very long. The restrictions are listed in the Oracle 12c SQL Language Reference
(http://www.oracle.com/technetwork/indexes/documentation/index.html) for Oracle 12.1. For example,
note the following:

LOB columns, nested tables, or arrays may not be used as part of a •	 GROUP BY expression.

Scalar subquery expressions are not allowed.•	

Queries cannot be “parallelized” if the •	 GROUP BY clause references any object type columns.

SQL queries were constructed to demonstrate the first two restrictions, as shown in Listings 7-19 and 7-20. The
error messages clearly show that LOB columns and scalar subqueries cannot be used as part of the GROUP BY clause.

Listing 7-19.  GROUP BY Restrictions: LOB Not Allowed

SQL> with lobtest as (
 2 select to_clob(d.dname) dname
 3 from scott.emp e
 4 join scott.dept d on d.deptno = e.deptno
 5)
 6 select l.dname
 7 from lobtest l
 8* group by l.dname
group by l.dname;
 *
ERROR at line 8:
ORA-00932: inconsistent datatypes: expected - got CLOB 

Listing 7-20.  GROUP BY Restrictions: Scalar Subquery Not Allowed

SQL> select d.dname, count(empno) empcount
 2 from scott.emp e
 3 join scott.dept d on d.deptno = e.deptno
 4 group by (select dname from scott.dept d2 where d2.dname = d.dname)
 5 order by d.dname;
group by (select dname from scott.dept d2 where d2.dname = d.dname);
 *
ERROR at line 4:
ORA-22818: subquery expressions not allowed here
 

The final restriction listed earlier appears to be a documentation error. Evidence for this can be seen in Listing 7-21,
where the GROUP BY on an OBJECT datatype is being executed in parallel, contrary to what the documentation states.
The member function match in the dept_location type body is used to compare the value for city, and this in turn
is used by GROUP BY to group employees by CITY. Should you need to create aggregations based on data in an OBJECT
column, you can certainly do so as of Oracle 11.1.0.7. Testing has shown that the GROUP BY of Listing 7-21 is not
executed in parallel in Oracle 11.1.0.6.

http://www.oracle.com/technetwork/indexes/documentation/index.html

Chapter 7 ■ Advanced Grouping

196

Listing 7-21.  GROUP BY on Object Column in Parallel

SQL> create type dept_location_type
 2 as object
 3 (
 4 street_address VARCHAR2(40)
 5 , postal_code VARCHAR2(10)
 6 , city VARCHAR2(30)
 7 , state_province VARCHAR2(10)
 8 , country_id CHAR(2)
 9 , order member function match (e dept_location_type) return integer
 10);
 11 /
 
Type created.
 
SQL>
SQL> create or replace type body dept_location_type
 2 as order member function match (e dept_location_type) return integer
 3 is
 4 begin
 5 if city < e.city then
 6 return -1;
 7 elsif city > e.city then
 8 return 1;
 9 else
 10 return 0;
 11 end if;
 12 end;
 13 end;
 14 /
 
Type body created.
 
SQL>
SQL> create table deptobj
 2 as
 3 select d.deptno,d.dname
 4 from scott.dept d;
Table created.
SQL> alter table deptobj add (dept_location dept_location_type);
Table altered.
SQL> update deptobj set dept_location =
 2 dept_location_type('1234 Money St', '97401','Eugene', 'OR', 'US')
 3 where deptno=20;
1 row updated.
SQL> update deptobj set dept_location =
 2 dept_location_type('459 Durella Street', '97463','Oakridge', 'OR', 'US')
 3 where deptno=40;
1 row updated.

Chapter 7 ■ Advanced Grouping

197

SQL> update deptobj set dept_location =
 2 dept_location_type('12642 Rex Rd', '97006','Beavertown', 'OR', 'US')
 3 where deptno=10;
1 row updated.
SQL> update deptobj set dept_location =
 2 dept_location_type('9298 Hamilton Rd', '97140','George', 'WA', 'US')
 3 where deptno=30;
1 row updated.
 
1 commit;
Commit complete.
PL/SQL procedure successfully completed.
 
SQL> select /*+ gather_plan_statistics parallel(e 2)*/
 2 d.dept_location, count(e.ename) ecount
 3 from scott.emp e, deptobj d
 4 where e.deptno = d.deptno
 5 group by dept_location
 6 order by dept_location;
 
DEPT_LOCATION(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVI ECOUNT
-- ------
DEPT_LOCATION_TYPE('1234 Money St', '97401', 'Eugene', 'OR', 'US') 5
DEPT_LOCATION_TYPE('12642 Rex Rd', '97006', 'Beavertown','OR','US') 3
DEPT_LOCATION_TYPE('9298 Hamilton Rd', '97140', 'George','WA','US') 6
 
3 rows selected.
 
PLAN_TABLE_OUTPUT

| Id | Operation | Name | Starts | E-Rows | A-Rows |

0	SELECT STATEMENT		1		3
1	PX COORDINATOR		1		3
2	PX SEND QC (ORDER)	:TQ10002	0	14	0
3	SORT GROUP BY		0	14	0
4	PX RECEIVE		0	14	0
5	PX SEND RANGE	:TQ10001	0	14	0
6	HASH GROUP BY		0	14	0
* 7	HASH JOIN		0	14	0
8	BUFFER SORT		0		0
9	PX RECEIVE		0	4	0
10	PX SEND BROADCAST	:TQ10000	0	4	0
11	TABLE ACCESS FULL	DEPTOBJ	1	4	4
12	PX BLOCK ITERATOR		0	14	0
* 13	TABLE ACCESS FULL	EMP	0	14	0

Chapter 7 ■ Advanced Grouping

198

Summary
Oracle has provided some excellent tools for the SQL practitioner in the form of extensions to the GROUP BY clause.
Not only do they reduce code, they improve database efficiency. They do, however, take some dedication and
practice to learn how best to use them. The introduction here to the advanced grouping features is by no means
comprehensive. Most of these features can be combined for many different effects—far more than is practical to
include in a book. Please endeavor to make use of these features in your own applications and continue to experiment
with them based on what you have learned in this chapter.

199

Chapter 8

Analytic Functions

The use of analytic functions, also known as windowing functions, is often overlooked even though they’ve been
around since Oracle 8i. Perhaps because the primary documentation for these functions is found in the Oracle
Database Data Warehousing Guide (http://www.oracle.com/technetwork/indexes/documentation/index.html),
they are often thought useful only in data warehousing SQL. In the previous chapter, we examined how advanced
grouping techniques can be used to accomplish so much that you may be wondering why you need to bother with
analytic functions. Well, just like really good carpenters have numerous tools in their toolbox, so should we make sure
our developer toolbox is filled with many different tools to help us write good SQL. If we limit ourselves to only
a couple tools, we're bound to use constructs every now and then that are less performance friendly than others.

If you follow Tom Kyte (if you don't, you should—at asktom.oracle.com—and you should read his blog at
tkyte.blogspot.com), you're probably aware of his “Analytics Rock . . . Analytics Roll!” mantra. In this chapter, we take
a look at how analytic functions work. I provide descriptions and examples of many commonly used analytics, and
discuss the performance benefits that analytics provide. As with any construct, analytics have their good points and
their not-so-good points, so you should always make sure to test carefully to make sure choosing an analytic function
is the best option compared with others like advanced grouping (Chapter 7) and subfactored queries (Chapter 10).

Overview
Queries using analytic functions compute aggregates based on groups of rows. Although similar to grouping totals
provided by common aggregate functions, the main difference is that analytic functions return more than one row
for each group. Instead of just getting a single row per group, you can get all the detail data rows as well. One way to
differentiate analytic functions from their aggregate function cousins is to refer to the term window when referring
to a group of rows used in an analytic function.

Windows are defined by an analytic clause and each row is identified within a sliding window. These sliding
windows determine the range of rows used to perform calculations for the current row. Each window can vary in size
based on either a physical number of rows or a logical interval such as time. These functions do so much more than
common aggregates in that they can reference values across rows, produce multilevel aggregations, and allow subsets
of data to be sorted with more granular control.

Although conventional SQL statements can be used to implement online analytic processing (OLAP) queries,
these statements are usually more complex and perform poorly in comparison. With analytic functions, repeated
access to the same objects can be avoided, saving time and resources. Because both detail data and grouped values
can be returned, analytics can be used to provide cumulative, moving, centered, and reporting totals easily.

Analytic functions are the last operations performed in a query except for the final ORDER BY clause. All other
clauses are completed, including the WHERE, GROUP BY, and HAVING clauses, before the analytic functions are
processed. For this reason, analytic functions can be used only in the select list or ORDER BY clause.

As mentioned, the use of analytic functions is often assumed to be pertinent only in data warehousing or large
reporting applications. However, when you see the power and flexibility of what they can do, you'll likely find uses
for them everywhere.

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://asktom.oracle.com/
http://tkyte.blogspot.com/

Chapter 8 ■ Analytic Functions

200

Example Data
To begin our investigation of the analytic SQL functions, let’s start by creating a denormalized fact table using the
script in Listing 8-1. All the tables in this chapter refer to the objects in SH schema supplied by Oracle Corporation
example scripts.

Listing 8-1.  Denormalized sales_fact Table

drop table sales_fact;
 
CREATE table sales_fact AS
SELECT country_name country,country_subRegion region, prod_name product,
calendar_year year, calendar_week_number week,
SUM(amount_sold) sale,
sum(amount_sold*
(case
 when mod(rownum, 10)=0 then 1.4
 when mod(rownum, 5)=0 then 0.6
 when mod(rownum, 2)=0 then 0.9
 when mod(rownum,2)=1 then 1.2
 else 1
 end)) receipts
FROM sales, times, customers, countries, products
WHERE sales.time_id = times.time_id AND
sales.prod_id = products.prod_id AND
sales.cust_id = customers.cust_id AND
customers.country_id = countries.country_id
GROUP BY
country_name,country_subRegion, prod_name, calendar_year, calendar_week_number;

Anatomy of Analytic Functions
Analytic functions have three basic components: partition-by-clause, order-by-clause, and the windowing-clause.
The basic syntax of an analytic function is as follows:
 
function1 (argument1, argument2,..argumentN)
over ([partition-by-clause] [order-by-clause] [windowing-clause])
 

function1 is the analytic function you wish to call that accepts zero or more arguments. The partition-by-clause
groups the rows by partitioning column values. All rows with the same value for the partitioning column are grouped
as a data partition.

Operationally, rows are sorted by the partitioning columns and are separated into data partitions. For example,
the SQL clause partition by product, country partitions the data using the product and country columns. Rows
are sorted by both columns and are grouped into one partition for each combination of product and country.

The order-by-clause sorts the rows in a data partition by a column or expression. In an analytic SQL statement,
the position of a row in the data partition is important and it is controlled by the order-by-clause. Rows are sorted
by the sort columns within a data partition. Because the partition-by-clause sorts the rows by the partitioning
columns, you actually end up with one sort that includes columns specified in the partition-by-clause and
order-by-clause.

Sort order, just like with the SQL statement’s ORDER BY, can be specified as ascending or descending order.
Nulls can be specified to sort to the top or bottom in a data partition using the clause NULLS FIRST or NULLS LAST.

Chapter 8 ■ Analytic Functions

201

The windowing-clause specifies the subset of rows on which the analytic function operates. This window can be
dynamic and is aptly termed sliding window. You can specify the top and bottom boundary condition of the sliding
window using the window specification clause. Syntax for the window specification clause is as follows:
 
[ROWS | RANGE] BETWEEN <Start expr> AND <End expr>
 
Whereas
<Start expr> is [UNBOUNDED PRECEDING | CURRENT ROW | n PRECEDING | n FOLLOWING]
<End expr> is [UNBOUNDED FOLLOWING | CURRENT ROW | n PRECEDING | n FOLLOWING]
 

The keyword PRECEDING specifies the top boundary condition, and the clause FOLLOWING or CURRENT ROW
specifies the bottom boundary condition for the window. A sliding window provides the ability to compute complex
metrics with ease. For example, you can compute the running sum of the sale column using the clause rows between
unbounded preceding and current row. In this example, the top row in the window is the first row in the current
partition and the bottom row in the window is the current row.

Note■■  T he windowing-clause is not supported by all analytic functions.

Analytic functions may not be nested, but a nesting effect can be achieved by placing the encompassing SQL
statement in an inline view and then by applying analytic functions outside the view. Analytic functions can be used
in deeply nested inline views, too.

List of Functions
Table 8-1 contains the analytic functions for easy reference.

Table 8-1.  Analytic Functions

Function Description

lag To access prior row in a partition or result set.

lead To access later row in a partition or result set

first_value To access first row in a partition or result set.

last_value To access last row in a partition or result set.

nth_value To access any arbitrary row in a partition or result set.

rank To rank the rows in a sort order. Ranks are skipped in the case of ties.

dense_rank To rank the rows in a sort order. Ranks are not skipped in the case of ties.

row_number To sort the rows and add a unique number to each row. This is a nondeterministic function.

ratio_to_report To compute the ratio of value to the report.

percent_rank To compute the rank of value normalized to a value between 0 and 1.

(continued)

Chapter 8 ■ Analytic Functions

202

Aggregation Functions
Aggregation functions can operate in analytic mode or conventional nonanalytic mode. Aggregation functions
in nonanalytic mode reduce the result set to fewer rows. However, in analytic mode, aggregation functions do not
reduce the result set but can fetch both aggregated and nonaggregated columns in the same row. Aggregation
functions in analytic mode provide the ability to aggregate data at different levels without any need for a self-join.

Analytic functions are useful in writing complex report queries that aggregate data at different levels. Consider
a demographic market analysis report for a product, a favorite among advertising executives, that requires sales data
to be aggregated at myriad levels such as age, gender, store, district, region, and country. Aggregation functions in the
analytic mode can be used effectively to implement this market analysis report with ease. Analytic functions improve
the clarity and performance of the SQL statements markedly compared with its nonanalytic counterparts.

Let’s review the example in Listing 8-2. The SQL statement calculates the sum of the sale column from the
beginning of the year for a product, country, region, and year combination. The clause partition by product,
country, region, year specifies the partition columns. Within the data partition, rows are sorted by the week
column using the clause order by week.

As mentioned, in Listing 8-2, the SQL calculates the sum of sale column, so the analytic function must operate
on a window of rows from the beginning of the year to the current week. This goal is achieved by the windowing
clause rows between unbounded preceding and current row. The sum(sale) function calculates the sum of the
sale column values over this window of rows. Because the rows are sorted by the week column, the sum function is
operating over a set of rows from the beginning of the year until the current week.

Listing 8-2.  Running Sum of the sale Column

SQL> select year, week,sale,
2 sum (sale) over(
3 partition by product, country, region, year
4 order by week
5 rows between unbounded preceding and current row
6) running_sum_ytd
7 from sales_fact
8 where country in ('Australia') and product ='Xtend Memory'
9* order by product, country,year, week ;
 

Function Description

percentile_cont To retrieve the value matching with the specified percent_rank. Reverse of percent_rank
function.

percentile_dist To retrieve the value matching with the specified percent_rank. Assumes discreet
distribution model.

ntile To group rows into units.

listagg To convert column values from different rows into a list format.

Table 8-1.  (continued )

Chapter 8 ■ Analytic Functions

203

 YEAR WEEK SALE RUNNING_SUM_YTD
----- ---- ---------- ----------------
...
 2000 49 42.8 3450.85
 2000 50 21.19 3472.04
 2000 52 67.45 3539.49
 2001 1 92.26 92.26
 2001 2 118.38 210.64
 2001 3 47.24 257.88
 2001 4 256.70 514.58
...
 

Notice in the output of Listing 8-2, column running_sum_ytd is the output of the sum function in the analytic
mode. The column value resets at the onset of the new year 2001 because year is also a partitioning column, so a new
partition starts with each new year.

When a new year begins, the window slides to the next data partition and the sum function begins aggregating
from week 1. Implementing this functionality with a conventional SQL statement requires multiple self-joins and/or
costly column-level subqueries.

Aggregate Function over an Entire Partition
In some cases, analytic functions might need to be applied over all rows in a given data partition. For example,
computing the maximum value of the sale column for the entire year requires a window encompassing every row
in the data partition. In Listing 8-3, I use the SQL clause rows between unbounded preceding and unbounded
following to specify that the MAX function applies to all rows in a data partition. The key difference between
Listing 8-2 and Listing 8-3 is that the clause unbounded following specifies the window size to include all rows
in a data partition.

Listing 8-3.  Maximum of sale Column

SQL> select year, week,sale,
2 max (sale) over(
3 partition by product, country, region ,year
4 order by week
5 rows between unbounded preceding and unbounded following
6) Max_sale
7 from sales_fact
8 where country in ('Australia') and product ='Xtend Memory'
9* order by product, country,year, week ;
 
 YEAR WEEK SALE MAX_SALE
----- ---- ---------- ---------------
...
 2000 44 135.24 246.74
 2000 45 67.62 246.74
 2000 46 246.74 246.74
...
 2000 50 21.19 246.74
 2000 52 67.45 246.74
 2001 1 92.26 278.44
 2001 2 118.38 278.44
...
 

Chapter 8 ■ Analytic Functions

204

Granular Window Specifications
Window specifications can be more granular, too. Let’s say that we want to calculate the maximum of the sale column
for a five-week window encompassing two weeks prior to the current week, the current week, and the two weeks
following the current week. We do this by using the clause rows between 2 preceding and 2 following.

In Listing 8-4, for week 36, the maximum value for the sale column during the five-week window is 178.52.
For week 37, the maximum value for the sale column during the five-week window is 118.41. You can see these
values in the MAX_WEEKS_5 column of the output.

Listing 8-4.  Maximum of sale Column for a Five-Week Window

SQL> select year, week,sale,
2 max (sale) over(
3 partition by product, country, region ,year
4 order by week
5 rows between 2 preceding and 2 following
6) max_weeks_5
7 from sales_fact
8 where country in ('Australia') and product ='Xtend Memory'
9* order by product, country,year, week ;
 
YEAR WEEK SALE MAX_WEEKS_5
---- ---- ---------- -----------
...
2000 34 178.52 178.52
2000 35 78.82 178.52
2000 36 118.41 178.52
2000 37 117.96 118.41
2000 38 79.36 118.41
...

Default Window Specification
The default windowing clause is rows between unbounded preceding and current row. If you do not specify
a window explicitly, you get the default window. It is a good approach to specify this clause explicitly to avoid
ambiguities.

lead and lag
lag and lead functions provide interrow referencing ability. lag provides the ability to access a prior row in the result
set. The lead function allows access to a later row in the result set.

In the retail industry, same-store sales is a metric calculated to measure an outlet’s performance, usually sales
data compared with the same quarter in the past year. With a normalized data model, this metric calculation could
not be computed from a single row; it requires accessing another row because the sale column values for current and
prior years are stored in different rows. Using the powerful interrow referencing ability of lead and lag functions,
this metric can be calculated with ease.

Another example is percentage increase or decrease calculations requiring access to the prior or following row.
This calculation can be written optimally using lead and lag functions, too.

Chapter 8 ■ Analytic Functions

205

Syntax and Ordering
As discussed earlier, data in analytic SQL is partitioned on a partitioning column. Fetching a prior row is a
position-dependent operation, and the order of the rows in a data partition is important in maintaining logical
consistency. Within a data partition, rows are sorted with an order-by-clause to control the position of a row
in the result set. Syntax for the lag function is as follows:
 
lag (expression, offset, default) over (partition-clause order-by-clause)
 

lead and lag do not support the windowing clause. Only the partition by and order by clauses are supported
with these two functions.

Example 1: Returning a Value from a Prior Row
Let’s say that you need to fetch the sales quantity for the current week and the prior week in the same row.
Your requirement indicates an interrow reference, and this in turn necessitates a need for a self-join, or perhaps a
column-list subquery, in a nonanalytic SQL statement. However, the lag function provides this interrow reference
without requiring that access step.

Listing 8-5 uses lag(sale,1,sale) to retrieve the sale column value from one row prior in the result set. The
clause order by year, week specifies the column sort order in each data partition. Because the rows are ordered
by the columns year and week, the function lag(sale,1,sale) retrieves the sale column value from the prior row,
which is the sale column value from the prior week (assuming no gaps in the week column). For example, refer to the
row where year is equal to 1998 and week is equal to 3. For that row, the lag function is retrieving the sale column
value from the prior row where year is equal to 1998 and week is equal to 2. Notice that the analytic function does not
specify the partitioning column in the clause lag(sale,1,sale). It is referring implicitly to the current partition.

Listing 8-5.  lag Function

col product format A30
col country format A10
col region format A10
col year format 9999
col week format 99
col sale format 999999.99
col receipts format 999999.99
set lines 120 pages 100
 
SQL> select year, week,sale,
2 lag(sale, 1,sale) over(
3 partition by product, country, region
4 order by year, week
5) prior_wk_sales
6 from sales_fact
7 where country in ('Australia') and product ='Xtend Memory'
8 order by product, country,year, week ;
 

Chapter 8 ■ Analytic Functions

206

YEAR WEEK SALE PRIOR_WK_SALES
---- ---- ---------- --------------
1998 1 58.15 58.15
1998 2 29.39 58.15
1998 3 29.49 29.39
...
1998 52 86.38 58.32
1999 1 53.52 86.38
1999 3 94.60 53.52
 

The third argument in the lag function specifies a default value and it is optional. If the analytic function refers to
a nonexistent row, then a null is returned. This is the default behavior, but you can modify it by specifying some other
return value in the third argument. For example, consider the row with year equal to 1998 and week equal to 1. This is
the first row in its data partition. In this row’s case, the lag function accesses a nonexistent prior row. Because the third
argument to lag is sale, the lag function returns the current row’s sale value when the referenced row does not exist.

Understanding That Offset Is in Rows
It is possible to access any row within a data partition by specifying a different offset. In Listing 8-6, the lag function
is using an offset of ten to access the tenth prior row. Output shows that at the row with year equal to 2001 and week
equal to 52, the lag function is accessing the tenth prior row in the result set, which is for week equal to 40. Notice that
lag (sale,10,sale) is not accessing week equal to 42 by subtracting ten from the current week column value of 52;
rather, this clause is accessing the tenth prior row in the partition. In this case, the tenth prior row is the row with a
week column value equal to 40.

Listing 8-6.  lag Function with Offset of Ten

SQL> select year, week,sale,
2 lag(sale, 10,sale) over(
3 partition by product, country, region
4 order by year, week
5) prior_wk_sales_10
6 from sales_fact
7 where country in ('Australia') and product ='Xtend Memory'
8 order by product, country,year, week ;
 
 YEAR WEEK SALE PRIOR_WK_SALES_10
----- ---- ---------- -----------------
2001 38 139.00 139.28
2001 39 115.57 94.48
2001 40 45.18 116.85
2001 41 67.19 162.91
...
2001 49 45.26 93.16
2001 50 23.14 139
2001 51 114.82 115.57
2001 52 23.14 45.18
 

This issue is tricky, because usually data gaps are not detected in the development environment; but, in the
production environment, this problem manifests itself as a bug. If there are gaps in the data, as in this example,
you have a few options: populate dummy values for the missing rows or use the MODEL clause discussed in Chapter 9.

Chapter 8 ■ Analytic Functions

207

Example 2: Returning a Value from an Upcoming Row
The lead function is similar to the lag function except that the lead function accesses later rows in the ordered
result set. For example, in Listing 8-7, the clause lead(sale, 1,sale) accesses a later row in the ordered result set.

Listing 8-7.  lead Function

SQL> select year, week,sale,
 2 lead(sale, 1,sale) over(
 3 partition by product, country, region
 4 order by year, week
 5) prior_wk_sales
 6 from sales_fact
 7 where country in ('Australia') and product ='Xtend Memory'
 8* order by product, country,year, week ;
 
YEAR WEEK SALE PRIOR_WK_SALES
---- ---- ---------- --------------
2000 31 44.78 134.11
2000 33 134.11 178.52
2000 34 178.52 78.82
2000 35 78.82 118.41
...
 

The partition by clause can be used to specify different partition boundaries and the order by clause can
be used to alter the sorting order within a partition. With an effective choice of partitioning and order by columns,
any row in a result set can be accessed.

first_value and last_value
The first_value and last_value functions are useful in calculating the maximum and minimum values in an
ordered result set. The first_value function retrieves the column value from the first row in a window of rows;
the last_value function retrieves the column value from the last row in that window. Queries generating reports
such as Top Store by Sales for a product and market segment are classic use cases for these analytic functions. Usually,
store details and sales amounts are shown in the report together for the store, with the maximum value in the sale
column. With the proper partition clause specification, the first_value function can be used to retrieve these values
in an optimal manner. Essentially, any report calculating maximum and minimum values can use the first_value
and last_value functions.

The power of first_value and last_value functions emanates from the support for partitioning and windowing
clauses. Multilevel aggregation can be implemented using the partitioning clause concisely. For example, if the goal is
to fetch the rows with maximum or minimum column values aggregated at different levels such as country, product,
or region from the sales table, then implementing the multilevel aggregation is akin to deciding the columns to
include in the partitioning clause.

Using the windowing clause, you can define a sliding dynamic window for these functions to operate. This window
can be defined to include just a few prior and/or later rows or every row in a data partition. Specifically, queries
computing metrics such as “maximum sales so far” can be implemented using these functions. Because the window
can be defined to be a sliding window, these two functions can be used to answer questions such as “Which store had
maximum sales in the past three weeks?” “Which product had maximum returns in the last two weeks?” And so on.

Syntax for the first_value function is as follows:
 
first_value(expression) over (partition-clause order-by-clause windowing-clause)
 

Chapter 8 ■ Analytic Functions

208

In Listing 8-8, the clause partition by product, country, region, year partitions the rows using the
specified partitioning columns. The rows are sorted in a descending order on the sale column values by the clause
order by sale desc.

The top and bottom boundary condition of the window is specified by the clause rows between unbounded
preceding and unbounded following. In this example, we retrieve the top sales value at a level of product, country,
region, and year columns, and hence the window includes all rows in a data partition.

Operationally, data are sorted by the product, country, region, year, and sale columns. Sorting order for the
sale column is in descending order, though. The first row in every data partition has the highest value for the sale
column because of the descending sort order specification of the sale column. So, the first_value(sale) clause
fetches the maximum sale column value in the data partition.

In addition to fetching the maximum column value, you might want to fetch other columns from that top row.
For example, you might want to fetch the year and week column values in which the maximum sale occurred. In
a conventional SQL statement, implementing this results in a join and subquery. But, with analytic functions, it is
simpler to fetch other attributes from that top row, too. Hence, the first_value(week) clause, with other parts of the
analytic function kept the same as first_value(sale), fetches the week column value associated with that top row.

Example: first_value to Calculate Maximum
In the output of Listing 8-8, the top_sale_year column is an aggregated column that calculates the maximum value
of the sale column. The sale column is a nonaggregated column. Both aggregated and nonaggregated column values
are fetched in the same row without a self-join.

Listing 8-8.  first_value Function

SQL> select year, week,sale,
 2 first_value (sale) over(
 3 partition by product, country, region ,year
 4 order by sale desc
 5 rows between unbounded preceding and unbounded following
 6) top_sale_value,
 7 first_value (week) over(
 8 partition by product, country, region ,year
 9 order by sale desc
10 rows between unbounded preceding and unbounded following
11) top_sale_week
12 from sales_fact
13 where country in ('Australia') and product ='Xtend Memory'
14* order by product, country,year, week;
 
 YEAR WEEK SALE TOP_SALE_VALUE TOP_SALE_WEEK
----- ---- ---------- -------------- -------------
 2000 49 42.38 246.74 46
 2000 50 21.19 246.74 46
 2000 52 67.45 246.74 46
 2001 1 92.26 278.44 16
 2001 2 118.38 278.44 16
 2001 3 47.24 278.44 16
 2001 4 256.70 278.44 16
 

Aggregation can be performed at a different level with a different partitioning clause. For example, to compute
the maximum value at the product, country, and region levels, the partitioning clause is partition by product,
country, region.

Chapter 8 ■ Analytic Functions

209

Example: last_value to Calculate Minimum
Similarly, you can use the last_value function to calculate minimum or maximum values. The last_value function
fetches the column values from the last row in a window of rows. For example, if you want to calculate the minimum
sale column value, use the combination of the clause last_value(sale) and the clause order by sale desc sorting
order. The clause order by sale desc sorts the rows by sale column values in a descending order, and the clause
last_value(sale) fetches the sale column value from the last row. Listing 8-9 provides an example for last_value
function usage.

Listing 8-9.  last_value Function

SQL> select year, week,sale,
 2 last_value (sale) over(
 3 partition by product, country, region ,year
 4 order by sale desc
 5 rows between unbounded preceding and unbounded following
 6) low_sale
 7 from sales_fact
 8 where country in ('Australia') and product ='Xtend Memory'
 9* order by product, country,year, week ;
 
YEAR WEEK SALE LOW_SALE
----- ---- ---------- ------------
...
2000 49 42.38 19.84
2000 50 21.19 19.84
2000 52 67.45 19.84
2001 1 92.26 22.37
2001 2 118.38 22.37
2001 3 47.24 22.37
...
 

Granular control of window specification can be used effectively to produce complex reports. For example,
the clause rows between 10 preceding and 10 following specifies a window of 21 rows to calculate a maximum
or minimum value.

Null values are handled by the clause [RESPECT NULLS|IGNORE NULLS]. The clause RESPECT NULLS is the default,
and the first_value function returns the null value if the column value in the first row is null. If the clause IGNORE
NULLS is specified, then the first_value function returns the first nonnull column value in a window of rows.

Other Analytic Functions
Oracle Database implements a great many other analytic functions. Some of those used more often are described in
the following subsections. The functions that follow are the ones that should be on your short list of good functions
to know.

nth_value
Although the first_value and last_value functions provide the ability to fetch the first or last row, respectively,
in an ordered result set, it is not quite straightforward to fetch any arbitrary row with these functions. In fact,
fetching the second row using either the first_value or last_value function is a complex task.

Chapter 8 ■ Analytic Functions

210

Oracle Database version 11gR2 introduced another analytic function—nth_value—which is a generalization of
first_value and last_value functions. Using the nth_value function, you can fetch any row in the ordered result set,
not just first or last values. The first_value function can be written as nth_value (column_name, 1).

In statistics analysis, outliers can occur in the head or tail of the result set. In some cases, it might be important to
ignore first_value or last_value in an ordered result set, and to fetch the value from the next row. The second value
in a result set can be fetched using the nth_value function passing 2 as the offset to the function.

The nth_value function also supports windowing clauses. As discussed earlier, a windowing clause provides the
ability to implement a sliding dynamic window. This, in turn, allows you to write simple queries to answer complex
questions such as “Which store had the second highest sales for a product in a span of 12 weeks?”

Syntax for the nth_value function is as follows:
 
NTH_VALUE (measure, n) [FROM FIRST| FROM LAST] [RESPECT NULLS|IGNORE NULLS]
OVER (partitioning-clause order-by-clause windowing-clause)
 

The first argument to the nth_value function is the column name; the second argument is the offset in a window.
For example, the clause nth_value(sale, 2) accesses the second row in a window. In Listing 8-10, the SQL statement
is fetching the week column value with the second highest sale column value at product, country, region, and year
levels. The second row in this result set is the row with the second highest value for the sale column because the
rows are sorted by sale column in descending order. The clause partition by product, country, region, year
specifies the partitioning columns.

Listing 8-10.  nth_value

SQL> select year, week, sale,
 2 nth_value (sale, 2) over (
 3 partition by product,country, region, year
 4 order by sale desc
 5 rows between unbounded preceding and unbounded following
 6) sale_2nd_top
 7 from sales_fact
 8 where country in ('Australia') and product='Xtend Memory'
 9* order by product, country , year, week ;
 
 YEAR WEEK SALE SALE_2ND_TOP
---------- ---------- ---------- ------------
...
 2000 49 42.38 187.48
 2000 50 21.19 187.48
 2000 52 67.45 187.48
 2001 1 92.26 256.7
 2001 2 118.38 256.7
 2001 3 47.24 256.7
...
 

For the nth_value function, clauses FROM FIRST and RESPECT NULLS are the defaults. If the clause FROM FIRST
is specified, then the nth_value function finds the offset row from the beginning of the window. The clause RESPECT
NULLS returns null values if the column contains null values in the offset row.

With an ability to specify a windowing clause, the nth_value function is quite powerful in accessing an arbitrary
row in the result set or in a partition.

Chapter 8 ■ Analytic Functions

211

rank
The rank function returns the position of a row, as a number, in an ordered set of rows. If the rows are sorted by
columns, then the position of a row in a window reflects the rank of the value in that window of rows. In the case of a
tie, rows with equal value have the same rank and the ranks are skipped, leaving gaps in the rank values. This means
that two rows can have the same rank, and the ranks are not necessarily consecutive.

The rank function is useful to compute the top or bottom n rows. For example, a query to find the top ten weeks
by sales quantity is a typical retail industry data warehouse query. Such a query greatly benefits from the use of rank.
If you need to write any query that computes top or bottom n elements of a result set, use the rank function or
dense_rank function.

The rank function is also useful in finding inner n rows. For example, if the goal is to fetch rows from 21 through
40 sorted by sales, then you can use the rank function in a subquery with a predicate between 21 and 40 to filter 20
inner rows.

Syntax for the rank function is as follows:
 
rank() over (partition-clause order-by-clause)
 

In Listing 8-11, you calculate the top ten rows by sale for product, country, region, and year column values. The
clause partition by product, country, region, week specifies the partitioning columns, and the rows are sorted
by sale column descending order in that data partition using the order by sale desc clause. The rank function
calculates the rank of the row in that data partition. This SQL is wrapped inside an inline view, and then a predicate of
sales_rank <=10 is applied to fetch the top ten weeks by sale column. Also, notice that the windowing clause is not
applicable in the rank functions, and the rank function is applied over all the rows in a data partition.

Listing 8-11.  Use of rank Function: Top Ten Sales Weeks

SQL> select * from (
 2 select year, week,sale,
 3 rank() over(
 4 partition by product, country, region ,year
 5 order by sale desc
 6) sales_rank
 7 from sales_fact
 8 where country in ('Australia') and product ='Xtend Memory'
 9 order by product, country,year, week
10) where sales_rank<=10
11* order by 1,4 ;
 
YEAR WEEK SALE SALES_RANK
---- ---- ---------- ----------
...
2001 16 278.44 1
2001 4 256.70 2
2001 21 233.70 3
2001 48 182.96 4
2001 30 162.91 5
2001 14 162.91 5
2001 22 141.78 7
2001 43 139.58 8
...
 

Chapter 8 ■ Analytic Functions

212

The rank function assigns the same rank in case of ties. In the output of Listing 8-11, notice that there are two
rows with a sales rank of 5, because the sale column value is 162.91 for these two rows. Also, notice that the next
rank is 7, not 6. In a nutshell, the rank function skips the ranks if there are ties. Number of rank values skipped equals
number of rows with tied values. If there are ties for three rows, then the next rank is 8.

dense_rank
dense_rank is a variant of the rank function. The difference between the rank and dense_rank functions is that the
dense_rank function does not skip the ranks in the case of ties. As discussed earlier, the dense_rank function is useful
in finding top, bottom, or inner n rows in a result set. In Listing 8-12, the dense_rank function is used instead of the
rank function. Note that the rank for week equal to 22 is 6 in Listing 8-12 and 7 in Listing 8-11.

Listing 8-12.  dense_rank Function

SQL> select * from (
 2 select year, week,sale,
 3 dense_rank() over(
 4 partition by product, country, region ,year
 5 order by sale desc
 6) sales_rank
 7 from sales_fact
 8 where country in ('Australia') and product ='Xtend Memory'
 9 order by product, country,year, week
10) where sales_rank<=10
11* order by 1,4 ;
 
 YEAR WEEK SALE SALES_RANK
----- ---- ---------- ----------
 2001 16 278.44 1
 2001 4 256.70 2
 2001 21 233.70 3
 2001 48 182.96 4
 2001 14 162.91 5
 2001 30 162.91 5
 2001 22 141.78 6
 

The dense_rank function is useful in queries in which the ranks need to be consecutive. For example, ranks may
not be skipped in a query to compute the top ten students in a class roster. On the other hand, the rank function is
useful when ranks need not be consecutive.

Sort order for nulls can be controlled by the NULLS FIRST or NULLS LAST clause in the dense_rank function.
NULLS LAST is the default for ascending sort order; NULLS FIRST is the default for the descending sort order.
In Listing 8-12, descending sort order is used and the default NULLS FIRST clause is in effect. Rows with null
values have a rank of 1 in this case.

Another useful way to use dense_rank is with the FIRST or LAST functions. These functions operate as both
aggregate and analytic functions on a set of values from a set of rows that rank as the FIRST or LAST with respect to a
given sorting specification. So, when you need a value from the first of last row of an ordered group, but the needed
value is not the sort key, the FIRST and LAST functions eliminate the need to join the table back to itself to determine
the correct value. The syntax is as follows:
 
Aggregate syntax:
aggregate function KEEP
(dense_rank [FIRST | LAST] ORDER BY expression [DESC | ASC] NULLS [FIRST | LAST])
 

Chapter 8 ■ Analytic Functions

213

Analytic syntax:
aggregate function KEEP
(dense_rank [FIRST | LAST] ORDER BY expression [DESC | ASC] NULLS [FIRST | LAST])
OVER (partition-clause)
 

Note how the dense_rank function basically acts as a modifier to the specified aggregate function (MIN, MAX, SUM,
AVG, COUNT, VARIANCE, or STDDEV). The KEEP keyword is for clarity and qualifies the aggregate function, indicating that
only the first or last values of the aggregate function will be returned. When used in this scenario, dense_rank indicates
that Oracle aggregates over only those rows with the minimum (FIRST) or the maximum (LAST) dense_rank. Listing 8-13
provides a good example of how to use this function as demonstrated in the pln.sql script used earlier in the book.

Listing 8-13.  dense_rank Function Used within the FIRST|LAST KEEP function

SQL>get pln.sql
 1 select xplan.*
 2 from
 3 (
 4 select max(sql_id) keep
 5 (dense_rank last order by last_active_time) sql_id
 6 , max(child_number) keep
 7 (dense_rank last order by last_active_time) child_number
 8 from v$sql
 9 where upper(sql_text) like '%&1%'
 10 and upper(sql_text) not like '%FROM V$SQL WHERE UPPER(SQL_TEXT) LIKE %'
 11) sqlinfo,
 12 table(DBMS_XPLAN.DISPLAY_CURSOR(sqlinfo.sql_id, sqlinfo.child_number,'ALLSTATS LAST')) xplan ;
 

In this SQL, the desired result is to return SQL_ID and CHILD_NUMBER from V$SQL for the most recently executed
SQL statement matching the specified SQL_TEXT input string (&1). The dense_rank function ensures the last statement
executed based on LAST_ACTIVE_TIME is returned. Without this function, we have to use a LAST_VALUE function in
an inline view and execute a MAX aggregate on the return set of that view by grouping by SQL_ID and CHILD_NUMBER.
In other words, we have to add an extra step. This method is actually a shorter and more efficient way of getting the
answer we want.

row_number
The row_number function assigns a unique number for each row in the ordered result set. If the partitioning clause is
specified, then each row is assigned a number unique within a data partition, based on its position in the sort order in
that partition. If the partitioning clause is not specified, then each row in the result set is assigned a unique number.

The row_number function is also useful to fetch top, bottom, or inner n queries, similar to the rank and
dense_rank functions. Even though the rank, dense_rank, and row_number functions have similar functionality,
there are subtle differences among them. One is that the row_number function does not allow windowing clauses.

Syntax for the row_number function is as follows:
 
row_number() over (partition-clause order-by-clause)
 

The row_number function is a nondeterministic function. The value of the row_number function is undetermined
if two rows have the same value in a data partition. For example, in Listing 8-14, rows with column values of 19, 8, 12,
and 4 have the same value of 46.54 in the sale column. The row_number function returns values of 31, 32, 34, and 33,
respectively, for these rows in the example output. But, the result could just as easily be 34, 31, 32, 33 or 32, 34, 31, 33.
In fact, you might get different results with execution of the query. On the contrary, rank and dense_rank functions
are deterministic and always return consistent values if a query is reexecuted.

Chapter 8 ■ Analytic Functions

214

Listing 8-14.  row_number Function

SQL> select year, week,sale,
 2 row_number() over(
 3 partition by product, country, region ,year
 4 order by sale desc
 5) sales_rn,
 6 rank() over(
 7 partition by product, country, region ,year
 8 order by sale desc
 9) sales_rank
10 from sales_fact
11 where country in ('Australia') and product ='Xtend Memory'
12* order by product, country,year,sales_rank ;
 
 YEAR WEEK SALE SALES_RN SALES_RANK
----- ---- ---------- ---------- ----------
...
 2000 19 46.54 31 31
 2000 8 46.54 32 31
 2000 12 46.54 34 31
 2000 4 46.54 33 31
... 

ratio_to_report
The analytic function ratio_to_report calculates the ratio of a value to the sum of values in the data partition. If the
partitioning clause is not specified, this function calculates the ratio of a value to the sum values in the whole result
set. This analytic function is very useful in calculating ratios at various levels without a need for self-joins.

ratio_to_report is useful in computing the percentage of a value compared with the total value in a report.
For example, consider a sales report of a product in a retail chain. Each outlet in the retail chain contributes to the
total sum of sales computed for that product, and knowing which percentage of sales is generated from an outlet is
quite useful for market trend analysis. ratio_to_report allows you to compute the percentage easily. Furthermore,
this ratio can be calculated at various levels such as district, region, and country. Essentially, data can be sliced and
diced in various ways for market trend analysis.

In Listing 8-15, the SQL statement computes two ratios: sales_ratio_yr is computed at product, country,
region, and year levels, and the ratio sales_ratio_prod is computed at product, country, and region levels.
The ratio_to_report function returns a ratio and it is multiplied by 100 to compute a percentage.

Listing 8-15.  ratio_to_report Function

SQL> select year, week,sale,
 2 trunc(100*
 3 ratio_to_report(sale) over(partition by product, country, region ,year)
 4 ,2) sales_yr,
 5 trunc(100*
 6 ratio_to_report(sale) over(partition by product, country, region)
 7 ,2) sales_prod
 8 from sales_fact
 9 where country in ('Australia') and product ='Xtend Memory'
10 order by product, country,year, week ;
 

Chapter 8 ■ Analytic Functions

215

 YEAR WEEK SALE SALES_YR SALES_PROD
---------- ---------- ---------- ---------- ----------
 1998 1 58.15 2.26 .43
 1998 2 29.39 1.14 .21
 1998 3 29.49 1.15 .22
 1998 4 29.49 1.15 .22
 1998 5 29.8 1.16 .22
...
 2001 48 182.96 3.96 1.36
 2001 49 45.26 .98 .33
 2001 50 23.14 .5 .17
 2001 51 114.82 2.48 .85
 2001 52 23.14 .5 .17
 
159 rows selected.
 

The ratio_to_report(sale) over(partition by product, country, region, year) clause calculates
the ratio of the sale column value to the sum of sale column values in a data partition, partitioned by the columns
product, country, region, and year. The next clause ratio_to_report(sale) over(partition by product,
country, region) is different because the year column is not included in the partitioning columns. So, the ratio
is calculated for all years.

The ratio_to_report function returns a null value if the expression or column specified in the function returns
null values. However, other null values in the data partition are handled as either 0 values or empty strings, similar to
aggregation functions.

percent_rank
The percent_rank function returns the rank of a value in a data partition, expressed as a fraction between 0 and 1.
percent_rank is calculated as (rank – 1)/(n – 1), where n is the number of elements in the data partition if the
partitioning clause is specified, or the total number of rows in the result set if the partitioning clause is not specified.
The percent_rank function is useful to compute the relative standing of a value in a result set as a percentile.

This rank can be calculated relative to a partition or the whole result set. For example, computing the sales
percentile of a retail outlet in a district or region helps find the top-performing outlets or the worst-performing outlets.

In Listing 8-16, I calculate the top 50 sale percentile by year using the percent_rank function. The clause
percent_rank() over(partition by product, country, region , year order by sale desc) calculates the
percent rank of the sale column in a data partition defined by the partitioning columns product, country, region,
and year. Rows are ordered by the sale column in descending order. Function output is multiplied by 100 to compute
a percentage.

Listing 8-16.  percent_rank Function

SQL> select * from (
 2 select year, week,sale,
 3 100 * percent_rank() over(
 4 partition by product, country, region , year
 5 order by sale desc
 6) pr
 7 from sales_fact
 8 where country in ('Australia') and product ='Xtend Memory'
 9) where pr <50
10* order by year, sale desc ;
 

Chapter 8 ■ Analytic Functions

216

 YEAR WEEK SALE PR
----- ---- ---------- -------
2001 16 278.44 .00
2001 4 256.70 2.27
2001 21 233.70 4.55
2001 48 182.96 6.82
...

percentile_cont
The percentile_cont function is useful to compute the interpolated values, such as the median household
income per region or city. The percentile_cont function takes a probability value between 0 and 1 and returns an
interpolated percentile value that equals the percent_rank value with respect to the sort specification. In fact, the
percentile_cont function performs the inverse of the percent_rank function, and it is easier to understand the
percentile_cont function in conjunction with the output of the percent_rank function.

The percentile_cont function retrieves the column value matching (or interpolated from) the percent_rank
of the argument. For example, the clause percentile_cont(0.25) retrieves the value that has percent_rank 0.25,
assuming matching sort order for these two functions. Another example is computing the median household
income in a city or region. The median value has percent_rank 0.5 by the definition of median value. The clause
percentile_cont(0.5) returns the median value because the percentile_cont function is calculating the value
with percent_rank 0.5. In fact, median function is a specific case of the percentile_cont function and has a default
value of 0.5.

Nulls are ignored by the function. This function does not support windowing clauses either.
Syntax for the percentile_cont function is as follows:

 
Percentile_cont(expr) within group (sort-clause) over (partition-clause order-by-clause)
 

The syntax for the percentile_cont function is slightly different from the analytic functions discussed so far.
A new clause within group (order by sale desc) replaces the order by clause, and it is functionally the same as
specifying an order by clause. In Listing 8-17, the clause percentile_cont (0.5) within group (order by sale
desc) over(partition by product, country, region , year) calls the percentile_cont function and passes a
probability value of 0.5. Sort order is defined by the clause within group (order by sale desc). The partition by
clause over(partition by product, country, region , year) specifies the partitioning columns.

Listing 8-17 shows the output of percent_rank in a side-by-side comparison with that from percentile_cont,
with a similar partition by clause and order by clause. Notice that for the column values year equal to 2001 and
week equal to 5, the sale column value is 93.44 and the percent_rank of that value is 0.5. Essentially, a value of 93.44
occurs with a percent_rank of 0.5 in the descending order of the sale column values in that data partition. In a
nutshell, the value of 93.44 is a median value and thus percent_rank is 0.5. Hence, the percent_rank function with
an argument of 0.5 returns a value of 93.44.

Listing 8-17.  The percentile_cont Function

SQL> select year, week,sale,
 2 percentile_cont (0.5) within group
 3 (order by sale desc)
 4 over(partition by product, country, region , year) pc,
 5 percent_rank () over (
 6 partition by product, country, region , year
 7 order by sale desc) pr
 8 from sales_fact
 9* where country in ('Australia') and product ='Xtend Memory' ;
 

Chapter 8 ■ Analytic Functions

217

 YEAR WEEK SALE PC PR
---------- ---------- ---------- ---------- ----------
...
 2000 28 88.96 79.09 .461538462
 2000 38 79.36 79.09 .487179487
 2000 35 78.82 79.09 .512820513
...
 2001 46 93.58 93.44 .477272727
 2001 5 93.44 93.44 .5
 2001 37 93.16 93.44 .522727273
...
 2001 52 23.14 93.44 .909090909
 2001 50 23.14 93.44 .909090909
 2001 6 22.44 93.44 .954545455
 2001 23 22.38 93.44 .977272727
 2001 18 22.37 93.44 1
 
159 rows selected.

In addition, note the output row for the column values with year equal to 2000. There is no sale column
value with percent_rank matching 0.5 exactly in the data partition. If there is no value matching exactly, then the
percentile_cont function computes an interpolated value using the nearest values. Note there is a row in that data
partition with a percent_rank of 0.48 for the sale column value of 79.36, and the next row in that sort order has a
percent_rank of 0.51 for the sale column value of 78.82. Because the specified percent_rank of 0.5 is between 0.48
and 0.51, the percentile_cont function interpolated these two corresponding sale column values (79.36 and 78.82)
and calculated percentile_cont (0.5) as 79.09, an average of the two sale column values. Values are averaged
because this function assumes continuous distribution.

Notice that output rows are not sorted in Listing 8-17. The reason for this is that, even though there is an order
by clause specified in the analytic function specification (line 3 and line 7), there is no order by clause in the main
body of the query. Should you need rows to be sorted, you need to specify sorting order explicitly in the main body
of the query as well.

percentile_disc
The percentile_disc function is functionally similar to percentile_cont except that the percentile_cont function
uses a continuous distribution model and the percentile_disc function assumes a discrete distribution model.
As discussed earlier, when there is no value matching exactly with the specified percent_rank, then
percentile_cont (0.5) computes an average of the two nearest values. In contrast, the percentile_disc function
retrieves the value with a percent_rank just greater than the passed argument, in the case of ascending order. In the
case of descending order, the percentile_cont function retrieves the value that has a percent_rank just smaller than
the passed argument.

In Listing 8-18, the percentile_cont function is replaced by two calls to the percentile_disc function. The first
call to the function starting in line 2 specifies descending sort order, and the next call in line 4 specifies no sort order,
so it defaults to ascending sort order. In both calls to the percentile_disc function, an argument of 0.5 is passed.
Because there is no row with a percent_rank of 0.5, the percentile_disc function with the descending sort order
specification returns a value of 79.36 (for the rows from the year 2000, weeks 38 and 35), because this value has a
percent_rank of 0.48—just below the specified argument of 0.5. For the ascending order, this function returns a value
of 78.82, because this value has a percent_rank of 0.51—just above 0.5.

Chapter 8 ■ Analytic Functions

218

Listing 8-18.  The percentile_disc Function

SQL> select year, week,sale,
 2 percentile_disc (0.5) within group (order by sale desc)
 3 over(partition by product, country, region , year) pd_desc,
 4 percentile_disc (0.5) within group (order by sale)
 5 over(partition by product, country, region , year) pd_asc,
 6 percent_rank () over (
 7 partition by product, country, region , year
 8 order by sale desc) pr
 9 from sales_fact
10* where country in ('Australia') and product ='Xtend Memory' ;
 
 YEAR WEEK SALE PD_DESC PD_ASC PR
---------- ---------- ---------- ---------- ---------- ----------
 1998 48 172.56 58.78 58.32 0
 1998 10 117.76 58.78 58.32 .028571429
 1998 18 117.56 58.78 58.32 .057142857
 1998 23 117.56 58.78 58.32 .057142857
 1998 26 117.56 58.78 58.32 .057142857
...
 2000 28 88.96 79.36 78.82 .461538462
 2000 38 79.36 79.36 78.82 .487179487
 2000 35 78.82 79.36 78.82 .512820513
 2000 7 70.8 79.36 78.82 .538461538
...
 2001 52 23.14 93.44 93.44 .909090909
 2001 50 23.14 93.44 93.44 .909090909
 2001 6 22.44 93.44 93.44 .954545455
 2001 23 22.38 93.44 93.44 .977272727
 2001 18 22.37 93.44 93.44 1
 
159 rows selected.

NTILE
The NTILE function divides an ordered set of rows in a data partition, groups them into buckets, and assigns a unique
group number to each group. This function is useful in statistical analysis. For example, if you want to remove the
outliers (values that are outside the norm), you can group them in the top or bottom buckets and eliminate those
values from the statistical analysis. Oracle Database statistics collection packages also use NTILE functions to calculate
histogram boundaries. In statistical terminology, the NTILE function creates equiwidth histograms.

The number of buckets is passed as the argument to this analytic function. For example, NTILE(100) groups the
rows into 100 buckets, assigning a unique number for each bucket. This function does not support windowing clauses,
however.

In Listing 8-19, the data partition is split into ten buckets using the clause NTILE (10). Rows are sorted by the
sale column in descending order. The NTILE function groups rows into buckets, with each bucket containing an equal
number of rows. Because the rows are sorted by the sale column values in descending order, rows with lower group
numbers have higher sale column values. Outliers in the data can be removed easily with this technique.

Chapter 8 ■ Analytic Functions

219

Listing 8-19.  NTILE Function

 1 select year, week,sale,
 2 ntile (10) over(
 3 partition by product, country, region , year
 4 order by sale desc
 5) group#
 6 from sales_fact
 7* where country in ('Australia') and product ='Xtend Memory' ;
 
 YEAR WEEK SALE GROUP#
---------- ---------- ---------- ----------
...
 2001 16 278.44 1
 2001 4 256.7 1
 2001 21 233.7 1
 2001 48 182.96 1
 2001 14 162.91 1
 2001 30 162.91 2
 2001 22 141.78 2
 2001 43 139.58 2
 2001 25 139.28 2
 2001 38 139 2
 2001 42 136.98 3
 2001 24 136.92 3
 2001 2 118.38 3
 2001 20 118.03 3
 2001 29 116.85 3
 2001 12 116.81 4
 2001 13 116.81 4
 2001 39 115.57 4
 2001 33 115.52 4
 2001 51 114.82 4
 2001 27 94.48 5
 2001 46 93.58 5
 2001 5 93.44 5
 2001 37 93.16 5
 2001 9 92.67 5
 2001 1 92.26 6
 2001 31 92.21 6
 2001 15 91.98 6
 2001 36 91.12 6
 2001 11 71.57 7
 2001 7 69.96 7
 2001 10 69.05 7
 2001 34 68.9 7
 2001 32 68.9 8
 2001 41 67.19 8
 2001 3 47.24 8
 2001 8 46.06 8

Chapter 8 ■ Analytic Functions

220

 2001 49 45.26 9
 2001 40 45.18 9
 2001 44 23.29 9
 2001 52 23.14 9
 2001 50 23.14 10
 2001 6 22.44 10
 2001 23 22.38 10
 2001 18 22.37 10
 
159 rows selected.
 

There may be a row count difference of at most one between the buckets if the rows cannot be divided equally.
In this example, rows for year equal to 2001 are divided into ten buckets, with each of the first five buckets having five
rows, but the last five buckets have only 4 rows.

The NTILE function is useful in real-world applications such as dividing total work among n parallel processes.
Let’s say you have ten parallel processes. You can divide the total work into ten buckets and assign each bucket to
a process.

stddev
The stddev function can be used to calculate standard deviation among a set of rows in a data partition, or in the
result set if no partitioning clause is specified. This function calculates the standard deviation, defined as the square
root of variance, for a data partition specified using a partitioning clause. If a partitioning clause is not specified,
this function calculates stddev for all rows in the result set.

In Listing 8-20, the clause stddev (sale) calculates the standard deviation on the sale column among the
rows in a data partition. The partitioning clause partition by product, country, region, year specifies the
partitioning columns. The windowing clause rows between unbounded preceding and unbounded following
specifies the window as all rows in that data partition. Essentially, this SQL calculates the standard deviation
on the sale column among all rows in a data partition.

Listing 8-20.  stddev Function

SQL> select year, week,sale,
2 stddev (sale) over(
3 partition by product, country, region , year
4 order by Sale desc
5 rows between unbounded preceding and unbounded following
6) stddv
7 from sales_fact
8 where country in ('Australia') and product ='Xtend Memory'
9* order by year, week ;
 
 YEAR WEEK SALE STDDV
---------- ---------- ---------- ----------
 1998 1 58.15 33.5281435
 1998 2 29.39 33.5281435
 1998 3 29.49 33.5281435
 1998 4 29.49 33.5281435
 1998 5 29.8 33.5281435
 ...

Chapter 8 ■ Analytic Functions

221

 2001 48 182.96 59.1063592
 2001 49 45.26 59.1063592
 2001 50 23.14 59.1063592
 2001 51 114.82 59.1063592
 2001 52 23.14 59.1063592
 
159 rows selected.
 

Standard deviation can be calculated at a coarser or a granular level by specifying an appropriate partition by
clause and windowing clause.

There are various other statistics functions that can be used to calculate statistical metrics; for example,
stddev_samp calculates the cumulative sample standard deviation, stddev_pop calculates the population standard
deviation, and so forth. Detailed discussion about various statistics functions is out of the scope of this book, however.

listagg
Oracle Database version 11gR2 introduced another analytic function, the listagg function, which is very useful in
string manipulation. This analytic function provides the ability to convert column values from multiple rows into
groups in a list format based on one or more expressions in the partition-by-clause. For example, if you want to
concatenate all the employee names in a department, you can use this function to concatenate all names into a list.

Syntax for this function is of the following format:
 
Listagg (string, separator) within group (order-by-clause) Over (partition-by-clause)
 

Syntax for the listagg function uses the clause within group (order-by-clause) to specify sorting order. This
clause is similar to the order by clause in other analytic functions. The first argument to this function is the string or
column name to concatenate. The second argument is the separator for the values. In Listing 8-21, the partitioning
clause is not specified and rows are ordered by the country column in descending order. The output shows that
country names are converted to a list separated by commas.

Note that the listagg function does not support windowing clauses.

Listing 8-21.  listagg Function

 1 select listagg (country, ',')
 2 within group (order by country desc)
 3 from (
 4 select distinct country from sales_fact
 5 order by country
 6*) ;
 
LISTAGG(COUNTRY,',')WITHINGROUP(ORDERBYCOUNTRYDESC)
--
United States of America,United Kingdom,Turkey,Spain,Singapore,
Saudi Arabia,Poland,New Zealand, Japan,Italy,Germany,France, Denmark,China,Canada,Brazil,Australia,
Argentina
 

One restriction of the listagg function is that the results of listagg are constrained to the maximum size of a
VARCHAR2 datatype. Beginning in 12c, the maximum size of a VARCHAR2 datatype was increased from 4000 to 32,767
bytes. However, it appears that this increase did not affect the maximum size of the result string for listagg, as shown
in Listing 8-22.

Chapter 8 ■ Analytic Functions

222

Listing 8-22.  Size Restriction on listagg Result String

SQL>select length(acol) from (
 2 SELECT LISTAGG(object_name) WITHIN GROUP (ORDER BY NULL) acol
 3 FROM all_objects where rownum < 359);
 
LENGTH(ACOL)

 3975
 
SQL>select length(acol) from (
 2 SELECT LISTAGG(object_name) WITHIN GROUP (ORDER BY NULL) acol
 3 FROM all_objects where rownum < 360);
 FROM all_objects where rownum < 360)
 *
ERROR at line 3:
ORA-01489: result of string concatenation is too long
 

Note that when enough rows are returned to make the length of the string exceed 4000 bytes (the pre-12c limit
for a VARCHAR2), an ORA-014889 error is raised. I was fully expecting the listagg function to use the new, higher limit,
but it appears to have the old 4000-byte limit hard coded. It's likely an oversight that should be corrected because
this datatype size increase would make it much easier to use listagg for larger string combinations. However, if your
resulting string size exceeds the limit, you need to use an alternative means of producing the final string (such as a
collection or a user-defined PL/SQL function).

Performance Tuning
Analytic functions are very useful in tuning complex SQL statements. Interrow referencing, aggregation at multiple
levels, and nth-row access are a few of the important features analytic functions provide. For example, a typical query
fetching both aggregated and nonaggregated rows must perform a self-join. In a data warehouse environments,
because of the sheer size of the tables involved, these self-joins can be cost prohibitive.

The efficiency that analytics bring to the table often makes them useful tools in rewriting queries that do not
perform well. In turn, however, you can sometimes face the need to tune an analytic function. To this end, there are
some useful things to know about analytic functions and execution plans, analytics and predicates, and strategies
for indexing.

Execution Plans
Analytic function introduces a few new operations into the SQL execution plan. The presence of the keywords
WINDOW SORT indicates that the SQL statement uses an analytic function. In this section, I review the mechanics
of analytic function execution.

Listing 8-23 shows a typical explain plan of a SQL statement. Execution of this plan starts at step 4 and works its
way outward to step 1:

	 1.	 Table sales_fact is accessed using a full table scan access path.

	 2.	 Filter predicates on the product, country, region, and year columns are applied to filter-
required rows.

	 3.	 Analytic functions are applied over the filtered rows from step 3.

Chapter 8 ■ Analytic Functions

223

	 4.	 The predicate on the week column is applied after the execution of these analytic
functions.

Listing 8-23.  Explain Plan

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		5	290	581 (3)
* 1	VIEW	MAX_5_WEEKS_VW	5	290	581 (3)
2	WINDOW SORT		5	330	581 (3)
* 3	TABLE ACCESS FULL	SALES_FACT	5	330	580 (3)

Predicate Information (identified by operation id):

 1 - filter("WEEK"<14)
 3 - filter("PRODUCT"='Xtend Memory' AND "COUNTRY"='Australia' AND
 "REGION"='Australia' AND "YEAR"=2000)

Note■■  T he cost-based optimizer does not assign or calculate a cost for analytic functions (as of 11gR2, and it is still
true in 12c). The cost of the SQL statement is calculated without considering the cost of analytic functions.

Predicates
Predicates must be applied to the tables as early as possible to reduce the result set for better performance. Rows
must be filtered earlier so that analytic functions are applied to relatively fewer rows. Predicate safety is an important
consideration when executing analytic functions because not all predicates can be applied beforehand.

In Listing 8-24, a view called max_5_weeks_vw is defined and a SQL statement accesses the view with the
predicates on the county, product, region, year, and week columns. The execution plan shows that the following filter
predicates are applied in step 3:
 
filter(("PRODUCT"='Xtend Memory' AND "COUNTRY"='Australia' AND "REGION"='Australia' AND "YEAR"=2000)) 

Listing 8-24.  Predicates

create or replace view max_5_weeks_vw as
 select country , product, region, year, week,sale,
 max (sale) over(
 partition by product, country, region ,year
 order by year, week
 rows between 2 preceding and 2 following
) max_weeks_5
 from sales_fact ;
 

Chapter 8 ■ Analytic Functions

224

SQL> select year, week, sale, max_weeks_5 from max_5_weeks_vw
2 where country in ('Australia') and product ='Xtend Memory' and
3 region='Australia' and year= 2000 and week <14
4* order by year, week ;

| Id | Operation | Name | E-Rows |

0	SELECT STATEMENT		
* 1	VIEW	MAX_5_WEEKS_VW	5
2	WINDOW SORT		5
* 3	TABLE ACCESS FULL	SALES_FACT	5

Predicate Information (identified by operation id):

 1 - filter("WEEK"<14)
 3 - filter(("PRODUCT"='Xtend Memory' AND "COUNTRY"='Australia' AND
 "REGION"='Australia' AND "YEAR"=2000))
 

However, the predicate "WEEK"<14 is not applied in step 3, and is only applied in step 1, indicating that the
predicate is applied after executing the analytic functions in step 2’s WINDOW SORT step. All supplied predicates except
that on the week column were pushed into the view. Filtering of these predicates then took place before executing the
analytic functions.

Predicates on partitioning columns are applied before executing analytic functions because, generally speaking,
predicates on the partitioning column can be pushed safely into the view. But, columns in the order-by-clause of the
analytic function syntax can’t be pushed safely because the interrow references need access to other rows in the same
partitions, even if those rows are not returned in the final result set.

Indexes
A good strategy for index selection is to match the predicates applied on the table access step. As discussed earlier,
predicates on partitioning columns are pushed into the view, and these predicate are applied before executing the
analytic functions. So, it’s probably a better approach to index the partitioning columns if the SQL statements are
using those predicates.

In Listing 8-25, a new index is added on the columns country and product. Step 4 in the execution plan shows
that index-based access is used. The Predicate Information section shows that predicates on all four partitioning
columns are applied at step 4 and step 3 before executing the analytic function. However, the predicate on the week
column was applied much later in the execution plan, at step 1. So, in this case, adding the week column to the index
is not useful because the predicates are not applied until after the analytic function execution completes.

Listing 8-25.  Predicates and Indexes

create index sales_fact_i1 on sales_fact(country, product);
 
SQL> select year, week, sale, max_weeks_5 from max_5_weeks_vw
2 where country in ('Australia') and product ='Xtend Memory' and
3 region='Australia' and year= 2000 and week <14
4* order by year, week ;
 

Chapter 8 ■ Analytic Functions

225

--
| Id | Operation | Name | E-Rows |
--
0	SELECT STATEMENT		
* 1	VIEW	MAX_5_WEEKS_VW	5
2	WINDOW SORT		5
* 3	TABLE ACCESS BY INDEX ROWID	SALES_FACT	5
* 4	INDEX RANGE SCAN	SALES_FACT_I1	147
--
 
Predicate Information (identified by operation id):

 1 - filter("WEEK"<14)
 3 - filter(("REGION"='Australia' AND "YEAR"=2000))
 4 - access("COUNTRY"='Australia' AND "PRODUCT"='Xtend Memory') fs

Advanced Topics
A few advanced topics about the analytic functions raise points that are worthy of discussion. In this section I briefly
discuss dynamic analytic statements, nesting of analytic functions, parallelism, and PGA size.

Dynamic SQL
A common question about the analytic SQL statement is “Can a bind variable can be used in place of partitioning
or sorting columns?” The answer is no. If you want the flexibility to modify the partitioning or sorting columns
dynamically, you need to use dynamic SQL statements. Static analytic SQL statements cannot change the partitioning
or sorting columns.

If your goal is to modify the partitioning columns dynamically, then consider creating a packaged procedure to
capture the logic in the procedure. In Listing 8-26, the procedure analytic_dynamic_prc accepts a string to be used as
partitioning columns. A SQL statement is constructed using the arguments passed and is executed dynamically using
execute immediate syntax. The result of the analytic statement is fetched into an array and is printed using a call to
the dbms_output package.

Listing 8-26.  Dynamic SQL Statement

create or replace procedure
 analytic_dynamic_prc (part_col_string varchar2, v_country varchar2, v_product varchar2)
is
 type numtab is table of number(18,2) index by binary_integer;
 l_year numtab;
 l_week numtab;
 l_sale numtab;
 l_rank numtab;
 l_sql_string varchar2(512) ;
begin
 l_sql_string :=
 'select * from (
 select year, week,sale,

Chapter 8 ■ Analytic Functions

226

 rank() over(
 partition by ' ||part_col_string ||'
 order by sale desc
) sales_rank
 from sales_fact
 where country in (' ||chr(39) || v_country || chr(39) || ') and
 product =' || chr(39) || v_product || chr(39) ||
 ' order by product, country, year, week
) where sales_rank<=10
 order by 1,4';
 execute immediate l_sql_string bulk collect into l_year, l_week, l_sale, l_rank;
 for i in 1 .. l_year.count
 loop
 dbms_output.put_line (l_year(i) ||' |' || l_week (i) ||
 '|'|| l_sale(i) || '|' || l_rank(i));
 end loop;
 end;
/
 
exec analytic_dynamic_prc ('product, country, region','Australia','Xtend Memory');
...
1998 |48|172.56|9
2000 |46|246.74|3
2000 |21|187.48|5
2000 |43|179.12|7
2000 |34|178.52|8
2001 |16|278.44|1
2001 |4|256.7|2
 
exec analytic_dynamic_prc ('product, country,region, year','Australia','Xtend Memory');
 
1998 |48|172.56|1
1998 |10|117.76|2
1998 |18|117.56|3
1998 |23|117.56|3
1998 |26|117.56|3
1998 |38|115.84|6
1998 |42|115.84|6
...

In the first call, analytic_dynamic_prc passes the string product, country, region as the first argument
and the columns in this list are used as the partitioning columns. The second call to the procedure uses the string
product, country, region, year to use a different list of columns for the partitioning clause.

Note that this procedure is given as an example and as such may not be construed as production-ready code.

Nesting Analytic Functions
Analytic functions cannot be nested, but a nesting effect can be achieved with the use of subqueries. For example,
the clause lag(first_value(column,1),1) is syntactically incorrect. Subqueries can be used to create a nesting
effect, as explored next.

Chapter 8 ■ Analytic Functions

227

Suppose your goal is to fetch the maximum sale column value for the year and the prior year in the same row.
If so, then the analytic functions lag and first_value can be used in the subqueries to write a SQL statement.
In Listing 8-27, an inner subquery fetches the year and week sale column value in which the maximum sale occurred,
in addition to fetching the maximum sale column value for that year. The lag function in the outer query retrieves
the prior year maximum sale column value.

Listing 8-27.  Nesting Analytic Functions

select year, week, top_sale_year,
 lag(top_sale_year) over (order by year desc) prev_top_sale_yer
from (
 select distinct
 first_value (year) over (
 partition by product, country, region ,year
 order by sale desc
 rows between unbounded preceding and unbounded following
) year,
 first_value (week) over (
 partition by product, country, region ,year
 order by sale desc
 rows between unbounded preceding and unbounded following
) week,
 first_value (sale) over(
 partition by product, country, region ,year
 order by sale desc
 rows between unbounded preceding and unbounded following
) top_sale_year
 from sales_fact
 where country in ('Australia') and product ='Xtend Memory'
)
 order by year, week ;
 
 YEAR WEEK TOP_SALE_YEAR PREV_TOP_SALE_YER
---------- ---------- ------------- -----------------
 1998 48 172.56 148.12
 1999 17 148.12 246.74
 2000 46 246.74 278.44
 2001 16 278.44
 

Notice that the partitioning clause is different between the lag and first_value functions. The analytic function
first_value computes the top sale row in a partition specified by the partitioning columns product, country,
region, year whereas lag fetches the first row from the prior year specifying only the sorting clause: order by year
desc. With multilevel nesting of analytic functions, complex goals can be implemented concisely using the analytic
functions.

Parallelism
By specifying a parallel hint in the SQL statement or by setting parallelism at the object level, analytic functions can
be “parallelized.” If you have huge amount of data that needs to be processed using analytic functions, parallelism
is a good choice. A SQL statement using multilevel nesting also can benefit from parallelism.

Chapter 8 ■ Analytic Functions

228

Listing 8-28 shows the execution plan for the query in Listing 8-27 using parallelism. In the execution plan, there
are two WINDOW operations because the SQL statement has nested the lag and first_value analytic functions.

Listing 8-28.  Parallelism

--
 Id | Operation | Name

 0 | SELECT STATEMENT |
 1 | SORT ORDER BY |
 2 | WINDOW BUFFER |
 3 | PX COORDINATOR |
 4 | PX SEND QC (ORDER) | :TQ10003
 5 | SORT ORDER BY |
 6 | PX RECEIVE |
 7 | PX SEND RANGE | :TQ10002
 8 | VIEW |
 9 | HASH UNIQUE |
 10 | PX RECEIVE |
 11 | PX SEND HASH | :TQ10001
 12 | WINDOW SORT |
 13 | PX RECEIVE |
 14 | PX SEND HASH | :TQ10000
 15 | PX BLOCK ITERATOR |
* 16 | TABLE ACCESS FULL| SALES_FACT

Optimal distribution of rows between the parallel query (PQ) slaves is critical to maintain functional correctness,
and it is handled automatically by Oracle Database.

PGA Size
Most operations associated with the analytic functions are performed in the PGA of the process. Recall that the
PGA is a private memory area that contains the data and control information for a server process. Oracle reads and
writes information in the PGA on behalf of the server process. So, for optimal performance, it is important to have
a big enough memory area so that programs can execute analytic functions without spilling to the disk. This is very
analogous to a sort operation. If the sort operation spills to the disk as a result of a lower value of the memory size,
then the performance of the sort operation is not optimal. Similarly, the execution performance of analytic functions
suffer if the operation spills to the disk.

Database initialization parameter PGA_AGGREGATE_TARGET (PGAT) is a target for the cumulative maximum
size of the PGA. By default, a serial process can allocate a PGA up to the maximum size of 5 percent of the PGAT value.
For parallel processes, the limit is up to 30 percent of PGAT. The PGA_AGGREGATE_LIMIT (PGAL) parameter enables you
to set a hard limit on PGA memory usage. If the PGAL value is exceeded, Oracle aborts or terminates the sessions or
processes that are consuming the most PGA memory. The default for this parameter is set to the greater of 2GB,
200 percent of PGAT, or 3MB multiplied by the value of the PROCESSES parameter. Regardless, it never exceeds
120 percent of the physical memory size less the total SGA size.

Excessive PGA usage can lead to high rates of swapping (to TEMP), causing the system to become unresponsive
and unstable. It is essential to keep PGAT to a high enough value to improve the performance of analytic functions.

Chapter 8 ■ Analytic Functions

229

Organizational Behavior
The hardest thing about analytic functions is the organizational resistance to change. Developers and DBAs are
comfortable writing SQL statements using conventional syntax. Using analytic syntax does not come easy. However,
these developers and DBAs need to embrace the change. Another plus: Use of analytic functions forces one to think
in terms of sets.

Oracle releases new features in every major release of Oracle Database. We need to harness the new features
to write more efficient and concise SQL statements. Proper training for these new features is also essential and,
hopefully, this chapter provided an insight into analytic functions. When you start writing SQL statements using
analytic functions, start with a simpler SQL statement, then add more complexity to meet the goal.

Summary
Complex SQL statements can be written concisely using analytic functions. Understanding analytic functions
provides with you a whole new way of thinking, analytically speaking. The ability to reference another row, combined
with the partitioning and windowing clauses, allows you to simplify complex SQL statements. Many performance
issues can be resolved by rewriting SQL statements using analytic functions. You may find resistance from developers
and DBAs alike when it comes to using analytic functions, but the resistance can be overcome easily by demonstrating
the performance improvements that using them provides.

231

Chapter 9

The MODEL Clause

The MODEL clause introduced in Oracle Database version 10g provides an elegant method to replace the spreadsheet.
With the MODEL clause, it is possible to use powerful features such as aggregation, parallelism, and multidimensional,
multivariate analysis in SQL statements. If you enjoy working with Excel spreadsheets to calculate formulas, you will
enjoy working with the MODEL clause, too.

With the MODEL clause, you build matrixes (or a model) of data with a variable number of dimensions. The model
uses a subset of the available columns from the tables in your FROM clause and has to contain at least one dimension,
at least one measure, and, optionally, one or more partitions. You can think of a model as a spreadsheet file containing
separate worksheets for each calculated value (measures). A worksheet has an x- and a y-axis (two dimensions), and
you can imagine having your worksheets split up in several identical areas, each for a different attribute (partition).

When your model is defined, you create rules that modify your measure values. These rules are the keys of the
MODEL clause. With just a few rules, you can perform complex calculations on your data and even create new rows as
well. The measure columns are now arrays that are indexed by the dimension columns, in which the rules are applied
to all partitions of this array. After all rules are applied, the model is converted back to traditional rows.

In situations when the amount of data to be processed is small, the interrow referencing and calculating power
of the spreadsheet is sufficient to accomplish the task at hand. However, scalability of such a spreadsheet as a data
warehouse application is limited and cumbersome. For example, spreadsheets are generally limited to two or three
dimensions, and creating spreadsheets with more dimensions is a manually intensive task. Also, as the amount of
data increases, the execution of formulas slows down in a spreadsheet. Furthermore, there is an upper limit on the
number of rows in a spreadsheet workbook.

Because the MODEL clause is an extension to the SQL language application, it is highly scalable, akin to Oracle
Database’s scalability. Multidimensional, multivariate calculations over millions of rows, if not billions of rows, can
be implemented easily with the Model clause, unlike with spreadsheets. Also, many database features such as object
partitioning and parallel execution can be used effectively with the MODEL clause, thereby improving scalability even further.

Aggregation of the data is performed inside the RDBMS engine, avoiding costly round-trip calls, as in the case of
the third-party data warehouse tools. Scalability is enhanced further by out-of-the-box parallel processing capabilities
and query rewrite facilities.

The key difference between a conventional SQL statement and the MODEL clause is that the MODEL clause supports
interrow references, multicell references, and cell aggregation. It is easier to understand the MODEL clause with
examples, so I introduce the MODEL clause with examples, then conclude my discussion by reviewing some of the
advanced features in the MODEL clause.

Spreadsheets
Let’s consider the spreadsheet in Listing 9-1. In this spreadsheet, the inventory for a region and week is calculated using
a formula: Current inventory is the sum of last week’s inventory and the quantity received in this week less the quantity
sold in this week. This formula is shown in the example using Excel spreadsheet notation. For example, the formula for
week 2’s inventory is =B5+C4-C3, where B5 is the prior week’s inventory, C4 is the current week’s receipt_qty, and C3 is
the current week’s sales_qty. Essentially, this formula uses an interrow reference to calculate the inventory.

Chapter 9 ■ The MODEL Clause

232

Listing 9-1.  Spreadsheet Formula to Calculate Inventory

Product = Xtend Memory, Country ='Australia'
 A B C D E F G ...

Year=2001 Week➤

1 2 3 4 5 6

Sale 92.26 118.38 47.24 256.70 93.44 43.17

Receipts 96.89 149.17 49.60 259.10 98.66 20.20

Inventory 4.63 35.42 37.78 40.18 45.41 22.44

=B5+C4-C3

Although it’s easy to calculate this formula for a few dimensions using a spreadsheet, it’s much more difficult
to perform these calculations with more dimensions. Performance suffers as the amount of data increases in the
spreadsheet. These issues can be remedied by using the Model clause that Oracle Database provides. Not only does
the MODEL clause provide for efficient formula calculations, but the writing of multidimensional, multivariate analysis
also becomes much more practical.

Interrow Referencing Via the MODEL Clause
In a conventional SQL statement, emulating the spreadsheet described in Listing 9-1 is achieved by a multitude of
self-joins. With the advent of the MODEL clause, you can implement the spreadsheet without self-joins because the
MODEL clause provides interrow referencing ability.

Example Data
To begin our investigation of the MODEL clause, let’s create a denormalized fact table using the script in
Listing 9-2. All the tables referred to in this chapter refer to the objects in SH schema supplied by the Oracle
Corporation example scripts.

Listing 9-2.  Denormalized sales_fact Table

drop table sales_fact;
CREATE table sales_fact AS
SELECT country_name country,country_subRegion region, prod_name product,
calendar_year year, calendar_week_number week,
SUM(amount_sold) sale,
sum(amount_sold*
 (case
 when mod(rownum, 10)=0 then 1.4
 when mod(rownum, 5)=0 then 0.6
 when mod(rownum, 2)=0 then 0.9
 when mod(rownum,2)=1 then 1.2
 else 1
 end)) receipts
FROM sales, times, customers, countries, products
WHERE sales.time_id = times.time_id AND

Chapter 9 ■ The MODEL Clause

233

sales.prod_id = products.prod_id AND
sales.cust_id = customers.cust_id AND
customers.country_id = countries.country_id
GROUP BY
country_name,country_subRegion, prod_name, calendar_year, calendar_week_number; 

Anatomy of a MODEL Clause
To understand how the MODEL clause works, let’s review a SQL statement intended to produce a spreadsheetlike
listing that computes an inventory value for each week of each year in our sales_fact table. Listing 9-3 shows a SQL
statement using the MODEL clause to emulate the functionality of the spreadsheet discussed earlier. Let’s explore this
SQL statement in detail. We’ll look at the columns declared in the MODEL clause and then we examine rules.

Listing 9-3.  Inventory Formula Calculation Using the MODEL Clause

 col product format A30
 col country format A10
 col region format A10
 col year format 9999
 col week format 99
 col sale format 999999
 set lines 120 pages 100
 
 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] =
 10 nvl(inventory [cv(year), cv(week)-1] ,0)
 11 - sale[cv(year), cv(week)] +
 12 + receipts [cv(year), cv(week)]
 13)
 14* order by product, country,year, week
 
PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS
------------ ---------- ----- ---- ---------- ---------- ----------
..
Xtend Memory Australia 2001 1 4.634 92.26 96.89
Xtend Memory Australia 2001 2 35.424 118.38 149.17
Xtend Memory Australia 2001 3 37.786 47.24 49.60
...
Xtend Memory Australia 2001 9 77.372 92.67 108.64
Xtend Memory Australia 2001 10 56.895 69.05 48.57
..
 

Chapter 9 ■ The MODEL Clause

234

In Listing 9-3, line 3 declares that this statement is using the MODEL clause with the keywords MODEL RETURN
UPDATED ROWS . In a SQL statement using the MODEL clause, there are three groups of columns: partitioning columns,
dimension columns, and measures columns. Partitioning columns are analogous to a sheet in the spreadsheet.
Dimension columns are analogous to row tags (A, B, C, . . .) and column tags (1, 2, 3, . . .). The measures columns are
analogous to cells with formulas.

Line 5 identifies the columns product and country as partitioning columns with the clause partition by
(product, country). Line 6 identifies columns year and week as dimension columns with the clause dimension
by (year, week). Line 7 identifies columns inventory, sales, and receipts as measures columns with the clause
measures (0 inventory, sale, receipts). A rule is similar to a formula, and one such rule is defined in
lines 8 through 13.

In a mathematical sense, the MODEL clause is implementing partitioned arrays. Dimension columns are indexes
into array elements. Each array element, also called a cell, is a measures column.

All rows with the same value for the partitioning column or columns are considered to be in a partition. In this
example, all rows with the same value for product and country are in a partition. Within a partition, the dimension
columns identify a row uniquely. Rules implement formulas to derive the measures columns and they operate within
a partition boundary, so partitions are not mentioned explicitly in a rule.

Note■■   It is important to differentiate between partitioning columns in the MODEL clause and the object partitioning
feature. Although you can use the keyword partition in the MODEL clause as well, it’s different from the object
partitioning scheme used to partition large tables.

Rules
Let’s revisit the rules section from Listing 9-3. You can see both the rule and the corresponding formula together in
Listing 9-4. The formula accesses the prior week’s inventory to calculate the current week’s inventory, so it requires an
interrow reference. Note that there is a great similarity between the formula and the rule.

Listing 9-4.  Rule and Formula

Formula for inventory:
  
Inventory for (year, week) = Inventory (year, prior week)
 - Quantity sold in this week
 + Quantity received in this week
 
Rule from the SQL:
 
 8 inventory [year, week] =
 9 nvl(inventory [cv(year), cv(week)-1] ,0)
 10 - sale[cv(year), cv(week)] +
 11 + receipts [cv(year), cv(week)]
 

The SQL statement in Listing 9-4 introduces a useful function named CV. CV stands for current value and it
can be used to refer to a column value in the right-hand side of the rule from the left-hand side of the rule.
For example, cv(year) refers to the value of the year column from the left-hand side of the rule. If you think of
a formula when it is being applied to a specific cell in a spreadsheet, the CV function allows you to reference the
index values for that cell.

Chapter 9 ■ The MODEL Clause

235

Let’s discuss rules with substituted values, as in Listing 9-5. Let’s say that a row with (year, week) column values
of (2001, 3) is being processed. The left-hand side of the rule has the values of (2001, 3) for the year and column.
The cv(year) clause in the right-hand side of the rule refers to the value of the year column from the left-hand side
of the rule—that is, 2001. Similarly, the clause cv(week) refers to the value of the week column from the left-hand side of
the rule—that is, 3. So, the clause inventory [cv(year), cv(week)-1] returns the value of the inventory measures
for the year equal to 2001 and the prior week (in other words, week 2).

Listing 9-5.  Rule Example

Rule example:
 1 rules (
 2 inventory [2001 , 3] = nvl(inventory [cv(year), cv(week)-1] ,0)
 3 - sale [cv(year), cv(week)] +
 4 + receipts [cv(year), cv(week)]
 5)
 
 rules (
 inventory [2001 , 3] = nvl(inventory [2001, 3-1] ,0)
 - sale [2001, 3] +
 + receipts [2001, 3]
 = 35.42 – 47.24 + 49.60
 = 37.78
) 

Similarly, clauses sale[cv(year), cv(week)] and receipts[cv(year), cv(week)] are referring to the sale
and receipts column values for the year equal to 2001 and the week equal to 3 using the cv function.

Notice that the partitioning columns product and country are not specified in these rules. Rules refer implicitly
to the column values for the product and country columns in the current partition.

Positional and Symbolic References
As discussed previously, the cv function provides the ability to refer to a single cell. It is also possible to refer to an
individual cell or group of cells using positional or symbolic notations. In addition, you can write FOR loops as a way
to create or modify many cells in an arraylike fashion.

Positional Notation
Positional notation provides the ability to insert a new cell or update an existing cell in the result set. If the referenced
cell exists in the result set, then the cell value is updated; if the cell doesn’t exist, then a new cell is added. This concept
of “update if exists, insert if not” is called the UPSERT feature, a fused version of the update and insert facilities.
Positional notation provides UPSERT capability.

Suppose that you need to add new cells to initialize the column values for the year equal to 2002 and the week
equal to 1. You could achieve this with a rule defined using positional notation. In Listing 9-6, lines 13 and 14 add new
cells for the year equal to 2002 and the week equal to 1 using the positional notation with the clause sale[2002,1]=0.
Within the square brackets, the position of the value refers to the column order declared in the dimension clause. In
this case, column order is (year, week), hence the clause sale[2002,1] refers to the sale column value for the row
satisfying the predicates year=2002 and week=1. There are no rows with a column value of year equal to 2002 and
week equal to 1, and a new row was inserted with a 0 value for the sale column for the year equal to 2002 and the
week equal to 1. The last row in the output was inserted by this rule.

Chapter 9 ■ The MODEL Clause

236

Listing 9-6.  Positional Reference to Initialize for Year 2002: UPSERT

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] =
 10 nvl(inventory [cv(year), cv(week)-1] ,0)
 11 - sale[cv(year), cv(week)] +
 12 + receipts [cv(year), cv(week)],
 13 sale [2002, 1] = 0,
 14 receipts [2002,1] =0
 15)
 16* order by product, country,year, week
...
 
PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS
------------ ---------- ----- ---- ---------- ---------- ----------
...
Xtend Memory Australia 2001 49 2.519 45.26 47.33
Xtend Memory Australia 2001 50 11.775 23.14 32.40
Xtend Memory Australia 2001 51 -20.617 114.82 82.43
Xtend Memory Australia 2001 52 -22.931 23.14 20.83
Xtend Memory Australia 2002 1 0 .00 .00
... 

Symbolic Notation
Symbolic notation provides the ability to specify a range of values in the left-hand side of a rule. Let’s say you want
to update the sale column values to 110 percent of their actual value for the weeks 1, 52, and 53 for the years 2000
and 2001. The SQL in Listing 9-7 does this. The clause year in (2000,2001) in line 9 uses an IN operator to specify
a list of values for the year column. Similarly, the clause week in (1,52,53) specifies a list of values for the
week column.

Listing 9-7.  Symbolic Reference: UPDATE

 1 select product, country, year, week, sale
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (sale)
 8 rules(
 9 sale [year in (2000,2001), week in (1,52,53)] order by year, week
 10 = sale [cv(year), cv(week)] * 1.10
 11)
 12* order by product, country,year, week
 

Chapter 9 ■ The MODEL Clause

237

PRODUCT COUNTRY YEAR WEEK SALE
------------ ---------- ----- ---- ----------
Xtend Memory Australia 2000 1 51.37
Xtend Memory Australia 2000 52 74.20
Xtend Memory Australia 2001 1 101.49
Xtend Memory Australia 2001 52 25.45
 

Note that the output in Listing 9-7 is not a partial output and that there are no rows for the week equal to 53. Even
though you specified 53 in the list of values for the week column in line 9, there are no rows returned for that week.
The reason is that symbolic notation can only update the existing cells; it does not allow new cells to be added.

Note■■   I discuss a method to insert an array of cells in the upcoming section “FOR Loops.”

There are no data with a week column value equal to 53 and no new row was added or updated in the result set
for the week equal to 53. The ability to generate rows is a key difference between symbolic notation and positional
notation. Symbolic notation provides an UPDATE-only facility and positional notation provides an UPSERT facility.

There are a few subtle differences between the SQL statement in Listing 9-7 and prior SQL statements. For
example, the statement in Listing 9-7 is missing automatic order in line 8. I discuss the implication of this in the
“Rule Evaluation Order” section later in this chapter.

FOR Loops
FOR loops allow you to specify a list of values in the left-hand side of a rule. FOR loops can be defined in the left-hand
side of the rule only to add new cells to the output; they can’t be used in the right-hand side of the rule. Syntax for the
FOR loop is as follows:
 
FOR dimension FROM <value1> TO <value2>
[INCREMENT | DECREMENT] <value3>
 

For example, let’s say you want to add cells for the weeks ranging from 1 to 53 for the year 2002, and initialize
those cells with a value of 0. Line 13 in Listing 9-8 inserts new rows for the year 2002 and weeks ranging from 1 to 53
using a FOR loop. Clause Increment 1 increments the week column values to generate weeks from 1 to 53. Similarly,
the receipts column is initialized using the clause receipts [2002, for week from 1 to 53 increment 1] =0.

Listing 9-8.  Positional Reference, Model, and FOR Loops

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] =
 10 nvl(inventory [cv(year), cv(week)-1] ,0)
 11 - sale[cv(year), cv(week)] +
 12 + receipts [cv(year), cv(week)],

Chapter 9 ■ The MODEL Clause

238

 13 sale [2002, for week from 1 to 53 increment 1] = 0,
 14 receipts [2002,for week from 1 to 53 increment 1] =0
 15)
 16* order by product, country,year, week
 
PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS
------------ ---------- ----- ---- ---------- ---------- ----------
...
Xtend Memory Australia 2001 52 -22.931 23.14 20.83
Xtend Memory Australia 2002 1 0 .00 .00
...
Xtend Memory Australia 2002 52 0 .00 .00
Xtend Memory Australia 2002 53 0 .00 .00
... 

Returning Updated Rows
In Listing 9-7, just four rows were returned even though there are rows for other weeks. The clause RETURN UPDATED
ROWS controls this behavior and provides the ability to limit the cells returned by the SQL statement. Without this
clause, all rows are returned regardless of whether the rules update the cells. The rule in Listing 9-7 updates only four
cells and other cells are untouched, and so just four rows are returned.

What happens if you don’t specify the clause return updated rows? Listing 9-9 shows the output without the
RETURN UPDATED ROWS clause. The output in this listing shows that both updated and nonupdated rows are returned
from the SQL statement. The rule updates cells for weeks 1, 52, and 53 only, but the output rows in Listing 9-9 show
rows with other column values such as 2, 3, and 4, too.

Listing 9-9.  SQL without RETURN UPDATED ROWS

 1 select product, country, year, week, sale
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (sale)
 8 rules(
 9 sale [year in (2000,2001), week in (1,52,53)] order by year, week
 10 = sale [cv(year), cv(week)] * 1.10
 11)
 12* order by product, country,year, week
 
PRODUCT COUNTRY YEAR WEEK SALE
------------ ---------- ----- ---- ----------
...
Xtend Memory Australia 2000 50 21.19
Xtend Memory Australia 2000 52 74.20
Xtend Memory Australia 2001 1 101.49
Xtend Memory Australia 2001 2 118.38
Xtend Memory Australia 2001 3 47.24
Xtend Memory Australia 2001 4 256.70
...
 

Chapter 9 ■ The MODEL Clause

239

The clause RETURN UPDATED ROWS is applicable to statements using positional notation as well. In Listing 9-10,
a rule using a positional notation is shown, inserting a row. Note there are more rows in the table matching with
the predicate country in ('Australia') and product ='Xtend Memory'. But, just one row is returned because
only one cell is inserted by the rule in line 9. Essentially, the RETURN UPDATED ROWS clause is a limiting clause; it only
fetches the rows modified by the rule.

Listing 9-10.  RETURN UPDATED ROWS and UPSERT

 1 select product, country, year, week, sale
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (sale)
 8 rules(
 9 sale [2002, 1] = 0
 10)
 11* order by product, country,year, week
 
PRODUCT COUNTRY YEAR WEEK SALE
------------ ---------- ----- ---- ----------
Xtend Memory Australia 2002 1 .00
 

Evaluation Order
Multiple rules can be specified in the rules section, and the rules can be specified with dependencies among them.
The rule evaluation sequence can affect the functional behavior of the SQL statement, as you will see in this section.
Furthermore, even within a single rule, the evaluation of the rule must adhere to a logical sequence. I discuss intrarule
valuation order first, then interrule evaluation.

Row Evaluation Order
Let’s look at row evaluation order within a rule. Listing 9-11 is copied from Listing 9-3. However, this time, I’ve
commented out the keywords AUTOMATIC ORDER in line 8. By commenting these keywords, I force the default behavior
of SEQUENTIAL ORDER.

Listing 9-11.  Sequential order with Error ORA-32637

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia')
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules -- Commented: automatic order
 9 (
10 inventory [year, week] =

Chapter 9 ■ The MODEL Clause

240

11 nvl(inventory [cv(year), cv(week)-1] ,0)
12 - sale[cv(year), cv(week)] +
13 + receipts [cv(year), cv(week)]
14)
15* order by product, country,year, week
 *
ERROR at line 2:
ORA-32637: Self cyclic rule in sequential order MODEL
 

The rule has an interrow reference with the clause inventory [cv(year), cv(week)-1]. Inventory column
values must be calculated in ascending order of the week. For example, the inventory rule for week 40 must be
evaluated before evaluating the inventory rule for week 41. With AUTOMATIC ORDER, the database engine identifies
the row dependencies and evaluates the rows in strict dependency order. Without the AUTOMATIC ORDER clause, row
evaluation order is undetermined, which leads to ORA-32637 errors, as shown in Listing 9-11.

It is a better practice to specify the row evaluation order explicitly to avoid this error. Listing 9-12 provides an
example. In the rule section, we can specify the order of row evaluation using an ORDER BY year, week clause.
This clause specifies that rules must be evaluated in the ascending order of year, week column values. That is, the
inventory rule for the year equal to 2000 and the week equal to 40 must be evaluated before evaluating the inventory
rule for the year equal to 2000 and the week equal to 41.

Listing 9-12.  Evaluation Order at the Cell Level

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia')
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules (
 9 inventory [year, week] order by year, week =
 10 nvl(inventory [cv(year), cv(week)-1] ,0)
 11 - sale[cv(year), cv(week)] +
 12 + receipts [cv(year), cv(week)]
 13)
 14* order by product, country,year, week
 
PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS
------------ ---------- ----- ---- ---------- ---------- ----------
...
Xtend Memory Australia 2001 49 2.519 45.26 47.33
Xtend Memory Australia 2001 50 11.775 23.14 32.40
...
 

Note there is no consistency check performed to determine whether this specification of row evaluation order
is consistent logically. It is up to the coder—you!—to understand the implications of evaluation order. For example,
the row evaluation order in Listing 9-13 is specified with the DESC keyword. Although the rule is syntactically correct,
semantic correctness is only known to the coder. Semantic correctness might well require the specification of ASC for
an ascending sort. Only the person writing the SQL statement can know which order meets the business problem
being addressed.

Chapter 9 ■ The MODEL Clause

241

Listing 9-13.  Evaluation Order using the DESC Keyword

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia') and product in ('Xtend Memory')
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules (
 9 inventory [year, week] order by year, week desc =
10 nvl(inventory [cv(year), cv(week)-1] ,0)
11 - sale[cv(year), cv(week)] +
12 + receipts [cv(year), cv(week)]
13)
14* order by product, country,year, week
 
PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS
------------ ---------- ----- ---- ---------- ---------- ----------
...
Xtend Memory Australia 2001 49 2.068 45.26 47.33
Xtend Memory Australia 2001 50 9.256 23.14 32.40
... 

Notice that inventory column values are different between the Listings 9-12 and 9-13. You need to ensure that
the order of row evaluation is consistent with the requirements.

Rule Evaluation Order
In addition to the order in which rows are evaluated, you also have the issue of the order in which the rules are
applied. In Listing 9-14, there are two rules with an interdependency between them. The first rule is evaluating the
rule, and it refers to the receipts column, which is calculated by the second rule. These two rules can be evaluated
in any order, and the results depend on the order of rule evaluation. It is important to understand the order of rule
evaluation because the functional behavior of the SQL statement can change with the rule evaluation order.

Listing 9-14.  Rule Evaluation Order: Sequential Order

 1 select * from (
 2 select product, country, year, week, inventory, sale, receipts
 3 from sales_fact
 4 where country in ('Australia') and product in ('Xtend Memory')
 5 model return updated rows
 6 partition by (product, country)
 7 dimension by (year, week)
 8 measures (0 inventory , sale, receipts)
 9 rules sequential order (
10 inventory [year, week] order by year, week =
11 nvl(inventory [cv(year), cv(week)-1] ,0)
12 - sale[cv(year), cv(week)] +
13 + receipts [cv(year), cv(week)],
14 receipts [year in (2000,2001), week in (51,52,53)]

Chapter 9 ■ The MODEL Clause

242

15 order by year, week
16 = receipts [cv(year), cv(week)] * 10
17)
18 order by product, country,year, week
19*) where week >50
 
PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS
------------ ---------- ----- ---- ---------- ---------- ----------
...
Xtend Memory Australia 2000 52 -6.037 67.45 614.13
Xtend Memory Australia 2001 51 -20.617 114.82 824.28
Xtend Memory Australia 2001 52 -22.931 23.14 208.26
 

To improve clarity, filter on rows with week greater than 50. In Listing 9-14, line 9 specifies sequential order,
which means the rules are evaluated in the order in which they are listed. In this example, the rule for the inventory
column is evaluated, followed by the rule for the receipts column. Because the receipts rule is evaluated after the
inventory rule, the inventory rule uses the unaltered values before the evaluation of the receipts rule. Essentially,
changes from the receipts rule for the receipts column calculation are not factored into the inventory calculation.

The situation with rule evaluation is the same as with rows. Only the coder knows which order of evaluation
is appropriate for the business problem being solved. Only the coder knows whether the inventory rule should use
altered values from execution of the receipts rule, or otherwise.

Another method of evaluating the order used by Oracle Database is automatic order. In Listing 9-15, the
evaluation order is changed to automatic order. With automatic order, dependencies among the rules are resolved
automatically by Oracle and the order of rule evaluation depends on the dependencies between the rules.

Listing 9-15.  Rule Evaluation Order: Automatic Order

...
9 rules automatic order (
...
 
PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS
------------ ---------- ----- ---- ---------- ---------- ----------
...
Xtend Memory Australia 2000 52 546.68 67.45 614.13
Xtend Memory Australia 2001 51 721.235 114.82 824.28
Xtend Memory Australia 2001 52 906.355 23.14 208.26
 

The results from Listing 9-15 and Listing 9-14 do not match. For example, inventory for week 52 is –22.931 in
Listing 9-14 and 906.355 in Listing 9-15. By specifying automatic order, you allow the database engine to identify a
dependency between the rules. Thus, the engine evaluates the receipts rule first, followed by the inventory rule.

Clearly, the order of rule evaluation can be quite important. If there are complex interdependencies, then you
might want to specify sequential order and list the rules in a strict evaluation sequence. In this way, you are in full

control and nothing is left to doubt.

Aggregation
Data aggregation is commonly used in data warehouse queries. The Model clause provides the ability to aggregate the
data using aggregate functions over the range of dimension columns.

Many different aggregation function calls such as sum, max, avg, stddev, and OLAP function calls can be used to
aggregate the data in a rule. It is easier to understand aggregation with an example.

Chapter 9 ■ The MODEL Clause

243

In Listing 9-16, the rule in lines 9 through 12 calculates average inventory by year using the clause
avg_inventory[year,ANY] = avg(inventory) [cv(year), week]. In the left-hand side of the rule, avg_inventory
is the rule name. The first dimension in this rule is the year column. Because the dimension clause is specifying the
week column as the second dimension, specifying ANY in the second position of the rule argument matches with any
value of the week column, including nulls. In the right-hand side of the rule, the clause avg(inventory) applies the avg
function on the inventory column. The first dimension is cv(year). The second dimension is specified as week. There
is no need for the use of cv in the second dimension, because the function must be applied on all weeks in the year as
computed by the clause cv(year). Line 13 shows the use of avg; line 14 shows an example of using the max function.

Listing 9-16.  Aggregation

 1 select product, country, year, week, inventory, avg_inventory, max_sale
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory ,0 avg_inventory , 0 max_sale, sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] =
10 nvl(inventory [cv(year), cv(week)-1] ,0)
11 - sale[cv(year), cv(week)] +
12 + receipts [cv(year), cv(week)],
13 avg_inventory [year,ANY] = avg (inventory) [cv(year), week],
14 max_Sale [year, ANY] = max(sale) [cv(year), week]
15)
16* order by product, country,year, week
 
PRODUCT COUNTRY YEAR WEEK INVENTORY AVG_INVENTORY MAX_SALE
------------ ---------- ----- ---- ---------- ------------- ---------
...
Xtend Memory Australia 2001 42 17.532 28.60 278.44
Xtend Memory Australia 2001 43 24.511 28.60 278.44
Xtend Memory Australia 2001 44 29.169 28.60 278.44
...
Xtend Memory Australia 2001 52 -22.931 28.60 278.44 

Iteration
Iteration provides another facility to implementing complex business requirements using a concise Model SQL
statement. A block of rules can be executed in a loop a certain number of times or while a condition remains TRUE.
The syntax for the iteration is as follows:
 
[ITERATE (n) [UNTIL <condition>]]
(<cell_assignment> = <expression> ...)
 

Use the syntax ITERATE (n) to execute an expression n times. Use the expression ITERATE UNTIL <condition> to
iterate while the given condition remains TRUE.

Chapter 9 ■ The MODEL Clause

244

An Example
Suppose the goal is to show five weeks of sale column values in a comma-separated list format. This requirement is
implemented in Listing 9-17.

Listing 9-17.  Iteration

 1 select year, week,sale, sale_list
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (cast(' ' as varchar2(50)) sale_list, sale)
 8 rules iterate (5) (
 9 sale_list [year, week] order by year, week =
10 sale [cv(year), CV(week)-ITERATION_NUMBER +2] ||
11 case when iteration_number=0 then '' else ', ' end ||
12 sale_list [cv(year) ,cv(week)]
13)
14* order by year, week
 
 YEAR WEEK SALE SALE_LIST
----- ---- ---------- --
 2001 20 118.03 22.37, , 118.03, 233.7, 141.78
 2001 21 233.70 , 118.03, 233.7, 141.78, 22.38
 2001 22 141.78 118.03, 233.7, 141.78, 22.38, 136.92
 2001 23 22.38 233.7, 141.78, 22.38, 136.92, 139.28
 2001 24 136.92 141.78, 22.38, 136.92, 139.28,
 2001 25 139.28 22.38, 136.92, 139.28, , 94.48 

Note■■   Conversion of rows to columns is termed pivoting. Oracle Database 11g introduced syntax to implement
pivoting function natively. In Oracle Database 10g, you could use the MODEL clause to implement pivoting.

Line 8 specifies that the rules block is to be iterated five times for each row. This is done through the clause rules
iterate(5). In line 10, you use iteration_number, which is a variable available within the rules section, to access the
current iteration count of the loop. iteration_number starts with a value of 0 for the first iteration in the loop and ends
at n – 1, where n is the number of loops as specified in the iterate(n) clause. In this example, the Iteration_number
variable value ranges from 0 to 4. With Iteration_number and bit of arithmetic, you can access the prior two weeks
and the next two weeks’ values using the clause cv(week)-ITERATION_NUMBER +2. The CASE statement adds a comma
for each element in the list, except for the first element.

For example, let’s assume the current row in the process has a value of year equal to 2001 and week equal to 23.
In the first iteration of the loop, iteration_number is 0, and the clause cv(week)-iteration_number +2 accesses the
row with week equal to 23 – 0 + 2 = 25. In the next iteration, week 24 is accessed, and so on. The FOR loop is repeated
for every row in the model output.

Let’s review the output rows in Listing 9-17. For the year 2001, week 23, column sale_list has the following
values: 233.7, 141.78, 22.38, 136.92, and 139.28. You can see how these values are centered on the current week. The
first two come from the sale column for the immediately preceding weeks, then you have the current week’s sales,
and then the values from the following two weeks.

Chapter 9 ■ The MODEL Clause

245

PRESENTV and NULLs
If a rule accesses a nonexistent row, the rule returns a null value. Notice that in the output of Listing 9-17, the
sale_list column in the first row has two commas consecutively. The reason is that the row for week equal to 19
does not exist in the data, so accessing that nonexistent cell returns a null value. You can correct this double-comma
issue using a function to check for cell existence using the PRESENTV function. This function accepts three parameters
and the syntax for the function is as follows:
 
PRESENTV (cell_reference, expr1, expr2)
 

If cell_reference references an existing cell, then the PRESENTV function returns expr1. If the cell_reference
references a nonexisting cell, then the second argument, expr2, is returned. In Listing 9-18, line 10 performs this
existence check on the sale column for the year and week combination using the clause sale [cv(year),
CV(week)-iteration_number + 2]. If the cell exists, then the function adds the value of the cell and comma to the
returned string (lines 11 to 13). If the cell does not exist, the function returns the sale_list column without altering
the string (line 14). This solution eliminates the double comma in the sale_list column value.

Listing 9-18.  Iteration and PRESNTV

 1 select year, week,sale, sale_list
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (cast(' ' as varchar2(120)) sale_list, sale, 0 tmp)
 8 rules iterate (5) (
 9 sale_list [year, week] order by year, week =
10 presentv (sale [cv(year), CV(week)-iteration_number + 2],
11 sale [cv(year), CV(week)-iteration_number +2] ||
12 case when iteration_number=0 then '' else ', ' end ||
13 sale_list [cv(year) ,cv(week)] ,
14 sale_list [cv(year) ,cv(week)])
15)
16* order by year, week
 
 YEAR WEEK SALE SALE_LIST
----- ---- ---------- --
 2001 20 118.03 22.37, 118.03, 233.7, 141.78
 2001 21 233.70 118.03, 233.7, 141.78, 22.38
 2001 22 141.78 118.03, 233.7, 141.78, 22.38, 136.92
 ...
 2001 29 116.85 94.48, 116.85, 162.91, 92.21
 

The PRESENTNNV function is similar to PRESENTV, but it provides an additional ability to differentiate between
references to nonexistent cells and null values in existing cells. The syntax for the function PRESENTNNV is as follows:
 
PRESENTNNV (cell_reference, expr1, expr2)
 

If the first argument cell_reference references an existing cell and if that cell contains a nonnull value, then
the first argument, expr1, is returned; otherwise, the second argument, expr2, is returned. In contrast, the PRESENTV
function checks for just the existence of a cell, whereas the PRESENTNNV function checks for both the existence of a cell
and null values in that cell. Table 9-1 shows the values returned from these two functions in four different cases.

Chapter 9 ■ The MODEL Clause

246

Lookup Tables
You can define a lookup table and refer to that lookup table in the rules section. Such a lookup table is sometimes
termed a reference table. Reference tables are defined in the initial section of the SQL statement and are then referred
to in the rules section of the SQL statement.

In Listing 9-19, lines 5 through 9 define a lookup table ref_prod using a REFERENCE clause. Line 5 REFERENCE
ref_prod is specifying ref_prod as a lookup table. Column prod_name is a dimension column as specified in line 8,
and column prod_list_price is a measures column. Note that the reference table must be unique on the dimension
column and should retrieve exactly one row per dimension column value.

Listing 9-19.  Reference Model

 1 select year, week,sale, prod_list_price
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 REFERENCE ref_prod on
 6 (select prod_name, max(prod_list_price) prod_list_price
 7 from products group by prod_name)
 8 dimension by (prod_name)
 9 measures (prod_list_price)
10 MAIN main_section
11 partition by (product, country)
12 dimension by (year, week)
13 measures (sale, receipts, 0 prod_list_price)
14 rules (
15 prod_list_price[year,week] order by year, week =
16 ref_prod.prod_list_price [cv(product)]
17)
18* order by year, week;
 
 YEAR WEEK SALE PROD_LIST_PRICE
----- ---- ---------- ---------------
 2000 31 44.78 20.99
 2000 33 134.11 20.99
 2000 34 178.52 20.99
...
 

Table 9-1.  PRESENTV and PRESENTNNV Comparison

Cell exists? Null? PRESENTV PRESENTNNV

Yes Not null expr1 expr1

Yes Null expr1 expr2

No Not null expr2 expr2

No Null expr2 expr2

Chapter 9 ■ The MODEL Clause

247

Line 10 specifies the main model section starting with the keyword MAIN. This section is named main_section for
ease of understanding, although any name can be used. In line 15, a rule for the column prod_list_price is specified
and populated from the lookup table ref_prod. Line 16 shows that the reference table that measures columns is
accessed using the clause ref_prod.prod_list_price [cv(product)]. The current value of the product column is
passed as a lookup key in the lookup table using the clause cv(product).

In summary, you define a lookup table using a REFERENCE clause and then access that lookup table using the
syntax look_table_name.measures column. For example, the syntax in this example is ref_prod.prod_list_price
[cv(product)]. To access a specific row in the lookup table, you pass the current value of the dimension column from
the left-hand side of the rule—in this example, using the cv(product) clause. You might be able to understand better
if you imagine ref_prod as a table, cv(product) as the primary key for that table, and prod_list_price as a column
to fetch from that lookup table.

More lookup tables can be added if needed. Suppose you also need to retrieve the country_iso_code column
values from another table. You achieve this by adding the lookup table ref_country, as shown in Listing 9-20, lines 10
through 13. Column country_name is the dimension column and country_iso_code is a measures column. Lines 22
and 23 refer to the lookup table using a new rule Iso_code. This rule accesses the lookup table ref_country using the
cv of the country column as the lookup key.

Listing 9-20.  More Lookup Tables

 1 select year, week,sale, prod_list_price, iso_code
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 REFERENCE ref_prod on
 6 (select prod_name, max(prod_list_price) prod_list_price from
 7 products group by prod_name)
 8 dimension by (prod_name)
 9 measures (prod_list_price)
10 REFERENCE ref_country on
11 (select country_name, country_iso_code from countries)
12 dimension by (country_name)
13 measures (country_iso_code)
14 MAIN main_section
15 partition by (product, country)
16 dimension by (year, week)
17 measures (sale, receipts, 0 prod_list_price ,
18 cast(' ' as varchar2(5)) iso_code)
19 rules (
20 prod_list_price[year,week] order by year, week =
21 ref_prod.prod_list_price [cv(product)],
22 iso_code [year, week] order by year, week =
23 ref_country.country_iso_code [cv(country)]
24)
25* order by year, week
 
YEAR WEEK SALE PROD_LIST_PRICE ISO_C
---- ---- ---------- --------------- -----
2000 31 44.78 20.99 AU
2000 33 134.11 20.99 AU
2000 34 178.52 20.99 AU
2000 35 78.82 20.99 AU
2000 36 118.41 20.99 AU
 ...
 

Chapter 9 ■ The MODEL Clause

248

NULLs
In SQL statements using Model SQL, values can be null for two reasons: null values in the existing cells and references
to nonexistent cells. I discuss the latter scenario in this section.

By default, the reference to nonexistent cells returns null values. In Listing 9-21, the rule in line 10 accesses the
sale column for the year equal to 2002 and the week equal to 1 using the clause sale[2002,1]. There are no data in
the sales_fact table for the year 2002, and so sale[2002,1] is accessing a nonexistent cell. Output in this listing is
null because of the arithmetic operation with a null value.

Listing 9-21.  KEEP NAV Example

 1 select product, country, year, week, sale
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model KEEP NAV return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (sale)
 8 rules sequential order(
 9 sale[2001,1] order by year, week= sale[2001,1],
 10 sale [2002, 1] order by year, week = sale[2001,1] + sale[2002,1]
 11)
 12* order by product, country,year, week
 
PRODUCT COUNTRY YEAR WEEK SALE
------------------------------ ---------- ----- ---- ----------
Xtend Memory Australia 2001 1 92.26
Xtend Memory Australia 2002 1
 

In line 4, I added a KEEP NAV clause after the MODEL keyword explicitly even though KEEP NAV is the default value.
NAV stands for nonavailable values, and references to a nonexistent cell returns a null value by default.

This default behavior can be modified using the IGNORE NAV clause. Listing 9-22 shows an example. If the
nonexistent cells are accessed, then 0 is returned for numeric columns and an empty string is returned for text
columns instead of null values. You can see that the output in Listing 9-22 shows that a value of 92.26 is returned
for the clause sale[2001,1] + sale[2002,1] and a 0 is retuned for the nonexisting cell sale[2002,1].

Listing 9-22.  IGNORE NAV

 1 select product, country, year, week, sale
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model IGNORE NAV return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (sale)
 8 rules sequential order(
 9 sale[2001,1] order by year, week= sale[2001,1],
 10 sale [2002, 1] order by year, week = sale[2001,1] + sale[2002,1]
 11)
 12* order by product, country,year, week
 

Chapter 9 ■ The MODEL Clause

249

PRODUCT COUNTRY YEAR WEEK SALE
------------------------------ ---------- ----- ---- ----------
Xtend Memory Australia 2001 1 92.26
Xtend Memory Australia 2002 1 92.26
 

The functions PRESENTV and PRESNTNNV are also useful in handling NULL values. Refer to the earlier section
“Iteration” for a discussion and examples of these two functions.

Performance Tuning with the MODEL Clause
As with all SQL, sometimes you need to tune statements using the MODEL clause. To this end, it helps to know how to
read execution plans involving the clause. It also helps to know about some of the issues you may encounter—such as
predicate pushing and partitioning—when working with MODEL clause queries.

Execution Plans
In the MODEL clause, rule evaluation is the critical step. Rule evaluation can use one of five algorithm types: ACYCLIC,
ACYCLIC FAST, CYCLIC, ORDERED, and ORDERED FAST. The algorithm chosen depends on the complexity and
dependency of the rules themselves. The algorithm chosen also affects the performance of the SQL statement. But,
details of these algorithms are not well documented.

ACYCLIC FAST and ORDERED FAST algorithms are more optimized algorithms that allow cells to be evaluated
efficiently. However, the algorithm chosen depends on the type of the rules that you specify. For example, if there is a
possibility of a cycle in the rules, then the algorithm that can handle cyclic rules is chosen.

The algorithms of type ACYCLIC and CYCLIC are used if the SQL statement specifies the rules automatic order
clause. An ORDERED type of the rule evaluation algorithm is used if the SQL statement specifies rules sequential
order. If a rule accesses individual cells without any aggregation, then either the ACYCIC FAST or ORDERED FAST
algorithm is used.

ACYCLIC

In Listing 9-23, a MODEL SQL statement and its execution plan is shown. Step 2 in the execution plan shows that this
SQL is using the SQL MODEL ACYCLIC algorithm for rule evaluation. The keyword ACYCLIC indicates there are no
possible cyclic dependencies between the rules. In this example, with the order by year, week clause you control
the dependency between the rules, avoiding cycle dependencies,

Listing 9-23.  Automatic order and ACYCLIC

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia') and product='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] order by year, week =
 10 nvl(inventory [cv(year), cv(week)-1] ,0)
 11 - sale[cv(year), cv(week)] +
 12 + receipts [cv(year), cv(week)]
 13)
 14* order by product, country,year, week
 

Chapter 9 ■ The MODEL Clause

250

| Id | Operation | Name | E-Rows |
--
0	SELECT STATEMENT		
1	SORT ORDER BY		147
2	SQL MODEL ACYCLIC		147
* 3	TABLE ACCESS FULL	SALES_FACT	147

ACYCLIC FAST
If a rule is a simple rule accessing just one cell, the ACYCLIC FAST algorithm can be used. The execution plan in
Listing 9-24 shows that the ACYCLIC FAST algorithm is used to evaluate the rule in this example.

Listing 9-24.  Automatic Order and ACYCLIC FAST

 1 select distinct product, country, year,week, sale_first_Week
 2 from sales_fact
 3 where country in ('Australia') and product='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year,week)
 7 measures (0 sale_first_week ,sale)
 8 rules automatic order(
 9 sale_first_week [2000,1] = 0.12*sale [2000, 1]
 10)
 11* order by product, country,year, week
 
--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT ORDER BY	
2	SQL MODEL ACYCLIC FAST	
* 3	TABLE ACCESS FULL	SALES_FACT
-- 

CYCLIC
The execution plan in Listing 9-25 shows the use of the CYCLIC algorithm to evaluate the rules. The SQL in Listing 9-25
is a copy of Listing 9-23, except that the clause order by year, week is removed from the rule in line 9. Without the
order by clause, row evaluation can happen in any order, and so the CYCLIC algorithm is chosen.

Listing 9-25.  Automatic Order and CYCLIC

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia') and product='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)

Chapter 9 ■ The MODEL Clause

251

 7 measures (0 inventory , sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] =
10 nvl(inventory [cv(year), cv(week)-1] ,0)
11 - sale[cv(year), cv(week)] +
12 + receipts [cv(year), cv(week)]
13)
14* order by product, country,year, week
 
--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT ORDER BY	
2	SQL MODEL CYCLIC	
* 3	TABLE ACCESS FULL	SALES_FACT
-- 

Sequential
If the rule specifies sequential order, then the evaluation algorithm of the rules is shown as ORDERED. Listing 9-26
shows an example.

Listing 9-26.  Sequential Order

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia') and product='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules sequential order(
 9 inventory [year, week] order by year, week =
10 nvl(inventory [cv(year), cv(week)-1] ,0)
11 - sale[cv(year), cv(week)] +
12 + receipts [cv(year), cv(week)]
13)
14* order by product, country,year, week

| Id | Operation | Name |

0	SELECT STATEMENT	
1	SORT ORDER BY	
2	SQL MODEL ORDERED	
* 3	TABLE ACCESS FULL	SALES_FACT

In a nutshell, the complexity and interdependency of the rules plays a critical role in the algorithm chosen.
ACYCLIC FAST and ORDERED FAST algorithms are more scalable. This becomes important as the amount of data
increases.

Chapter 9 ■ The MODEL Clause

252

Predicate Pushing
Conceptually, the Model clause is a variant of analytic SQL and is typically implemented in a view or inline view.
Predicates are specified outside the view, and these predicates must be pushed into the view for acceptable
performance. In fact, predicate pushing is critical to the performance of the Model clause. Unfortunately, not all
predicates can be pushed safely into the view because of the unique nature of the Model clause. If predicates are not
pushed, then the Model clause executes on the larger set of rows, which can result in poor performance.

In Listing 9-27, an inline view is defined from lines 2 through 14, and then predicates on columns country and
product are added. Step 4 in the execution plan shows that both predicates are pushed into the view, rows are filtered
applying these two predicates, and then the Model clause executes on the result set. This is good, because the Model
clause is operating on a smaller set of rows than it would otherwise—just 147 rows in this case.

Listing 9-27.  Predicate Pushing

 1 select * from (
 2 select product, country, year, week, inventory, sale, receipts
 3 from sales_fact
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] =
 10 nvl(inventory [cv(year), cv(week)-1] ,0)
 11 - sale[cv(year), cv(week)] +
 12 + receipts [cv(year), cv(week)]
 13)
 14) where country in ('Australia') and product='Xtend Memory'
 15* order by product, country,year, week
...
 
select * from table (dbms_xplan.display_cursor('','','ALLSTATS LAST'));

| Id | Operation | Name | E-Rows| OMem | 1Mem | Used-Mem |

0	SELECT STATEMENT					
1	SORT ORDER BY		147	18432	18432	16384 (0)
2	VIEW		147			
3	SQL MODEL CYCLIC		147	727K	727K	358K (0)
* 4	TABLE ACCESS FULL	SALES_FACT	147			

Predicate Information (identified by operation id):

 4 - filter(("PRODUCT"='Xtend Memory' AND "COUNTRY"='Australia'))
 

Listing 9-28 is an example in which the predicates are not pushed into the view. In this example, predicate
year=2000 is specified, but it is not pushed into the inline view. The optimizer estimates show that the MODEL clause
needs to operate on some 111,000 rows.

Predicates can be pushed into a view only if it’s safe to do so. The SQL in Listing 9-28 uses both the year and week
columns as dimension columns. In general, predicates on the partitioning columns can be pushed into a view safely,
but not all predicates on the dimension column can be pushed.

Chapter 9 ■ The MODEL Clause

253

Listing 9-28.  Predicate Not Pushed

 1 select * from (
 2 select product, country, year, week, inventory, sale, receipts
 3 from sales_fact
 4 mod el return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] =
 10 nvl(inventory [cv(year), cv(week)-1] ,0)
 11 - sale[cv(year), cv(week)] +
 12 + receipts [cv(year), cv(week)]
 13)
 14) where year=2000
 15* order by product, country,year, week

| Id | Operation | Name | E-Rows| OMem | 1Mem | Used-Mem |

0	SELECT STATEMENT					
1	SORT ORDER BY		111K	2604K	733K	2314K (0)
* 2	VIEW		111K			
3	SQL MODEL CYCLIC		111K	12M	1886K	12M (0)
4	TABLE ACCESS FULL	SALES_FACT	111K			

Predicate Information (identified by operation id):

 2 - filter("YEAR"=2000) 

Materialized Views
Typically, SQL statements using the MODEL clause access very large tables. Oracle’s query rewrite feature and
materialized views can be combined to improve performance of such statements.

In Listing 9-29, a materialized view mv_model_inventory is created with the enable query rewrite clause.
Subsequent SQL in the listing executes the SQL statement accessing the sales_fact table with the MODEL clause.
The execution plan for the statement shows that the query rewrite feature rewrites the query, redirecting access to
the materialized view instead of the base table. The rewrite improves the performance of the SQL statement because
the materialized view has preevaluated the rules and stored the results.

Note■■  T he fast incremental refresh is not available for materialized views involving the Model clause.

Chapter 9 ■ The MODEL Clause

254

Listing 9-29.  Materialized View and Query Rewrite

create materialized view mv_model_inventory
enable query rewrite as
 select product, country, year, week, inventory, sale, receipts
 from sales_fact
 model return updated rows
 partition by (product, country)
 dimension by (year, week)
 measures (0 inventory , sale, receipts)
 rules sequential order(
 inventory [year, week] order by year, week =
 nvl(inventory [cv(year), cv(week)-1] ,0)
 - sale[cv(year), cv(week)] +
 + receipts [cv(year), cv(week)]
)
/
Materialized view created.
 
select * from (
 select product, country, year, week, inventory, sale, receipts
 from sales_fact
 model return updated rows
 partition by (product, country)
 dimension by (year, week)
 measures (0 inventory , sale, receipts)
 rules sequential order(
 inventory [year, week] order by year, week =
 nvl(inventory [cv(year), cv(week)-1] ,0)
 - sale[cv(year), cv(week)] +
 + receipts [cv(year), cv(week)]
)
)
where country in ('Australia') and product='Xtend Memory'
order by product, country,year, week
/
 
--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT ORDER BY	
* 2	MAT_VIEW REWRITE ACCESS FULL	MV_MODEL_INVENTORY
--
 
Predicate Information (identified by operation id):

 2 - filter(("MV_MODEL_INVENTORY"."COUNTRY"='Australia' AND
 "MV_MODEL_INVENTORY"."PRODUCT"='Xtend Memory'))
 

Chapter 9 ■ The MODEL Clause

255

Parallelism
MODEL -based SQL works seamlessly with Oracle’s parallel execution features. Queries against partitioned tables
benefit greatly from parallelism and MODEL -based SQL statements.

An important concept with parallel query execution and MODEL SQL is that parallel query execution needs to
respect the partition boundaries. Rules defined in the MODEL clause-based SQL statement might access another row.
After all, accessing another row is the primary reason to use MODEL SQL statements. So, a parallel query slave must
receive all rows from a model data partition so that the rules can be evaluated. This distribution of rows to parallel
query slaves is taken care of seamlessly by the database engine. The first set of parallel slaves reads row pieces from
the table and distributes the row pieces to a second set of slaves. The distribution is such that one slave receives all
rows of a given model partition.

Listing 9-30 shows an example of MODEL and parallel queries. Two sets of parallel slaves are allocated to execute
the statement shown. The first set of slaves is read from the table; the second set of slaves evaluates the MODEL rule.

Listing 9-30.  Model and Parallel Queries

select /*+ parallel (sf 4) */
 product, country, year, week, inventory, sale, receipts
 from sales_fact sf
 where country in ('Australia') and product='Xtend Memory'
 model return updated rows
 partition by (product, country)
 dimension by (year, week)
 measures (0 inventory , sale, receipts)
 rules automatic order(
 inventory [year, week] order by year, week =
 nvl(inventory [cv(year), cv(week)-1] ,0)
 - sale[cv(year), cv(week)] +
 + receipts [cv(year), cv(week)]
)
/
---...--------------------------
| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |
--
0	SELECT STATEMENT		...		
1	PX COORDINATOR				
2	PX SEND QC (RANDOM)	:TQ10001	Q1,01	P->S	QC (RAND)
3	BUFFER SORT		Q1,01	PCWP	
4	SQL MODEL ACYCLIC		Q1,01	PCWP	
5	PX RECEIVE		Q1,01	PCWP	
6	PX SEND HASH	:TQ10000	Q1,00	P->P	HASH
7	PX BLOCK ITERATOR		Q1,00	PCWC	
* 8	TABLE ACCESS FULL	SALES_FACT	Q1,00	PCWP	
--
Predicate Information (identified by operation id):

 8 - access(:Z>=:Z AND :Z<=:Z)
 filter(("PRODUCT"='Xtend Memory' AND "COUNTRY"='Australia'))
 

Chapter 9 ■ The MODEL Clause

256

Partitioning in MODEL Clause Execution
Table partitioning can be used to improve the performance of MODEL SQL statements. In general, if the partitioning
columns in the MODEL SQL matches the partitioning keys of the table, partitions are pruned. Partition pruning is a
technique for performance improvement to limit scanning few partitions.

In Listing 9-31, the table sales_fact_part is list partitioned by year using the script Listing_9_31_partition.
sql (part of the example download for this book). The partition with partition_id=3 contains rows with the value of
2000 for the year column. Because the MODEL SQL is using year as the partitioning column and because a year=2000
predicate is specified, partition pruning lead to scanning partition 3 alone. The execution plan shows that both the
pstart and pstop columns have a value of 3, indicating that the range of partitions to be processed begins and ends
with the single partition having an ID equal to 3.

Listing 9-31.  Partition Pruning

select * from (
 select product, country, year, week, inventory, sale, receipts
 from sales_fact_part sf
 model return updated rows
 partition by (year, country)
 dimension by (product, week)
 measures (0 inventory , sale, receipts)
 rules automatic order(
 inventory [product, week] order by product, week =
 nvl(inventory [cv(product), cv(week)-1] ,0)
 - sale[cv(product), cv(week)] +
 + receipts [cv(product), cv(week)]
)
) where year=2000 and country='Australia' and product='Xtend Memory'
/
--...----------------
| Id | Operation | Name |... Pstart| Pstop |

0	SELECT STATEMENT			
1	SQL MODEL ACYCLIC			
2	PARTITION LIST SINGLE		KEY	KEY
* 3	TABLE ACCESS FULL	SALES_FACT_PART	3	3

Predicate Information (identified by operation id):

 1 - filter("PRODUCT"='Xtend Memory')
 4 - filter("COUNTRY"='Australia')
 

In Listing 9-32, columns product and county are used as partitioning columns, but the table sales_fact_part
has the year column as the partitioning key. Step 1 in the execution plan indicates that predicate year=2000 was not
pushed into the view because the rule can access other partitions (because year is a dimension column). Because the
partitioning key is not pushed into the view, partition pruning is not allowed and all partitions are scanned. You can
see that pstart and pstop are 1 and 5, respectively, in the execution plan.

Chapter 9 ■ The MODEL Clause

257

Listing 9-32.  No Partition Pruning

 select * from (
 select product, country, year, week, inventory, sale, receipts
 from sales_fact_part sf
 model return updated rows
 partition by (product, country)
 dimension by (year, week)
 measures (0 inventory , sale, receipts)
 rules automatic order(
 inventory [year, week] order by year, week =
 nvl(inventory [cv(year), cv(week)-1] ,0)
 - sale[cv(year), cv(week)] +
 + receipts [cv(year), cv(week)]
)
) where year=2000 and country='Australia' and product='Xtend Memory'
/
--...-------------
| Id | Operation | Name | Pstart| Pstop |
--
0	SELECT STATEMENT			
* 1	VIEW			
2	SQL MODEL ACYCLIC			
3	PARTITION LIST ALL		1	5
* 4	TABLE ACCESS FULL	SALES_FACT_PART	1	5
--...-------------
Predicate Information (identified by operation id):

 1 - filter("YEAR"=2000)
 4 - filter(("PRODUCT"='Xtend Memory' AND "COUNTRY"='Australia')) 

Indexes
Choosing indexes to improve the performance of SQL statements using a MODEL clause is no different from
choosing indexes for any other SQL statements. You use the access and filter predicates to determine the optimal
indexing strategy.

As an example, the execution plan in Listing 9-32 shows that the filter predicates "PRODUCT"='Xtend Memory'
and "COUNTRY"='Australia' are applied at step 4. Indexing on the two columns product and country is helpful if
there are many executions with these column predicates.

In Listing 9-33, I added an index to the columns country and product. The resulting execution plan shows table
access via the index, possibly improving performance.

Listing 9-33.  Indexing with SQL Access in Mind

 create index sales_fact_part_i1 on sales_fact_part (country, product) ;
 select * from (
 select product, country, year, week, inventory, sale, receipts
 from sales_fact_part sf
 model return updated rows
 partition by (product, country)
 dimension by (year, week)
 measures (0 inventory , sale, receipts)

Chapter 9 ■ The MODEL Clause

258

 rules automatic order(
 inventory [year, week] order by year, week =
 nvl(inventory [cv(year), cv(week)-1] ,0)
 - sale[cv(year), cv(week)] +
 + receipts [cv(year), cv(week)]
)
) where year=2000 and country='Australia' and product='Xtend Memory'
/

|Id |Operation |Name | Pstart| Pstop|

0	SELECT STATEMENT			
*1	VIEW			
2	SQL MODEL ACYCLIC			
3	TABLE ACCESS BY GLOBAL INDEX ROWID	SALES_FACT_PART	ROWID	ROWID
*4	INDEX RANGE SCAN	SALES_FACT_PART_I1		

Predicate Information (identified by operation id):r

 1 - filter("YEAR"=2000)
 4 - access("COUNTRY"='Australia' AND "PRODUCT"='Xtend Memory') 

Subquery Factoring
In a business setting, requirements are complex and multiple levels of aggregation are often needed. When writing
complex queries, you can often combine subquery factoring with the MODEL clause to prevent a SQL statement from
becoming unmanageably complex.

Listing 9-34 provides one such example. Two MODEL clauses are coded in the same SQL statement. The first MODEL
clause is embedded within a view that is the result of a subquery being factored into the WITH clause. The main query
uses that view to pivot the value of the sale column from the prior year. The output shows that the prior week’s sales
are pivoted into the current week’s row.

Listing 9-34.  More Indexing with SQL Access in Mind

with t1 as (
 select product, country, year, week, inventory, sale, receipts
 from sales_fact sf
 where country in ('Australia') and product='Xtend Memory'
 model return updated rows
 partition by (product, country)
 dimension by (year, week)
 measures (0 inventory , sale, receipts)
 rules automatic order(
 inventory [year, week] order by year, week =
 nvl(inventory [cv(year), cv(week)-1] ,0)
 - sale[cv(year), cv(week)] +
 + receipts [cv(year), cv(week)]
)
)

Chapter 9 ■ The MODEL Clause

259

select product, country, year, week , inventory,
sale, receipts, prev_sale
from t1
model return updated rows
partition by (product, country)
dimension by (year, week)
measures (inventory, sale, receipts,0 prev_sale)
rules sequential order (
 prev_sale [year, week] order by year, week =
 nvl (sale [cv(year) -1, cv(week)],0)
)
order by 1,2,3,4
/
 
PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS PREV_SALE
--------------- ----------- ----- ----- ------------ -------- ----------- --------------
Xtend Memory Australia 1998 1 8.88 58.15 67.03 0
...
Xtend Memory Australia 1999 1 2.676 53.52 56.196 58.15
...
Xtend Memory Australia 2000 1 -11.675 46.7 35.025 53.52
...
Xtend Memory Australia 2001 1 4.634 92.26 96.894 46.7
 

Summary
I can’t stress enough the importance of thinking in terms of sets when writing SQL statements. Many SQL statements
can be rewritten concisely using the MODEL clause discussed in this chapter. As an added bonus, rewritten queries such
as model or analytic functions can perform much better than traditional SQL statements. A combination of subquery
factoring, model, and analytic functions features can be used effectively to implement complex requirements.

261

Chapter 10

Subquery Factoring

You may not be familiar with the term subquery factoring. Prior to the release of Oracle 11gR2, the official Oracle
documentation barely mentions it, providing just a brief synopsis of its use, a couple of restrictions, and a single
example. If I instead refer to the WITH clause of the SELECT statement, you probably know immediately what I mean,
because these terms are more recognizable. Both terms are used in this chapter.

In Oracle 11gR2 (version 11.2), the WITH clause was enhanced with the ability to recurse; that is, the factored
subquery is allowed to call itself within some limitation. The value of this may not be readily apparent. If you have
used the CONNECT BY clause to create hierarchical queries, you can appreciate that recursive subqueries allow the
same functionality to be implemented in an ANSI standard format.

If the term subquery factoring is not known to you, perhaps you have heard of the ANSI standard term common
table expression (commonly called CTE). Common table expressions were first specified in the 1999 ANSI SQL
Standard. For some reason, Oracle has chosen to obfuscate this name. Other database vendors refer to common table
expressions, so perhaps Oracle chose subquery factoring just to be different.

Standard Usage
One of the most useful features of the WITH clause when it was first introduced was to clean up complex SQL queries.
When a large number of tables and columns are involved in a query, it can become difficult to follow the flow of data
through the query. Via the use of subquery factoring, a query can be made more understandable by moving some of
the complexity away from the main body of the query.

The query in Listing 10-1 generates a cross-tab report using the PIVOT operator. The formatting helps make the
SQL somewhat readable, but there is quite a bit going on here. The innermost query is creating a set of aggregates on
key sales columns, whereas the next most outer query simply provides column names that are presented to the PIVOT
operator, where the final values of sales by channel and quarter for each product are generated.

Listing 10-1.  Cross-tab without Subquery Factoring

select *
from (
 select /*+ gather_plan_statistics */
 product
 , channel
 , quarter
 , country
 , quantity_sold

Chapter 10 ■ Subquery Factoring

262

 from
 (
 select
 prod_name product
 , country_name country
 , channel_id channel
 , substr(calendar_quarter_desc, 6,2) quarter
 , sum(amount_sold) amount_sold
 , sum(quantity_sold) quantity_sold
 from
 sh.sales
 join sh.times on times.time_id = sales.time_id
 join sh.customers on customers.cust_id = sales.cust_id
 join sh.countries on countries.country_id = customers.country_id
 join sh.products on products.prod_id = sales.prod_id
 group by
 prod_name
 , country_name
 , channel_id
 , substr(calendar_quarter_desc, 6, 2)
)
) PIVOT (
 sum(quantity_sold)
 FOR (channel, quarter) IN
 (
 (5, '02') AS CATALOG_Q2,
 (4, '01') AS INTERNET_Q1,
 (4, '04') AS INTERNET_Q4,
 (2, '02') AS PARTNERS_Q2,
 (9, '03') AS TELE_Q3
)
)
order by product, country;
 

Now let’s use the WITH clause to break the query into byte-size chunks that are easier to comprehend. The SQL
has been rewritten in Listing 10-2 using the WITH clause to create three subfactored queries: sales_countries,
top_sales, and sales_rpt. Notice that both the top_sales and sales_rpt subqueries refer to other subqueries by
name, as if they are a table or a view. By choosing names that make the intent of each subquery easy to follow, the
readability of the SQL is improved. For instance, the subquery name sales_countries refers to the countries in which
the sales took place, top_sales collects the sales data, and the sales_rpt subquery aggregates the data. The results of
the sales_rpt subquery are used in the main query, which answers the question “What is the breakdown of sales by
product and country per quarter?” If you were not told the intent of the SQL in Listing 10-1, it would take some time
to discern its purpose; on the other hand, the structure of the SQL in Listing 10-2 with subfactored queries makes it
easier to understand the intent of the code.

Chapter 10 ■ Subquery Factoring

263

In addition, the statements associated directly with the PIVOT operator are in the same section of the SQL
statement at the bottom, further enhancing readability.

Listing 10-2.  Cross-tab with Subquery Factoring

with
sales_countries as (
 select /*+ gather_plan_statistics */
 cu.cust_id
 , co.country_name
 from sh.countries co, sh.customers cu
 where cu.country_id = co.country_id
),
top_sales as (
 select
 p.prod_name
 , sc.country_name
 , s.channel_id
 , t.calendar_quarter_desc
 , s.amount_sold
 , s.quantity_sold
 from
 sh.sales s
 join sh.times t on t.time_id = s.time_id
 join sh.customers c on c.cust_id = s.cust_id
 join sales_countries sc on sc.cust_id = c.cust_id
 join sh.products p on p.prod_id = s.prod_id
),
sales_rpt as (
 select
 prod_name product
 , country_name country
 , channel_id channel
 , substr(calendar_quarter_desc, 6,2) quarter
 , sum(amount_sold) amount_sold
 , sum(quantity_sold) quantity_sold
 from top_sales
 group by
 prod_name
 , country_name
 , channel_id
 , substr(calendar_quarter_desc, 6, 2)
)
select * from
(
 select product, channel, quarter, country, quantity_sold
 from sales_rpt
) pivot (
 sum(quantity_sold)
 for (channel, quarter) in
 (
 (5, '02') as catalog_q2,
 (4, '01') as internet_q1,

Chapter 10 ■ Subquery Factoring

264

 (4, '04') as internet_q4,
 (2, '02') as partners_q2,
 (9, '03') as tele_q3
)
)
order by product, country;
 

Although this is not an extremely complex SQL example, it does serve to illustrate the point of how the WITH
clause can be used to make a statement more readable and easier to maintain. Large, complex queries can be made
more understandable by using this technique.

WITH Using a PL/SQL Function
Oracle 12c introduced the ability to declare and define PL/SQL functions and procedures using the WITH clause. Once
defined, you can reference the PL/SQL functions in the query in which you specify this clause (including any of its
subqueries). Listing 10-3 walks through a simple example of how to create and use this new feature.

Listing 10-3.  WITH Function Clause

SQL>WITH
 2 function calc_markup(p_markup number, p_price number) return number
 3 is
 4 begin
 5 return p_markup*p_price;
 6 end;
 7 select prod_name,
 8 prod_list_price cur_price,
 9 calc_markup(.05,prod_list_price) mup5,
 10 round(prod_list_price + calc_markup(.10,prod_list_price),2) new_price
 11 from sh.products;
 12 /
 
PROD_NAME CUR_PRICE MUP5 NEW_PRICE
-- --------------- --------------- ---------------
5MP Telephoto Digital Camera 899.99 44.9995 989.99
17" LCD w/built-in HDTV Tuner 999.99 49.9995 1099.99
Envoy 256MB - 40GB 999.99 49.9995 1099.99
Y Box 299.99 14.9995 329.99
Mini DV Camcorder with 3.5" Swivel LCD 1099.99 54.9995 1209.99
...
Finding Fido 12.99 .6495 14.29
Adventures with Numbers 11.99 .5995 13.19
Extension Cable 7.99 .3995 8.79
Xtend Memory 20.99 1.0495 23.09
 
72 rows selected.
 
Elapsed: 00:00:00.02
 
-- Using a WITH function within an outer query block
 

Chapter 10 ■ Subquery Factoring

265

SQL>SELECT prod_name, cur_price, mup5, new_price
 2 FROM (
 3 WITH
 4 function calc_markup(p_markup number, p_price number) return number
 5 is
 6 begin
 7 return p_markup*p_price;
 8 end;
 9 select prod_name,
 10 prod_list_price cur_price,
 11 calc_markup(.05,prod_list_price) mup5,
 12 round(prod_list_price + calc_markup(.10,prod_list_price),2) new_price
from sh.products
)
WHERE cur_price < 1000
AND new_price >= 1000 ;
 17 /
WITH
*
ERROR at line 3:
ORA-32034: unsupported use of WITH clause
 
Elapsed: 00:00:00.01
SQL>
SQL>SELECT /*+ WITH_PLSQL */ prod_name, cur_price, mup5, new_price
 2 FROM (
 3 WITH
 4 function calc_markup(p_markup number, p_price number) return number
 5 is
 6 begin
 7 return p_markup*p_price;
 8 end;
 9 select prod_name,
 10 prod_list_price cur_price,
 11 calc_markup(.05,prod_list_price) mup5,
 12 round(prod_list_price + calc_markup(.10,prod_list_price),2) new_price
 13 from sh.products
)
 15 WHERE cur_price < 1000
 16 AND new_price >= 1000 ;
 17 /
 
PROD_NAME CUR_PRICE MUP5 NEW_PRICE
-- --------------- --------------- ---------------
17" LCD w/built-in HDTV Tuner 999.99 49.9995 1099.99
Envoy 256MB - 40GB 999.99 49.9995 1099.99
 
2 rows selected.
 
Elapsed: 00:00:00.02
 

Chapter 10 ■ Subquery Factoring

266

To run the statement, you must use the forward slash (/), which resembles how you would execute an anonymous
PL/SQL block. This example shows only a single function declaration, but you may create as many functions and/or
procedures as you wish. As also shown, one problem you may face occurs when you wish to place the WITH function
inside an outer query block. When the WITH function is not the first declaration before the top-level query, you get
an “ORA-32034: unsupported use of WITH clause” error. Fortunately, you can use the WITH_PLSQL hint to correct the
problem. The hint, however, enables you to specify only the WITH function as shown; it is not an optimizer hint in that it
does not have any bearing on the optimizer’s execution plan decisions.

Although this example is quite simple, imagine the possibilities of how you could use the WITH function clause.
There are some expressions that are difficult to build without multiple steps, and you may have created user-defined
PL/SQL functions that you use in your SQL statements. However, doing so requires that context switches must occur
between the SQL and PL/SQL “engines” when your SQL statement is executed. These context switches incur overhead
and can cause performance problems if used frequently. But now, with the advent of the WITH function clause in 12c,
we have a construct built into the SQL language that can reduce or eliminate the need for user-defined PL/SQL
functions and can allow you to do everything you need directly inline in your SQL statement.

Optimizing SQL
When a SQL query is designed or modified to take advantage of subquery factoring, there are some not-so-subtle
changes that may take place when the optimizer creates an execution plan for the query. The following quote
comes from the Oracle documentation in the Oracle Database SQL Language Reference (http://www.oracle.com/
technetwork/indexes/documentation/index.html) for SELECT, under the subquery_factoring_clause heading:
“The WITH query_name clause lets you assign a name to a subquery block. You can then reference the subquery block
multiple places in the query by specifying query_name. Oracle Database optimizes the query by treating the query
name as either an inline view or as a temporary table.”

Notice that Oracle may treat the factored subquery as a temporary table. In queries in which a table is referenced
more than once, this could be a distinct performance advantage, because Oracle can materialize result sets from
the query, thereby avoiding performing some expensive database operations more than once. The caveat here is
that it “could be” a distinct performance advantage. Keep in mind that materializing the result set requires creating
a temporary table and inserting the rows into it. Doing so may be of value if the same result set is referred to many
times, or it may be a big performance penalty.

Testing Execution Plans
When examining the execution plans for subfactored queries, it may not be readily apparent whether Oracle is
choosing the best execution plan. It may seem that the use of the INLINE or MATERIALIZE1 hint would result in better
performing SQL. In some cases it may, but the use of these hints needs to be tested and considered in the context of
overall application performance.

The need to test for optimum query performance can be illustrated by a report that management has requested.
The report must show the distribution of customers by country and income level, showing only those countries and
income levels that make up 1 percent or more of the entire customer base. A country and income level should also be
reported if the number of customers in an income level bracket is greater than or equal to 25 percent of all customers
in that income bracket.2

1Although well known in the Oracle community for some time now, the INLINE and MATERIALIZE hints remain undocumented
by Oracle.
2If you run these examples on different versions of Oracle, the output may appear differently because the test data sometimes
change with versions of Oracle.

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html

Chapter 10 ■ Subquery Factoring

267

The query in Listing 10-4 is the end result.3 The cust factored subquery has been retained from previous queries.
New are the subqueries in the HAVING clause; these are used to enforce the rules stipulated for the report.

Listing 10-4.  WITH and MATERIALIZE

 1 with cust as (
 2 select /*+ materialize gather_plan_statistics */
 3 b.cust_income_level,
 4 a.country_name
 5 from sh.customers b
 6 join sh.countries a on a.country_id = b.country_id
 7)
 8 select country_name, cust_income_level, count(country_name) country_cust_count
 9 from cust c
 10 having count(country_name) >
 11 (
 12 select count(*) * .01
 13 from cust c2
 14)
 15 or count(cust_income_level) >=
 16 (
 17 select median(income_level_count)
 18 from (
 19 select cust_income_level, count(*) *.25 income_level_count
 20 from cust
 21 group by cust_income_level
 22)
 23)
 24 group by country_name, cust_income_level
 25 order by 1,2;
 CUSTOMER
COUNTRY INCOME LEVEL COUNT
------------------------------ -------------------- --------
France E: 90,000 - 109,999 585
France F: 110,000 - 129,999 651
...
United States of America H: 150,000 - 169,999 1857
United States of America I: 170,000 - 189,999 1395
...
35 rows selected.
 
Elapsed: 00:00:01.37
 

3The MATERIALIZE hint was used to ensure that the example works as expected, given that you may be testing on a different version
or patch level of Oracle. On the test system I used, this was the default action by Oracle.

Chapter 10 ■ Subquery Factoring

268

Statistics

 1854 recursive calls
 307 db block gets
 2791 consistent gets
 1804 physical reads
 672 redo size
 4609 bytes sent via SQL*Net to client
 700 bytes received via SQL*Net from client
 18 SQL*Net roundtrips to/from client
 38 sorts (memory)
 0 sorts (disk)
 35 rows processed
 
--
| Id | Operation | Name | Starts | E-Rows | A-Rows |
--
0	SELECT STATEMENT		1		35
1	TEMP TABLE TRANSFORMATION		1		35
2	LOAD AS SELECT		1		0
* 3	HASH JOIN		1	55500	55500
4	TABLE ACCESS FULL	COUNTRIES	1	23	23
5	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500
* 6	FILTER		1		35
7	SORT GROUP BY		1	18	209
8	VIEW		1	55500	55500
9	TABLE ACCESS FULL	SYS_TEMP_0F	1	55500	55500
10	SORT AGGREGATE		1	1	1
11	VIEW		1	55500	55500
12	TABLE ACCESS FULL	SYS_TEMP_0F	1	55500	55500
13	SORT GROUP BY		1	1	1
14	VIEW		1	11	13
15	SORT GROUP BY		1	11	13
16	VIEW		1	55500	55500
17	TABLE ACCESS FULL	SYS_TEMP_0F	1	55500	55500
--
 

When executing4 the SQL, all appears as you expect, then you check the execution plan and find that the join of
the customers and countries tables underwent a TEMP TABLE TRANSFORMATION, and the rest of the query was satisfied
by using the temporary table sys_temp_of.5 At this point, you might rightly wonder if the execution plan chosen was a
reasonable one. This can be tested easily, thanks to the MATERIALIZED and INLINE hints.

By using the INLINE hint, Oracle can be instructed to satisfy all portions of the query without using a TEMP TABLE
TRANSFORMATION. The results of doing so are shown in Listing 10-5. Only the relevant portion of the SQL that has
changed is shown here (the rest is identical to that in Listing 10-4).

4Initial executions are run after first flushing shared_pool and buffer_cache.
5The actual table name was sys_temp_0fd9d66a2_453290, but was shortened in the listing for formatting purposes.

Chapter 10 ■ Subquery Factoring

269

Listing 10-5.  WITH and INLINE Hint

1 with cust as (
2 select /*+ inline gather_plan_statistics */
3 b.cust_income_level,
4 a.country_name
5 from sh.customers b
6 join sh.countries a on a.country_id = b.country_id
7)
...
 
COUNTRY INCOME LEVEL COUNT
------------------------------ -------------------- --------
France E: 90,000 - 109,999 585
France F: 110,000 - 129,999 651
...
United States of America I: 170,000 - 189,999 1395
United States of America J: 190,000 - 249,999 1390
...
35 rows selected.
 
Elapsed: 00:00:00.62
 
Statistics
--
 1501 recursive calls
 0 db block gets
 4758 consistent gets
 1486 physical reads
 0 redo size
 4609 bytes sent via SQL*Net to client
 700 bytes received via SQL*Net from client
 18 SQL*Net roundtrips to/from client
 34 sorts (memory)
 0 sorts (disk)
 35 rows processed
 
--
| Id | Operation | Name | Starts | E-Rows | A-Rows |
--
0	SELECT STATEMENT		1		35
* 1	FILTER		1		35
2	SORT GROUP BY		1	20	236
* 3	HASH JOIN		1	55500	55500
4	TABLE ACCESS FULL	COUNTRIES	1	23	23
5	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500
6	SORT AGGREGATE		1	1	1
* 7	HASH JOIN		1	55500	55500
8	INDEX FULL SCAN	COUNTRIES_PK	1	23	23
9	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500
10	SORT GROUP BY		1	1	1

Chapter 10 ■ Subquery Factoring

270

11	VIEW		1	12	13
12	SORT GROUP BY		1	12	13
* 13	HASH JOIN		1	55500	55500
14	INDEX FULL SCAN	COUNTRIES_PK	1	23	23
15	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500
--
 

From the execution plan in Listing 10-5, you can see that three full scans were performed on the customers
table and one full scan on the countries table. Two of the executions against the cust subquery required only
the information in the COUNTRIES_PK index, so a full scan of the index was performed rather than a full scan of the
table, saving time and resources. In this example, the query that used the MATERIALIZE hint had 2791 consistent gets
whereas the second had 4758. However, it’s also important to note there was another difference: The second query
used less resources for redo generation: 0 vs. 672. When deciding which format works best for your environment, you
must consider carefully the decreased CPU resulting from lower consistent gets against the higher redo required to
materialize the temporary table.

What may be surprising is that the execution using full table scans took 0.75 second, which is about 100 percent
faster than when a temporary table is used. Of course, the cache was cold for both queries, because both the buffer
cache and the shared pool were flushed prior to running each query. From these simple tests you might feel safe using
the INLINE hint

in this bit of code, convinced that it will perform well based on the amount of physical IO required in the first
test outweighing the memory usage and the logical IO required for the second test. If you know for sure that the size
of the datasets will not grow and that the system load will remain fairly constant, using the INLINE hint in this query
is probably a good idea. The problem, however, is that data are rarely static; often, data grow to a larger size than
originally intended when developing a query. In this event, retesting these queries is in order to determine whether
the use of the INLINE hint is still valid.

Testing the Effects of Query Changes
Even as data do not remain static, SQL is not always static. Sometimes requirements change, so code must be
modified. What if the requirements changed for the examples in Listings 10-4 and 10-5? Would minor changes
invalidate the use of the hints embedded in the SQL? This is probably something worth investigating, so let’s do so.

Previously, we were reporting on income brackets when the count of them for any country was greater than or
equal to 25 percent of the total global count for that bracket. Now we are asked to include an income bracket if it is
among those income brackets the number of which is greater than the median, based on the number of customers per
bracket. This SQL is seen in Listing 10-6. Notice that the INLINE hint has been left in. So now there’s an additional full
table scan and index scan compared with the execution plan in Listing 10-5. Although the elapsed time has increased,
it still seems reasonable.

Listing 10-6.  Modified Income Search: INLINE

 1 with cust as (
 2 select /*+ inline gather_plan_statistics */
 3 b.cust_income_level,
 4 a.country_name
 5 from sh.customers b
 6 join sh.countries a on a.country_id = b.country_id
 7),
 8 median_income_set as (
 9 select /*+ inline */ cust_income_level, count(*) income_level_count
 10 from cust

Chapter 10 ■ Subquery Factoring

271

 11 group by cust_income_level
 12 having count(cust_income_level) > (
 13 select median(income_level_count) income_level_count
 14 from (
 15 select cust_income_level, count(*) income_level_count
 16 from cust
 17 group by cust_income_level
 18)
 19)
 20)
 21 select country_name, cust_income_level, count(country_name) country_cust_count
 22 from cust c
 23 having count(country_name) >
 24 (
 25 select count(*) * .01
 26 from cust c2
 27)
 28 or cust_income_level in (select mis.cust_income_level from median_income_set mis)
 29 group by country_name, cust_income_level;
 CUSTOMER
COUNTRY INCOME LEVEL COUNT
------------------------------ -------------------- --------
Argentina D: 70,000 - 89,999 25
Argentina E: 90,000 - 109,999 39
...
United States of America K: 250,000 - 299,999 1062
United States of America L: 300,000 and above 982
 
123 rows selected.
 
Elapsed: 00:00:01.26
 
Statistics
--
 1524 recursive calls
 0 db block gets
 23362 consistent gets
 1486 physical reads
 0 redo size
 15570 bytes sent via SQL*Net to client
 1195 bytes received via SQL*Net from client
 63 SQL*Net roundtrips to/from client
 3 sorts (memory)
 0 sorts (disk)
 123 rows processed
 

Chapter 10 ■ Subquery Factoring

272

| Id | Operation | Name |Starts|E-Rows|A-Rows |

0	SELECT STATEMENT		1		123
* 1	FILTER		1		123
2	SORT GROUP BY		1	20	236
* 3	HASH JOIN		1	55500	55500
4	TABLE ACCESS FULL	COUNTRIES	1	23	23
5	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500
6	SORT AGGREGATE		1	1	1
* 7	HASH JOIN		1	55500	55500
8	INDEX FULL SCAN	COUNTRIES_PK	1	23	23
9	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500
* 10	FILTER		13		6
11	HASH GROUP BY		13	1	133
* 12	HASH JOIN		13	55500	721K
13	INDEX FULL SCAN	COUNTRIES_PK	13	23	299
14	TABLE ACCESS FULL	CUSTOMERS	13	55500	721K
15	SORT GROUP BY		1	1	1
16	VIEW		1	12	13
17	SORT GROUP BY		1	12	13
* 18	HASH JOIN		1	55500	55500
19	INDEX FULL SCAN	COUNTRIES_PK	1	23	23
20	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500

Now that there’s an additional table scan and index scan, how do you think the performance of this query fares if
temporary table transformations are allowed to take place? The results can be seen in Listing 10-7.

Listing 10-7.  Modified Income Search: MATERIALIZE

1 with cust as (
2 select /*+ materialize gather_plan_statistics */
3 b.cust_income_level,
4 a.country_name
5 from sh.customers b
6 join sh.countries a on a.country_id = b.country_id
7),
...
 CUSTOMER
COUNTRY INCOME LEVEL COUNT
------------------------------ -------------------- --------
Argentina D: 70,000 - 89,999 25
Argentina E: 90,000 - 109,999 39
...
United States of America K: 250,000 - 299,999 1062
United States of America L: 300,000 and above 982
 
123 rows selected.
 
Elapsed: 00:00:00.87
 

Chapter 10 ■ Subquery Factoring

273

Statistics
--
 2001 recursive calls
 324 db block gets
 3221 consistent gets
 1822 physical reads
 1244 redo size
 15570 bytes sent via SQL*Net to client
 1195 bytes received via SQL*Net from client
 63 SQL*Net roundtrips to/from client
 38 sorts (memory)
 0 sorts (disk)
 123 rows processed

| Id |Operation |Name |Starts|E-Rows|A-Rows |

0	SELECT STATEMENT		1		123
1	TEMP TABLE TRANSFORMATION		1		123
2	LOAD AS SELECT		1		0
* 3	HASH JOIN		1	55500	55500
4	TABLE ACCESS FULL	COUNTRIES	1	23	23
5	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500
6	LOAD AS SELECT		1		0
* 7	FILTER		1		6
8	HASH GROUP BY		1	1	13
9	VIEW		1	55500	55500
10	TABLE ACCESS FULL	SYS_TEMP_0F	1	55500	55500
11	SORT GROUP BY		1	1	1
12	VIEW		1	12	13
13	SORT GROUP BY		1	12	13
14	VIEW		1	55500	55500
15	TABLE ACCESS FULL	SYS_TEMP_0F	1	55500	55500
* 16	FILTER		1		123
17	SORT GROUP BY		1	20	236
18	VIEW		1	55500	55500
19	TABLE ACCESS FULL	SYS_TEMP_0F	1	55500	55500
20	SORT AGGREGATE		1	1	1
21	VIEW		1	55500	55500
22	TABLE ACCESS FULL	SYS_TEMP_0F	1	55500	55500
* 23	VIEW		13	1	6
24	TABLE ACCESS FULL	SYS_TEMP_0F	13	1	63

Because there’s that additional scan taking place in the modified version of the query, the overhead of logical IO
becomes more apparent. It is significantly more efficient with this query to allow Oracle to perform table transformations,
writing the results of the hash join to a temporary table on disk, where they can be reused throughout the query. 

Seizing Other Optimization Opportunities
There are other opportunities when subquery factoring may be used to your advantage. If you are working on applications
that were originally written several years ago, you may find that some of the SQL could use a bit of improvement based on
the features offered by Oracle versions 9i and later. The query in Listing 10-8, for example, does exactly what it was asked

Chapter 10 ■ Subquery Factoring

274

to do, which is to find the average, minimum, and maximum costs for each product that was produced in the year 2000,
with the costs calculated for each of the sale channels in which the product was sold. This SQL is not only difficult to read
and hard to modify, but also it is somewhat inefficient.

Listing 10-8.  Old SQL to Calculate Costs

 1 select /*+ gather_plan_statistics */
 2 substr(prod_name,1,30) prod_name
 3 , channel_desc
 4 , (
 5 select avg(c2.unit_cost)
 6 from sh.costs c2
 7 where c2.prod_id = c.prod_id and c2.channel_id = c.channel_id
 8 and c2.time_id between to_date('01/01/2000','mm/dd/yyyy')
 9 and to_date('12/31/2000')
 10) avg_cost
 11 , (
 12 select min(c2.unit_cost)
 13 from sh.costs c2
 14 where c2.prod_id = c.prod_id and c2.channel_id = c.channel_id
 15 and c2.time_id between to_date('01/01/2000','mm/dd/yyyy')
 16 and to_date('12/31/2000')
 17) min_cost
 18 , (
 19 select max(c2.unit_cost)
 20 from sh.costs c2
 21 where c2.prod_id = c.prod_id and c2.channel_id = c.channel_id
 22 and c2.time_id between to_date('01/01/2000','mm/dd/yyyy')
 23 and to_date('12/31/2000')
 24) max_cost
 25 from (
 26 select distinct pr.prod_id, pr.prod_name, ch.channel_id, ch.channel_desc
 27 from sh.channels ch
 28 , sh.products pr
 29 , sh.costs co
 30 where ch.channel_id = co.channel_id
 31 and co.prod_id = pr.prod_id
 32 and co.time_id between to_date('01/01/2000','mm/dd/yyyy')
 33 and to_date('12/31/2000')
 34) c
 35 order by prod_name, channel_desc;
 
PRODUCT CHANNEL_DESC AVG COST MIN COST MAX COST
------------------------------ -------------------- ---------- ---------- ----------
1.44MB External 3.5" Diskette Direct Sales 8.36 7.43 9.17
1.44MB External 3.5" Diskette Internet 8.59 7.42 9.55
...
Y Box Internet 266.73 245.00 282.30
Y Box Partners 272.62 242.79 293.68
 ---------- ---------- ----------
sum 27,961.39 24,407.85 34,478.10
 

Chapter 10 ■ Subquery Factoring

275

216 rows selected.
COLD CACHE Elapsed: 00:00:02.30
WARM CACHE Elapsed: 00:00:01.09

| Id | Operation |Name |Starts|E-Rows|A-Rows |

0	SELECT STATEMENT		1		216
1	SORT AGGREGATE		216	1	216
* 2	FILTER		216		17373
3	PARTITION RANGE ITERATOR		216	96	17373
* 4	TABLE ACCESS BY LOCAL INDEX ROWID	COSTS	864	96	17373
5	BITMAP CONVERSION TO ROWIDS		864		52119
6	BITMAP AND		864		840
7	BITMAP MERGE		864		864
* 8	BITMAP INDEX RANGE SCAN	COSTS_TIME_BIX	864		79056
* 9	BITMAP INDEX SINGLE VALUE	COSTS_PROD_BIX	864		840
10	SORT AGGREGATE		216	1	216
* 11	FILTER		216		17373
12	PARTITION RANGE ITERATOR		216	96	17373
* 13	TABLE ACCESS BY LOCAL INDEX ROWID	COSTS	864	96	17373
14	BITMAP CONVERSION TO ROWIDS		864		52119
15	BITMAP AND		864		840
16	BITMAP MERGE		864		864
* 17	BITMAP INDEX RANGE SCAN	COSTS_TIME_BIX	864		79056
* 18	BITMAP INDEX SINGLE VALUE	COSTS_PROD_BIX	864		840
19	SORT AGGREGATE		216	1	216
* 20	FILTER		216		17373
21	PARTITION RANGE ITERATOR		216	96	17373
* 22	TABLE ACCESS BY LOCAL INDEX ROWID	COSTS	864	96	17373
23	BITMAP CONVERSION TO ROWIDS		864		52119
24	BITMAP AND		864		840
25	BITMAP MERGE		864		864
* 26	BITMAP INDEX RANGE SCAN	COSTS_TIME_BIX	864		79056
* 27	BITMAP INDEX SINGLE VALUE	COSTS_PROD_BIX	864		840
28	SORT ORDER BY		1	20640	216
29	VIEW		1	20640	216
30	HASH UNIQUE		1	20640	216
* 31	FILTER		1		17373
* 32	HASH JOIN		1	20640	17373
33	TABLE ACCESS FULL	PRODUCTS	1	72	72
* 34	HASH JOIN		1	20640	17373
35	TABLE ACCESS FULL	CHANNELS	1	5	5
36	PARTITION RANGE ITERATOR		1	20640	17373
* 37	TABLE ACCESS FULL	COSTS	4	20640	17373

Note■■  I n several of the following listings, you will see an elapsed time for COLD CACHE and WARM CACHE. The COLD
CACHE time is the first execution of the statement immediately following a flush of both the buffer cache and the
shared pool.

Chapter 10 ■ Subquery Factoring

276

Examining the output of Listing 10-8, note that the elapsed execution time on a cold cache is 2.30 seconds, and
1.09 seconds on a warm cache. These times don’t seem all that bad at first; but, when you examine the execution plan,
you find that this query can be improved on from a performance perspective as well as a readability perspective.

The starts column is telling. Each execution against the costs table is executed 864 times. This is because there
are 216 rows produced by a join between channels, products, and costs. Also, the costs table is queried in four
separate places for the same information. By using subquery factoring, not only can this SQL be cleaned up and made
easier to read, but also it can be made more efficient.

As seen in Listing 10-9, you can start by putting the begin_date and end_date columns in a separate query
bookends, leaving only one place that the values need to be set. The data for products are placed in the prodmaster
subquery. Although this bit of the SQL worked fine as a subquery in the FROM clause, the readability of the SQL
statement as a whole is greatly improved by moving it to a factored subquery.

Listing 10-9.  Old SQL Refactored Using the WITH Clause

 1 with bookends as (
 2 select
 3 to_date('01/01/2000','mm/dd/yyyy') begin_date
 4 ,to_date('12/31/2000','mm/dd/yyyy') end_date
 5 from dual
 6),
 7 prodmaster as (
 8 select distinct pr.prod_id, pr.prod_name, ch.channel_id, ch.channel_desc
 9 from sh.channels ch
 10 , sh.products pr
 11 , sh.costs co
 12 where ch.channel_id = co.channel_id
 13 and co.prod_id = pr.prod_id
 14 and co.time_id between (select begin_date from bookends)
 15 and (select end_date from bookends)
 16),
 17 cost_compare as (
 18 select
 19 prod_id
 20 , channel_id
 21 , avg(c2.unit_cost) avg_cost
 22 , min(c2.unit_cost) min_cost
 23 , max(c2.unit_cost) max_cost
 24 from sh.costs c2
 25 where c2.time_id between (select begin_date from bookends)
 26 and (select end_date from bookends)
 27 group by c2.prod_id, c2.channel_id
 28)
 29 select /*+ gather_plan_statistics */
 30 substr(pm.prod_name,1,30) prod_name
 31 , pm.channel_desc
 32 , cc.avg_cost
 33 , cc.min_cost
 34 , cc.max_cost
 35 from prodmaster pm
 36 join cost_compare cc on cc.prod_id = pm.prod_id
 37 and cc.channel_id = pm.channel_id
 38 order by pm.prod_name, pm.channel_desc;
 

Chapter 10 ■ Subquery Factoring

277

PRODUCT CHANNEL_DESC AVG COST MIN COST MAX COST
------------------------------ -------------------- ---------- ---------- ----------
1.44MB External 3.5" Diskette Direct Sales 8.36 7.43 9.17
1.44MB External 3.5" Diskette Internet 8.59 7.42 9.55
 
Y Box Internet 266.73 245.00 282.30
Y Box Partners 272.62 242.79 293.68
 ---------- ---------- ----------
sum 27,961.39 24,407.85 34,478.10
 
216 rows selected.
 
COLD CACHE Elapsed: 00:00:01.48
WARM CACHE Elapsed: 00:00:00.17
--
| Id |Operation |Name |Starts|E-Rows|A-Rows|
--
0	SELECT STATEMENT		1		216
1	SORT ORDER BY		1	17373	216
* 2	HASH JOIN		1	17373	216
3	VIEW		1	216	216
4	HASH GROUP BY		1	216	216
5	PARTITION RANGE ITERATOR		1	17373	17373
6	TABLE ACCESS BY LOCAL INDEX ROWID	COSTS	4	17373	17373
7	BITMAP CONVERSION TO ROWIDS		4		17373
* 8	BITMAP INDEX RANGE SCAN	COSTS_TIME_BIX	4		366
9	FAST DUAL		1	1	1
10	FAST DUAL		1	1	1
11	VIEW		1	17373	216
12	HASH UNIQUE		1	17373	216
* 13	HASH JOIN		1	17373	17373
14	TABLE ACCESS FULL	PRODUCTS	1	72	72
15	MERGE JOIN		1	17373	17373
16	TABLE ACCESS BY INDEX ROWID	CHANNELS	1	5	4
17	INDEX FULL SCAN	CHANNELS_PK	1	5	4
* 18	SORT JOIN		4	17373	17373
19	PARTITION RANGE ITERATOR		1	17373	17373
20	TABLE ACCESS BY LOCAL INDEX RO	COSTS	4	17373	17373
21	BITMAP CONVERSION TO ROWIDS		4		17373
* 22	BITMAP INDEX RANGE SCAN	COSTS_TIME_BIX	4		366
23	FAST DUAL		1	1	1
24	FAST DUAL		1	1	1
--

The calculations for the average, minimum, and maximum costs are replaced with a single subquery called
cost_compare. Last, the SQL that joins the prodmaster and cost_compare subqueries is added. The structure of
the SQL is now much easier on the eyes and the overworked developer’s brain. It’s also simpler for the DBA to
understand. The DBA will be especially happy with the execution statistics.

Where the old SQL queried the costs table and costs_time_bix index several hundred times, the new SQL
queries each only eight times. This is quite an improvement, and it shows in the elapsed times. The query time on a
cold cache is 1.48 seconds, about 25 percent better than the old SQL. On a warm cache, however, the refactored SQL
really shines, running at 0.17 second whereas the old SQL managed only 1.09 seconds. 

Chapter 10 ■ Subquery Factoring

278

Applying Subquery Factoring to PL/SQL
We discussed the new 12c WITH PL/SQL function earlier, but there are other ways that PL/SQL can present golden
opportunities for optimization using subquery factoring. Something that most of us have done at one time or another
is to write a PL/SQL routine when we cannot figure out how to do what we want in a single SQL query. Sometimes it
can be very difficult to capture everything in a single statement. It’s often just easier to think procedurally rather than
in sets of data, and just write some code to do what we need. As you gain experience, you will rely less and less on
thinking in terms of “How would I code this in PL/SQL?” and will rely more along the lines of “How do I capture this
problem in a single SQL statement?” The more advanced features that Oracle has packed into SQL can help as well.

Here’s an example. You’ve been asked to create a report with the following criteria:

Only include customers who have purchased products in at least three different years.•	

Compute total aggregate sales per customer, broken down by product category.•	

At first, this doesn’t seem too difficult, but you may struggle for a bit when trying to capture this in one SQL
statement. So, you decide to use a PL/SQL routine to get the needed data. The results may be similar to those in
Listing 10-10. The logic is simple. Find all customers that fit the criteria and store their IDs in a temporary table. Then,
loop through the newly saved customer IDs and find all their sales, sum them up, and add them to another temporary
table. The results are then joined to the customers and products tables to generate the report.

Listing 10-10.  PL/SQL to Generate Customer Report

SQL> create global temporary table cust3year (cust_id number);
Table created.
 
SQL> create global temporary table sales3year(
 2 cust_id number ,
 3 prod_category varchar2(50),
 4 total_sale number
 5)
 6 /
Table created.
 
SQL> begin
 2 execute immediate 'truncate table cust3year';
 3 execute immediate 'truncate table sales3year';
 4
 5 insert into cust3year
 6 select cust_id --, count(cust_years) year_count
 7 from (
 8 select distinct cust_id, trunc(time_id,'YEAR') cust_years
 9 from sh.sales
 10)
 11 group by cust_id
 12 having count(cust_years) >= 3;
 13
 14 for crec in (select cust_id from cust3year)
 15 loop
 16 insert into sales3year
 17 select s.cust_id,p.prod_category, sum(co.unit_price * s.quantity_sold)
 18 from sh.sales s
 19 join sh.products p on p.prod_id = s.prod_id

Chapter 10 ■ Subquery Factoring

279

 20 join sh.costs co on co.prod_id = s.prod_id
 21 and co.time_id = s.time_id
 22 join sh.customers cu on cu.cust_id = s.cust_id
 23 where s.cust_id = crec.cust_id
 24 group by s.cust_id, p.prod_category;
 25 end loop;
 26 end;
 27 /
PL/SQL procedure successfully completed.
Elapsed: 00:01:17.48
SQL> break on report
SQL> compute sum of total_sale on report
 
SQL> select c3.cust_id, c.cust_last_name, c.cust_first_name, s.prod_category, s.total_sale
 2 from cust3year c3
 3 join sales3year s on s.cust_id = c3.cust_id
 4 join sh.customers c on c.cust_id = c3.cust_id
 5 order by 1,4;
 
 CUST ID LAST NAME FIRST NAME PRODUCT CATEGORY TOTAL SALE
--------- --------------- --------------- ------------------------------ ---------------
 6 Charles Harriett Electronics 2,838.57
 6 Charles Harriett Hardware 19,535.38
 ...
 50833 Gravel Grover Photo 15,469.64
 50833 Gravel Grover Software/Other 9,028.87

sum 167,085,605.71
16018 rows selected.
 

The code in Listing 10-10 is fairly succinct and it only takes 1:17 minutes to run. This isn’t too bad, is it? Although
this is a nice little chunk of PL/SQL, take another look at it and think in terms of subfactored subqueries. The section
that determines the correct customer IDs can be captured in a WITH clause fairly easily. Once the customers are
identified, it is then a fairly easy job to use the results of the subquery to look up the needed sales, product, and
customer information to create the report.

Listing 10-11 has a single SQL statement that captures what is done with the PL/SQL routine from Listing 10-10—
without the need to create temporary tables manually or use PL/SQL loops. Should the use of temporary tables make
for a more efficient query, Oracle does so automatically, or you can choose how Oracle preserves the subquery results
via the INLINE and MATERIALIZE hints. It is more efficient, too, with an elapsed time of 6.13 seconds.

Listing 10-11.  Use of the WITH Clause to Generate the Customer Report

 1 with custyear as (
 2 select cust_id, extract(year from time_id) sales_year
 3 from sh.sales
 4 where extract(year from time_id) between 1998 and 2002
 5 group by cust_id, extract(year from time_id)
 6),
 7 custselect as (
 8 select distinct cust_id
 9 from (

Chapter 10 ■ Subquery Factoring

280

 10 select cust_id, count(*) over (partition by cust_id) year_count
 11 from custyear
 12)
 13 where year_count >= 3 -- 3 or more years as a customer during period
 14)
 15 select cu.cust_id, cu.cust_last_name, cu.cust_first_name, p.prod_category,
sum(co.unit_price * s.quantity_sold) total_sale
 16 from custselect cs
 17 join sh.sales s on s.cust_id = cs.cust_id
 18 join sh.products p on p.prod_id = s.prod_id
 19 join sh.costs co on co.prod_id = s.prod_id
 20 and co.time_id = s.time_id
 21 join sh.customers cu on cu.cust_id = cs.cust_id
 22 group by cu.cust_id, cu.cust_last_name, cu.cust_first_name, p.prod_category
 23 order by cu.cust_id;
 
 CUST ID LAST NAME FIRST NAME PRODUCT CATEGORY TOTAL SALE
--------- --------------- --------------- ------------------------------ ---------------
 6 Charles Harriett Electronics 2,838.57
 6 Charles Harriett Hardware 19,535.38
...
 50833 Gravel Grover Photo 15,469.64
 50833 Gravel Grover Software/Other 9,028.87

sum 167,085,605.71
 
16018 rows selected.
 
Elapsed: 00:00:06.13
 

The WITH clause in Listing 10-11 actually uses two subqueries that can be combined into a single query, but I
thought it easier to read when they are broken into two queries. Notice the use of the EXTRACT() function; it simplifies
comparing years by extracting the year from a date and converting it to an integer.

The SQL examples in this section of the chapter are not meant to be tuning exercises, but merely demonstrations
that show how subquery factoring may be used. When refactoring legacy SQL to take advantage of the WITH clause, be
sure to test the results. Subquery factoring can be used to organize some queries better, and in some cases can even be
used as an optimization tool. Learning to use it adds another tool to your Oracle toolbox.

EXPERIMENT WITH SUBQUERY FACTORING

Included in this chapter are two scripts in the Exercises folder that you may want to experiment with. These
scripts both run against the SH demo schema.

Exercises/l_10_exercise_1.sql•	

Exercises/l_10_exercise_2.sql•	

Run these scripts with both the MATERIALIZE and INLINE hints to compare performance. In the tsales subquery,
a WHERE clause limits the data returned to a single year. Comment out the WHERE clause and run the queries again.
How does the efficiency of the two hints compare now? Would you feel comfortable using these hints when the
size of the data set is set at runtime by user input?

Chapter 10 ■ Subquery Factoring

281

Recursive Subqueries
Beginning in Oracle 11.2, recursive subquery factoring (RSF for the remainder of this chapter) was added. As you can
probably guess, the ANSI name for this feature is recursive common table expression. Regardless of what you call it,
Oracle has had a similar feature for a very long time in the form of the CONNECT BY6 clause of the SELECT statement.
This feature has been enhanced in Oracle 11gR2.

A CONNECT BY Example
Let’s begin by looking at a traditional CONNECT BY query such as that in Listing 10-12. The emp inline view is used
to join the employee and department tables, and then the single dataset is presented to the SELECT . . . CONNECT BY
statement. The PRIOR operator is used to match the current EMPLOYEE_ID to rows where this value is in the MANAGER_ID
column. Doing so iteratively creates a recursive query.

Listing 10-12 contains a number of extra columns in the output to help explain how the PRIOR operator works.
Let’s take a look at the output beginning with the row for Lex De Haan. You can see that the employee_id for Lex is 102.
The PRIOR operator finds all rows for which the manager_id is 102 and includes them under the hierarchy for Lex
De Haan. The only row that meets these criteria is the one for Alexander Hunold, with an employee_id of 103. The
process is then repeated for Alexander Hunold: Are there any rows for which the manager_id is 103? There are four
rows found with a manager_id of 103—those for employees Valli Pattaballa, Diana Lorentz, Bruce Ernst, and David
Austin—so these are included in the output below Alexander Hunold. Because there are no rows for which any of the
employee_id values for these four employees appears as a manager_id, Oracle moves back up to a level for which the
rows have not yet been processed (in this case, for Alberto Errazuriz) and continues on to the end until all rows have
been processed.

Listing 10-12.  Basic CONNECT BY

 1 select lpad(' ', level*2-1,' ') || emp.emp_last_name emp_last_name
 2 , emp.emp_first_name
 3 , emp.employee_id
 4 , emp.mgr_last_name, emp.mgr_first_name
 5 , emp.manager_id
 6 , department_name
 7 from (
 8 select /*+ inline gather_plan_statistics */
 9 e.last_name emp_last_name, e.first_name emp_first_name
 10 , e.employee_id, d.department_id
 11 , e.manager_id, d.department_name
 12 , es.last_name mgr_last_name, es.first_name mgr_first_name
 13 from hr.employees e
 14 left outer join hr.departments d on d.department_id = e.department_id
 15 left outer join hr.employees es on es.employee_id = e.manager_id
 16) emp
 17 connect by prior emp.employee_id = emp.manager_id
 18 start with emp.manager_id is null
 19 order siblings by emp.emp_last_name;
 

6CONNECT BY was first available in Oracle version 2 or, in others words, from the very beginning.

Chapter 10 ■ Subquery Factoring

282

EMP_LAST_NAME EMP_FIRST_NAME EMP ID MGR_LAST_NAME MGR_FIRST_NAME MGR ID DEPARTMENT
---------------- --------------- ------ ---------------- --------------- ------ ------------
 King Steven 100 Executive
 Cambrault Gerald 148 King Steven 100 Sales
 Bates Elizabeth 172 Cambrault Gerald 148 Sales
 Bloom Harrison 169 Cambrault Gerald 148 Sales
 Fox Tayler 170 Cambrault Gerald 148 Sales
 Kumar Sundita 173 Cambrault Gerald 148 Sales
 Ozer Lisa 168 Cambrault Gerald 148 Sales
 Smith William 171 Cambrault Gerald 148 Sales
 De Haan Lex 102 King Steven 100 Executive
 Hunold Alexander 103 De Haan Lex 102 IT
 Austin David 105 Hunold Alexander 103 IT
 Ernst Bruce 104 Hunold Alexander 103 IT
 Lorentz Diana 107 Hunold Alexander 103 IT
 Pataballa Valli 106 Hunold Alexander 103 IT
 Errazuriz Alberto 147 King Steven 100 Sales
 Ande Sundar 166 Errazuriz Alberto 147 Sales
 Banda Amit 167 Errazuriz Alberto 147 Sales
...
 
107 rows selected.
 

The START WITH clause is instructed to begin with a value for which manager_id is null. Because this is an
organizational hierarchy with a single person at the top of the hierarchy, this causes the query to start with Stephen
King. As the chief executive officer, King does not have a manager, so the manager_id column is set to NULL for his row.

The level pseudocolumn holds the value for the depth of the recursion, allowing for a simple method to indent
the output so that the organizational hierarchy is visible.

The Example Using an RSF
The example query on the employees table has been rewritten in Listing 10-13 to use RSF, in which the main subquery
is emp_recurse. The anchor member in this case simply selects the topmost row in the hierarchy by selecting the only
row where manager_id is null. This is equivalent to start with emp.manager_id is null in Listing 10-12. The
recursive member references the defining query emp_recurse by joining it to emp query. This join is used to locate the
row corresponding to each employee’s manager, which is equivalent to connect by prior emp.employee_id =
emp.manager_id in Listing 10-12. The results in Listing 10-13 are identical to those in Listing 10-12.

Listing 10-13.  Basic Recursive Subquery Factoring

 1 with emp as (
 2 select /*+ inline gather_plan_statistics */
 3 e.last_name, e.first_name, e.employee_id, e.manager_id, d.department_name
 4 from hr.employees e
 5 left outer join hr.departments d on d.department_id = e.department_id
 6),
 7 emp_recurse (last_name,first_name,employee_id,manager_id,department_name,lvl) as (
 8 select e.last_name, e.first_name
 9 , e.employee_id, e.manager_id
 10 , e.department_name, 1 as lvl
 11 from emp e where e.manager_id is null
 12 union all
 13 select emp.last_name, emp.first_name

Chapter 10 ■ Subquery Factoring

283

 14 , emp.employee_id, emp.manager_id
 15 ,emp.department_name, empr.lvl + 1 as lvl
 16 from emp
 17 join emp_recurse empr on empr.employee_id = emp.manager_id
 18)
 19 search depth first by last_name set order1
 20 select lpad(' ', lvl*2-1,' ') || er.last_name last_name
 21 , er.first_name
 22 , er.department_name
 23 from emp_recurse er;
 
LAST_NAME FIRST_NAME DEPARTMENT
------------------------- -------------------- ------------
 King Steven Executive
 Cambrault Gerald Sales
 Bates Elizabeth Sales
 Bloom Harrison Sales
 Fox Tayler Sales
 Kumar Sundita Sales
 Ozer Lisa Sales
 Smith William Sales
 De Haan Lex Executive
 Hunold Alexander IT
 Austin David IT
 Ernst Bruce IT
 Lorentz Diana IT
 Pataballa Valli IT
 Errazuriz Alberto Sales
 Ande Sundar Sales
 Banda Amit Sales
 ...
 
107 rows selected.
 

Although the new RSF method may at first appear verbose, the basis of how it works is simpler to understand
than CONNECT BY, and it allows for more complex queries. The recursive WITH clause requires two query blocks:
the anchor member and the recursive member. These two query blocks must be combined with the UNION ALL set
operator. The anchor member is the query prior to the UNION ALL, whereas the recursive member is the query that
follows. The recursive member must reference the defining subquery; in doing so, it is recursive.

Restrictions on RSF
As you might imagine, the use of RSF is quite a bit more flexible than CONNECT BY. There are some restrictions on its
use, however. Per the Oracle documentation for the SELECT statement, the following elements cannot be used in the
recursive member of an RSF:

The •	 DISTINCT keyword or a GROUP BY clause

The •	 MODEL clause

An aggregate function; however, analytic functions are permitted in the select list•	

Subqueries that refer to •	 query_name

Outer joins that refer to •	 query_name as the right table

Chapter 10 ■ Subquery Factoring

284

Differences from CONNECT BY
There are several differences when using RSF compared with CONNECT BY, and some of them are apparent in Listing 10-13.
You may have wondered what happened to the level pseudocolumn because it is missing in this query, replaced by the lvl
column. I explain this a little later on. Also, notice that the columns returned by an RSF query must be specified in the query
definition, as seen in line 7 of Listing 10-13. One more new feature is SEARCH DEPTH FIRST seen on line 19. The default
search is BREADTH FIRST, which is not usually the output you want from a hierarchical query. Listing 10-14 shows the output
when the SEARCH clause is not used or it is set to BREADTH FIRST. This search returns rows of all siblings at each level before
returning any child rows. Specifying SEARCH DEPTH FIRST returns the rows in hierarchical order. The SET ORDER1 portion
of the SEARCH clause sets the value of the order1 pseudocolumn to the value of the order in which the rows are returned,
similar to what you might see with ROWNUM, but you get to name the column. This is also used in later examples.

Listing 10-14.  Default BREADTH FIRST Search

...
 search breadth first by last_name set order1
select lpad(' ', lvl*2-1,' ') || er.last_name last_name
...
 
LAST_NAME FIRST_NAME DEPARTMENT_NAME
------------------------- -------------------- -----------------
 King Steven Executive
 Cambrault Gerald Sales
 De Haan Lex Executive
 Errazuriz Alberto Sales
 Fripp Adam Shipping
 Hartstein Michael Marketing
 Kaufling Payam Shipping
 Kochhar Neena Executive
 Mourgos Kevin Shipping
 Partners Karen Sales
 Raphaely Den Purchasing
 Russell John Sales
 Vollman Shanta Shipping
 Weiss Matthew Shipping
 Zlotkey Eleni Sales
 Abel Ellen Sales
 Ande Sundar Sales
...
 

Notice that the SEARCH clause, as it is used in Listings 10-13 and 10-14, specifies that the search be by last_name.
This could also be by first_name, or by a column list, such as last_name,first_name. Doing so controls the order of
the rows within each level. The SEARCH clause ends with SET ORDER1, which effectively adds the order1 pseudocolumn
to the column list returned by the recursive subquery. You will see it used more in some of the following examples.

Duplicating CONNECT BY Functionality
As Oracle Database has progressed through several versions, the functionality of the CONNECT BY clause has progressed
as well. There are a number of hierarchical query operators, pseudocolumns, and one function available to CONNECT
BY that are not natively available to RSF. The functionality these provide, however, can be duplicated in RSF. The
functionality may not mimic exactly what occurs when CONNECT BY is used, but it can likely be made to do what you
need. The trick to getting what you want from RSF sometimes requires stepping away from the keyboard and thinking

Chapter 10 ■ Subquery Factoring

285

about the results you want to achieve, rather than thinking about how you are going to code it. It is amazing how the
change in perspective helps you achieve the desired output easily from the SQL you write.

The operators and pseudocolumns for CONNECT BY are listed in Table 10-1. I go through each of these as needed,
showing example usages for CONNECT BY, and then duplicating that functionality with RSF. Keep in mind that RSF is
quite versatile, so TMTOWTDI (There’s More Than One Way to Do It) is definitely in force. Feel free to experiment and
find other methods to achieve the same results.

Table 10-1.  CONNECT BY Functions, Operators, and Pseudocolumns

Type Name Purpose

Function SYS_CONNECT_BY_PATH Returns all ancestors for the current row.

Operator CONNECT_BY_ROOT Returns the value from a root row.

Operator PRIOR Used to indicate hierarchical query. Not needed in a recursive subquery.

Pseudocolumn connect_by_iscycle Detects cycles in the hierarchy.

Parameter NOCYCLE Used with CONNECT_BY_ISCYCLE. Parameter for CONNECT BY.

Pseudocolumn connect_by_isleaf Identifies leaf rows.

Pseudocolumn level Used to indicate level of depth in the hierarchy.

I also cover the SEARCH clause of RSF because it is instrumental in solving some problems.

The level Pseudocolumn
Let’s start with the level pseudocolumn, which is used frequently in hierarchical queries to indent the output,
creating a visual representation of the hierarchy. Listing 10-15 contains a simple example showing how level is
generated. As the hierarchy increases in depth, level is incremented. Likewise, level is decremented when the
hierarchy goes back a level.

Listing 10-15.  The level Pseudocolumn

 1 select lpad(' ', level*2-1,' ') || e.last_name last_name, level
 2 from hr.employees e
 3 connect by prior e.employee_id = e.manager_id
 4 start with e.manager_id is null
 5 order siblings by e.last_name;
 
LAST_NAME LEVEL
------------------------- ----------
 King 1
 Cambrault 2
 Bates 3
 Bloom 3
 Fox 3
 Kumar 3
 Ozer 3
 Smith 3
 De Haan 2
...
 
107 rows selected.
 

Chapter 10 ■ Subquery Factoring

286

This can also be accomplished in RSF (see Listing 10-16), although it does require a little effort on your
part. It may be somewhat surprising to see that this actually works. The value for lvl is never decremented, only
incremented. Recall that the default search method for RSF is BREADTH FIRST. It is apparent that Oracle is processing
the rows in sibling order, with the top of the hierarchy (King), followed by the child rows at the next level, continuing
until the last row is reached. This behavior allows you to solve some other problems as well.

Listing 10-16.  Create a lvl Column

 1 with emp_recurse(employee_id,manager_id,last_name,lvl) as (
 2 select e.employee_id, null, e.last_name, 1 as lvl
 3 from hr.employees e
 4 where e.manager_id is null
 5 union all
 6 select e1.employee_id, e1.manager_id, e1.last_name, e2.lvl + 1 as lvl
 7 from hr.employees e1
 8 join emp_recurse e2 on e2.employee_id= e1.manager_id
 9)
 10 search depth first by last_name set last_name_order
 11 select lpad(' ', r.lvl*2-1,' ') || r.last_name last_name, r.lvl
 12 from emp_recurse r
 13 order by last_name_order;
 
LAST_NAME LVL
------------------------- ----------
 King 1
 Cambrault 2
 Bates 3
 Bloom 3
 Fox 3
 Kumar 3
 Ozer 3
 Smith 3
 De Haan 2
...
107 rows selected. 

The SYS_CONNECT_BY_PATH Function
The SYS_CONNECT_BY_PATH function is used to return the values that comprise the hierarchy up to the current row.
It’s best explained with an example, such as the one in Listing 10-17, In which the SYS_CONNECT_BY_PATH function
is used to build a colon-delimited list of the hierarchy, complete from root to node.

Listing 10-17.  SYS_CONNECT_BY_PATH

 1 select lpad(' ',2*(level-1)) || e.last_name last_name
 2 , sys_connect_by_path(last_name,':') path
 3 from hr.employees e
 4 start with e.manager_id is null
 5 connect by prior e.employee_id = e.manager_id
 6 order siblings by e.last_name;
 

Chapter 10 ■ Subquery Factoring

287

LAST_NAME PATH
------------------------- -----------------------
King :King
 Cambrault :King:Cambrault
 Bates :King:Cambrault:Bates
 Bloom :King:Cambrault:Bloom
 Fox :King:Cambrault:Fox
 Kumar :King:Cambrault:Kumar
 Ozer :King:Cambrault:Ozer
 Smith :King:Cambrault:Smith
 De Haan :King:De Haan
...
107 rows selected.
 

Although the SYS_CONNECT_BY_PATH function is not available to RSF queries, this function can be duplicated
using much the same method that was used to reproduce the level pseudocolumn. Rather than incrementing a
counter, however, you now append to a string value. Listing 10-18 shows how this is done.

Listing 10-18.  Build Your Own SYS_CONNECT_BY_PATH

 1 with emp_recurse(employee_id,manager_id,last_name,lvl,path) as (
 2 select e.employee_id, null, e.last_name
 3 , 1 as lvl
 4 ,':' || to_char(e.last_name) as path
 5 from hr.employees e
 6 where e.manager_id is null
 7 union all
 8 select e1.employee_id, e1.manager_id, e1.last_name
 9 ,e2.lvl + 1 as lvl
 10 ,e2.path || ':' || e1.last_name as path
 11 from hr.employees e1
 12 join emp_recurse e2 on e2.employee_id= e1.manager_id
 13)
 14 search depth first by last_name set last_name_order
 15 select lpad(' ', r.lvl*2-1,' ') || r.last_name last_name, r.path
 16 from emp_recurse r
 17 order by last_name_order;
 
LAST_NAME PATH
------------------------- ----------------------
 King :King
 Cambrault :King:Cambrault
 Bates :King:Cambrault:Bates
 Bloom :King:Cambrault:Bloom
 Fox :King:Cambrault:Fox
 Kumar :King:Cambrault:Kumar
 Ozer :King:Cambrault:Ozer
 Smith :King:Cambrault:Smith
 De Haan :King:De Haan
...
107 rows selected.
 

Chapter 10 ■ Subquery Factoring

288

The output of the SYS_CONNECT_BY_PATH as seen in Listing 10-17 is duplicated by the roll-your-own version using
RSF in Listing 10-18. Take another look at this SQL. You may notice that there’s something here that SYS_CONNECT_BY_PATH
cannot do. Consider, for instance, if you want the hierarchy to be displayed as a comma-delimited list. This is
accomplished simply enough by changing “:” to “,”. The problem with SYS_CONNECT_BY_PATH is that the first character in
the output is always a comma.

Using the RSF method, you can simply remove the delimiter in the anchor member and then change the
delimiter in the recursive member to a comma. This is shown in Listing 10-19, along with a sample of the output.
Should you feel inclined, the first character of the path could remain a colon, with the values delimited by commas.

Listing 10-19.  Comma-Delimited PATH

 1 with emp_recurse(employee_id,manager_id,last_name,lvl,path) as (
 2 select e.employee_id, null, e.last_name
 3 , 1 as lvl
 4 ,e.last_name as path
 5 from hr.employees e
 6 where e.manager_id is null
 7 union all
 8 select e1.employee_id, e1.manager_id, e1.last_name
 9 ,e2.lvl + 1 as lvl
 10 ,e2.path || ',' || e1.last_name as path
 11 from hr.employees e1
 12 join emp_recurse e2 on e2.employee_id= e1.manager_id
 13)
 14 search depth first by last_name set last_name_order
 15 select lpad(' ', r.lvl*2-1,' ') || r.last_name last_name, r.path
 16 from emp_recurse r
 17 order by last_name_order;
 
LAST_NAME PATH
------------------------- ----------------------
 King King
 Cambrault King,Cambrault
 Bates King,Cambrault,Bates
 Bloom King,Cambrault,Bloom
 Fox King,Cambrault,Fox
 Kumar King,Cambrault,Kumar
 Ozer King,Cambrault,Ozer
 Smith King,Cambrault,Smith
 De Haan King,De Haan
...
107 rows selected. 

The CONNECT_BY_ROOT Operator
The CONNECT_BY_ROOT operator enhances the CONNECT BY syntax by returning the root node of the current row. In the
example of the hr.employees table, all rows return King as the root. You can change it up a bit, however, by modifying
the row temporarily for Neena Kochhar, putting her on the same level as the company president, Steven King. Then,
the hierarchy can be shown for Kochhar by using the CONNECT_BY_ROOT operator to restrict the output. The results are
shown in Listing 10-20.

Chapter 10 ■ Subquery Factoring

289

Listing 10-20.  CONNECT_BY_ROOT

 1* update hr.employees set manager_id= null where last_name ='Kochhar';
 1 row updated.
 
 1 select /*+ inline gather_plan_statistics */
 2 level
 3 , lpad(' ',2*(level-1)) || last_name last_name
 4 , first_name
 5 , CONNECT_BY_ROOT last_name as root
 6 , sys_connect_by_path(last_name,':') path
 7 from hr.employees
 8 where connect_by_root last_name = 'Kochhar'
 9 connect by prior employee_id = manager_id
 10 start with manager_id is null;
 
LEVEL LAST_NAME FIRST_NAME ROOT PATH
----- ------------ ------------ ------------ ------------------------------
 1 Kochhar Neena Kochhar :Kochhar
 2 Greenberg Nancy Kochhar :Kochhar:Greenberg
 3 Faviet Daniel Kochhar :Kochhar:Greenberg:Faviet
 3 Chen John Kochhar :Kochhar:Greenberg:Chen
 3 Sciarra Ismael Kochhar :Kochhar:Greenberg:Sciarra
 3 Urman Jose Manuel Kochhar :Kochhar:Greenberg:Urman
 3 Popp Luis Kochhar :Kochhar:Greenberg:Popp
 2 Whalen Jennifer Kochhar :Kochhar:Whalen
 2 Mavris Susan Kochhar :Kochhar:Mavris
 2 Baer Hermann Kochhar :Kochhar:Baer
 2 Higgins Shelley Kochhar :Kochhar:Higgins
 3 Gietz William Kochhar :Kochhar:Higgins:Gietz
 
12 rows selected.
1 rollback;
 

This functionality can be duplicated in RSF, but it does require a little more SQL. The code in Listing 10-21 is
based on the SYS_CONNECT_BY_PATH example, with some minor changes and additions. The delimiting character is
now prepended and appended to the value for PATH in the anchor member. In the recursive member, the delimiter
is appended to the PATH, whereas previously it was prepended to the last_name column. Doing so ensures that the
root records always have a delimiting character at the end of the value, allowing the SUBSTR() function in the emps
subquery to parse the root correctly from the string when the path comes from the anchor member only, such as the
rows for King and Kochar. This is probably better explained by examining the output from the query.

Listing 10-21.  Duplicate CONNECT_BY_ROOT

1 update hr.employees set manager_id= null where last_name ='Kochhar';
1 row updated.
 
 1 with emp_recurse(employee_id,manager_id,last_name,lvl,path) as (
 2 select /*+ gather_plan_statistics */
 3 e.employee_id
 4 , null as manager_id
 5 , e.last_name

Chapter 10 ■ Subquery Factoring

290

 6 , 1 as lvl
 7 , ':' || e.last_name || ':' as path
 8 from hr.employees e
 9 where e.manager_id is null
 10 union all
 11 select
 12 e.employee_id
 13 , e.manager_id
 14 , e.last_name
 15 , er.lvl + 1 as lvl
 16 , er.path || e.last_name || ':' as path
 17 from hr.employees e
 18 join emp_recurse er on er.employee_id = e.manager_id
 19 join hr.employees e2 on e2.employee_id = e.manager_id
 20)
 21 search depth first by last_name set order1 ,
 22 emps as (
 23 select lvl
 24 , last_name
 25 , path
 26 , substr(path,2,instr(path,':',2)-2) root
 27 from emp_recurse
 28)
 29 select
 30 lvl
 31 , lpad(' ',2*(lvl-1)) || last_name last_name
 32 , root
 33 , path
 34 from emps
 35 where root = 'Kochhar';
 
 LVL LAST_NAME ROOT PATH
---------- --------------- --------------- ------------------------------
 1 Kochhar Kochhar :Kochhar:
 2 Baer Kochhar :Kochhar:Baer:
 2 Greenberg Kochhar :Kochhar:Greenberg:
 3 Chen Kochhar :Kochhar:Greenberg:Chen:
 3 Faviet Kochhar :Kochhar:Greenberg:Faviet:
 3 Popp Kochhar :Kochhar:Greenberg:Popp:
 3 Sciarra Kochhar :Kochhar:Greenberg:Sciarra:
 3 Urman Kochhar :Kochhar:Greenberg:Urman:
 2 Higgins Kochhar :Kochhar:Higgins:
 3 Gietz Kochhar :Kochhar:Higgins:Gietz:
 2 Mavris Kochhar :Kochhar:Mavris:
 2 Whalen Kochhar :Kochhar:Whalen:
 
12 rows selected.
1* rollback;
 

Chapter 10 ■ Subquery Factoring

291

This is not a perfect duplication of the CONNECT_BY_ROOT operator. In this case, it does exactly what is needed.
The built-in operator, however, does allow some flexibility in specifying the level and returning the root at that level.
The example given needs more modification to match this ability; however, you may find that this example works well
for most cases.

The connect_by_iscycle Pseudocolumn and NOCYCLE Parameter
The connect_by_iscycle pseudocolumn makes it easy to detect loops in a hierarchy. This is illustrated by the SQL
in Listing 10-22. There, an intentional error has been introduced by updating the hr.employees row for the president,
assigning Smith as King’s manager, which causes an error in the CONNECT BY.

Listing 10-22.  Cycle Error in CONNECT BY

1 update hr.employees set manager_id = 171 where employee_id = 100;
1 row updated.
Elapsed: 00:00:00.02
 
 1 select lpad(' ',2*(level-1)) || last_name last_name
 2 ,first_name, employee_id, level
 3 from hr.employees
 4 start with employee_id = 100
 5* connect by prior employee_id = manager_id
 
LAST_NAME FIRST_NAME EMPLOYEE_ID LEVEL
------------------------- ------------ ----------- -----
King Steven 100 1
 Kochhar Neena 101 2
 Greenberg Nancy 108 3
...
 Smith William 171 3
 King Steven 100 4
...
ERROR:
ORA-01436: CONNECT BY loop in user data
 
187 rows selected.
 1 rollback;
 

In the output, Smith appears as the manager of King, which you know to be incorrect. But, if you didn’t already
know what the problem is, how would you find it? This is where the NOCYCLE parameter and CONNECT_BY_ISCYCLE
operator come into play. These are used to detect a cycle in the hierarchy. The NOCYCLE parameter prevents the
ORA-1436 error from occurring, allowing all rows to be output. The CONNECT_BY_ISCYCLE operator allows you to find
the row causing the error easily.

As seen in Listing 10-23, the value of CONNECT_BY_ISCYCLE is 1, indicating that the row for Smith is somehow
causing the error. The next query looks up the data for Smith, and all appears normal. Last, you query the table
again, this time using Smith’s employee ID, to find all employees that he manages. The error becomes apparent—the
president of the company does not have a manager—so the solution is to set the manager_id back to NULL for this row.

Chapter 10 ■ Subquery Factoring

292

Listing 10-23.  Detect the Cycle with CONNECT_BY_ISCYCLE

1* update hr.employees set manager_id = 171 where employee_id = 100
1 row updated.
 
 1 select lpad(' ',2*(level-1)) || last_name last_name
 2 ,first_name, employee_id, level
 3 , connect_by_iscycle
 4 from hr.employees
 5 start with employee_id = 100
 6 connect by nocycle prior employee_id = manager_id;
 
LAST_NAME FIRST_NAME EMPLOYEE_ID LEVEL CONNECT_BY_ISCYCLE
------------------------- ------------ ----------- ----- ------------------
King Steven 100 1 0
 Kochhar Neena 101 2 0
...
 Smith William 171 3 1
...
107 rows selected.
 
Elapsed: 00:00:00.03
 1 select last_name, first_name, employee_id, manager_id
 2 from hr.employees
 3* where employee_id = 171
 
LAST_NAME FIRST_NAME EMPLOYEE_ID MANAGER_ID
------------------------- ------------ ----------- ----------
Smith William 171 148
 
 1 select last_name, first_name, employee_id, manager_id
 2 from hr.employees
 3* where manager_id = 171
 
LAST_NAME FIRST_NAME EMPLOYEE_ID MANAGER_ID
------------------------- ------------ ----------- ----------
King Steven 100 171
 
 1 rollback;
 

So, how do you do this with RSF? It’s really quite simple, because Oracle has provided the built-in CYCLE clause that
makes short work of detecting cycles in recursive queries. It is somewhat more robust than the connect_by_iscycle
pseudocolumn in that it lets you determine which values are used to indicate a cycle, as well as provides a column
name at the same time. Listing 10-24 uses the same data error in Listing 10-23, but this time it uses a recursive
subfactored query.

Chapter 10 ■ Subquery Factoring

293

Listing 10-24.  Detect Cycles in Recursive Queries

1 update hr.employees set manager_id = 171 where employee_id = 100;
1 row updated.
Elapsed: 00:00:00.00
 
 1 with emp(employee_id,manager_id,last_name,first_name,lvl) as (
 2 select e.employee_id
 3 , null as manager_id
 4 , e.last_name
 5 , e.first_name
 6 , 1 as lvl
 7 from hr.employees e
 8 where e.employee_id =100
 9 union all
 10 select e.employee_id
 11 , e.manager_id
 12 , e.last_name
 13 , e.first_name
 14 , emp.lvl + 1 as lvl
 15 from hr.employees e
 16 join emp on emp.employee_id = e.manager_id
 17)
 18 search depth first by last_name set order1
 19 CYCLE employee_id SET is_cycle TO '1' DEFAULT '0'
 20 select lpad(' ',2*(lvl-1)) || last_name last_name
 21 , first_name
 22 , employee_id
 23 , lvl
 24 , is_cycle
 25 from emp
 26 order by order1;
 
LAST_NAME FIRST_NAME EMPLOYEE_ID LVL I
------------------------- ------------ ----------- ---------- -
King Steven 100 1 0
 Cambrault Gerald 148 2 0
 Bates Elizabeth 172 3 0
 Bloom Harrison 169 3 0
 Fox Tayler 170 3 0
 Kumar Sundita 173 3 0
 Ozer Lisa 168 3 0
 Smith William 171 3 0
 King Steven 100 4 1
...
 
108 rows selected.
 
Elapsed: 00:00:00.04
 

Chapter 10 ■ Subquery Factoring

294

 1 select last_name, first_name, employee_id, manager_id
 2 from hr.employees
 3 where employee_id = 100;
 
LAST_NAME FIRST_NAME EMPLOYEE_ID MANAGER_ID
------------------------- ------------ ----------- ----------
King Steven 100 171
1 row selected.
 
 1 rollback;
 

Notice how the CYCLE clause lets you set the two possible values for the is_cycle column to 0 or 1. Only single-value
characters are allowed here. The name of the column is also user defined and is set to is_cycle in this example.
Examining the output, it appears that the CYCLE clause in RSF does a somewhat better job of identifying the row
that causes the data cycle. The row with the error is identified clearly as that of King, so you can query that row and
determine the error immediately.

The connect_by_isleaf Pseudocolumn
Last, there is the connect_by_isleaf pseudocolumn, which permits easy identification of leaf7 nodes in hierarchical
data. You can see that leaf nodes are identified in the output of Listing 10-25 when the value of connect_by_isleaf is 1.

Listing 10-25.  CONNECT_BY_ISLEAF

 1 select lpad(' ',2*(level-1)) || e.last_name last_name, connect_by_isleaf
 2 from hr.employees e
 3 start with e.manager_id is null
 4 connect by prior e.employee_id = e.manager_id
 5 order siblings by e.last_name;

LAST_NAME CONNECT_BY_ISLEAF
------------------------- -----------------
King 0
 Cambrault 0
 Bates 1
 Bloom 1
 Fox 1
 Kumar 1
 Ozer 1
 Smith 1
 De Haan 0
 Hunold 0
 Austin 1
 Ernst 1
 Lorentz 1
 Pataballa 1
...
 
107 rows selected.
 

7A leaf node is a node in the hierarchical tree that has no children.

Chapter 10 ■ Subquery Factoring

295

--
| Id | Operation | Name | E-Rows |
--
0	SELECT STATEMENT		
* 1	CONNECT BY NO FILTERING WITH START-WITH		
2	TABLE ACCESS FULL	EMPLOYEES	107

Duplicating this in RSF is somewhat of a challenge. There are probably many methods that can be used to
accomplish this, with some limitations. This is one of those problems that may require a little extra thought to solve,
where “solve” means you get the output you desire, but you won’t necessarily duplicate the functionality
of CONNECT_BY_ISLEAF completely.

In this case, you want to identify the leaf nodes in the employee hierarchy. By definition, none of the leaf nodes
can be managers, so one way to accomplish this is to determine which rows are those of managers. All rows that are
not those of managers are then leaf nodes.

Listing 10-26 uses this approach to solve the problem. The cost of solving it is two more extra scans of the
hr.employees table and three index scans, but if RSF must be used, this is one way to get the desired results. The
leaves subquery is used find the leaf nodes. This is then left outer joined to the employees table, and the value
(or lack of a value) of the leaves.employee_id column indicates whether the current row is a leaf.

Listing 10-26.  Finding Leaf Nodes in a Recursive Query

 1 with leaves as (
 2 select employee_id
 3 from hr.employees
 4 where employee_id not in (
 5 select manager_id
 6 from hr.employees
 7 where manager_id is not null
 8)
 9),
 10 emp(manager_id,employee_id,last_name,lvl,isleaf) as (
 11 select e.manager_id, e.employee_id, e.last_name, 1 as lvl, 0 as isleaf
 12 from hr.employees e
 13 where e.manager_id is null
 14 union all
 15 select e.manager_id,nvl(e.employee_id,null) employee_id,e.last_name,emp.lvl + 1 as lvl
 16 , decode(l.employee_id,null,0,1) isleaf
 17 from hr.employees e
 18 join emp on emp.employee_id = e.manager_id
 19 left outer join leaves l on l.employee_id = e.employee_id
 20)
 21 search depth first by last_name set order1
 22 select lpad(' ',2*(lvl-1)) || last_name last_name, isleaf
 23 from emp;
 

Chapter 10 ■ Subquery Factoring

296

LAST_NAME ISLEAF
------------------------- ----------
King 0
 Cambrault 0
 Bates 1
 Bloom 1
 Fox 1
 Kumar 1
 Ozer 1
 Smith 1
 De Haan 0
 Hunold 0
 Austin 1
 Ernst 1
 Lorentz 1
 Pataballa 1
...
107 rows selected.

| Id | Operation | Name | E-Rows |

0	SELECT STATEMENT		
1	VIEW		7
2	UNION ALL (RECURSIVE WITH) DEPTH FIRST		
* 3	TABLE ACCESS FULL	EMPLOYEES	1
4	NESTED LOOPS OUTER		6
5	NESTED LOOPS		6
6	RECURSIVE WITH PUMP		
7	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	6
* 8	INDEX RANGE SCAN	EMP_MANAGER_IX	6
9	VIEW PUSHED PREDICATE		1
10	NESTED LOOPS ANTI		1
* 11	INDEX UNIQUE SCAN	EMP_EMP_ID_PK	1
* 12	INDEX RANGE SCAN	EMP_MANAGER_IX	6

Another way to accomplish this is presented in Listing 10-27, in which the analytic function LEAD() uses the
value of the lvl column to determine whether a row is a leaf node. Although it does avoid two of the index scans
that were seen in Listing 10-26, determining correctly whether a row is a leaf node is dependent on the order of the
output, as seen in line 16. The LEAD() function depends on the value of the last_name_order column that is set in
the SEARCH clause.

Listing 10-27.  Using LEAD() to Find Leaf Nodes

 1 with emp(manager_id,employee_id,last_name,lvl) as (
 2 select e.manager_id, e.employee_id, e.last_name, 1 as lvl
 3 from hr.employees e
 4 where e.manager_id is null
 5 union all
 6 select e.manager_id, nvl(e.employee_id,null) employee_id
 7 , e.last_name, emp.lvl + 1 as lvl

Chapter 10 ■ Subquery Factoring

297

 8 from hr.employees e
 9 join emp on emp.employee_id = e.manager_id
 10)
 11 search depth first by last_name set last_name_order
 12 select lpad(' ',2*(lvl-1)) || last_name last_name,
 13 lvl,
 14 lead(lvl) over (order by last_name_order) leadlvlorder,
 15 case
 16 when (lvl - lead(lvl) over (order by last_name_order)) < 0
 17 then 0
 18 else 1
 19 end isleaf
 20 from emp;
 
LAST_NAME LVL LEADLVLORDER ISLEAF
------------------------- ---------- ------------ ----------
King 1 2 0
 Cambrault 2 3 0
 Bates 3 3 1
 Bloom 3 3 1
 Fox 3 3 1
 Kumar 3 3 1
 Ozer 3 3 1
 Smith 3 2 1
 De Haan 2 3 0
 Hunold 3 4 0
 Austin 4 4 1
 Ernst 4 4 1
 Lorentz 4 4 1
 Pataballa 4 2 1
...
107 rows selected.
 
--
| Id | Operation | Name | E-Rows |
--
0	SELECT STATEMENT		
1	WINDOW BUFFER		7
2	VIEW		7
3	UNION ALL (RECURSIVE WITH) DEPTH FIRST		
* 4	TABLE ACCESS FULL	EMPLOYEES	1
5	NESTED LOOPS		
6	NESTED LOOPS		6
7	RECURSIVE WITH PUMP		
* 8	INDEX RANGE SCAN	EMP_MANAGER_IX	6
9	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	6
--
 

Chapter 10 ■ Subquery Factoring

298

What might happen if the SEARCH clause is changed from DEPTH FIRST to BREADTH FIRST? The results are shown
in Listing 10-28. The use of the LEAD() function appears, at first, to be an elegant solution, but it is somewhat fragile
in its dependency on the order of the data. The example in Listing 10-26 works regardless of the SEARCH clause
parameters. It is readily apparent that the output in Listing 10-28 is incorrect.

Listing 10-28.  LEAD() with BREADTH FIRST

 1 with emp(manager_id,employee_id,last_name,lvl) as (
 2 select e.manager_id, e.employee_id, e.last_name, 1 as lvl
 3 from hr.employees e
 4 where e.manager_id is null
 5 union all
 6 select e.manager_id, nvl(e.employee_id,null) employee_id
 7 , e.last_name, emp.lvl + 1 as lvl
 8 from hr.employees e
 9 join emp on emp.employee_id = e.manager_id
 10)
 11 search breadth first by last_name set last_name_order
 12 select lpad(' ',2*(lvl-1)) || last_name last_name,
 13 lvl,
 14 lead(lvl) over (order by last_name_order) leadlvlorder,
 15 case
 16 when (lvl - lead(lvl) over (order by last_name_order)) < 0
 17 then 0
 18 else 1
 19 end isleaf
 20 from emp;
LAST_NAME LVL LEADLVLORDER ISLEAF
------------------------- ---------- ------------ ----------
King 1 2 0
 Cambrault 2 2 1
 De Haan 2 2 1
 Errazuriz 2 2 1
 Fripp 2 2 1
 Hartstein 2 2 1
 Kaufling 2 2 1 

Summary
Although the functionality of CONNECT BY can be duplicated for most practical purposes in recursive subfactored
queries, the question is, should you do so? In many cases, the CONNECT BY syntax is simpler to use, although the syntax
does take some getting used to. Doing the same things in RSF requires quite a bit more SQL in most cases. In addition,
CONNECT BY may produce better execution plans than RSF, especially for relatively simple queries. Keep in mind,
however, that RSF is a new feature, and will likely improve in later versions of Oracle.

In addition, there may be good reasons not to use CONNECT BY. Perhaps you need to maintain ANSI compatibility
in your application. Or perhaps the ability to write hierarchical queries that work in other databases that support
recursive common table expressions simplifies the code for an application that runs on databases from different
vendors. In this circumstance, RSF is quite useful. Whatever the need for hierarchical queries, with a little ingenuity
you can write suitable queries on hierarchical data using recursive subfactored queries, and they will be capable of
doing everything that can be done currently with CONNECT BY.

299

Chapter 11

Semijoins and Antijoins

Semijoins and antijoins are two closely related join methods (options of join methods, actually) that the Oracle
optimizer can choose to apply when retrieving information. The SQL language is designed to specify the set of data
the user wishes to retrieve, but to leave the decisions regarding how to navigate to the data up to the database itself.
Therefore, there is no SQL syntax to invoke a particular join method specifically. Of course, Oracle does provide the
ability to give the optimizer directives via hints. In this chapter, I explain these two join optimization options, the SQL
syntax that can provoke them, requirements for and restrictions on their use, and, last, some guidance on when and
how they should be used.

It is important to be aware that Oracle is constantly improving the optimizer code and that not all details of its
behavior are documented. All examples in this chapter were created on an Oracle 12c database (12.1.0.1). My version
of 12c currently has 3332 parameters, many of which affect the way the optimizer behaves. When appropriate, I mention
parameter settings that have a direct bearing on the topics at hand. However, you should verify the behavior on your
own system.

Semijoins
A semijoin is a join between two sets of data (tables) in which rows from the first set are returned based on the
presence or absence of at least one matching row in the other set. I revisit the “absence” of a matching row later—this
is a special case of the semijoin called an antijoin. If you think back to your days in grade school math, you should be
able to visualize this operation with a typical set theory picture such as the one shown in Figure 11-1.

Figure 11-1.  Ilustration of a semijoin

Figure 11-1 provides a basic idea of what a semijoin is but it’s not detailed enough to describe the nuances.
Diagrams of this sort are called Venn diagrams; this particular Venn diagram is used often to illustrate an inner join,
which is essentially an intersection. Unfortunately, there is not a convenient way to describe a semijoin completely
with a Venn diagram. The main difference between a normal inner join and a semijoin is that, with a semijoin, each
record in the first set (Query 1 in Figure 11-1) is returned only once, regardless of how many matches there are in the
second set (Query 2 in Figure 11-1). This definition implies that the actual processing of the query can be optimized
by stopping Query 2 as soon as the first match is found. And at its heart, this is what a semijoin is—the optimization
that allows processing to stop before the Query 2 part is complete. This join technique is a choice that’s available to

Chapter 11 ■ Semijoins and Antijoins

300

Oracle’s cost-based optimizer when the query contains a subquery inside an IN or EXISTS clause (or inside the rarely
used =ANY clause, which is synonymous with IN). The syntax should look pretty familiar. Listings 11-1 and 11-2 show
examples of the two most common forms of semijoin queries using IN and EXISTS.

Listing 11-1.  Semijoin IN example

SQL>
SQL> select /* using in */ department_name
 2 from hr.departments dept
 3 where department_id IN (select department_id from hr.employees emp);
 
DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting
 
11 rows selected. 

Listing 11-2.  Semijoin EXISTS example

SQL> select /* using exists */ department_name
 2 from hr.departments dept
 3 where EXISTS (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);
 
DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting
 
11 rows selected.
 

These two queries are functionally equivalent. That is to say, they always return the same set of data, given the
same inputs. There are several other forms that are closely related. Listings 11-3 through 11-6 show several examples
of closely related alternatives.

Chapter 11 ■ Semijoins and Antijoins

301

Listing 11-3.  Alternatives to EXISTS and IN: Inner Join

SQL> select /* inner join */ department_name
 2 from hr.departments dept, hr.employees emp
 3 where dept.department_id = emp.department_id;
 
DEPARTMENT_NAME

Administration
Marketing
Marketing
Purchasing
Purchasing
Shipping
IT
IT
Public Relations
Sales
Sales
. . .
Executive
Finance
Finance
Accounting
 
106 rows selected.
 

Obviously the inner join is not functionally equivalent to the semijoin because of the number of rows returned.
Note that there are many repeating values. Let’s try using DISTINCT to eliminate the duplicates. Look at Listing 11-4.

Listing 11-4.  Alternatives to EXISTS and IN: Inner Join with DISTINCT

SQL> select /* inner join with distinct */ distinct department_name
 2 from hr.departments dept, hr.employees emp
 3 where dept.department_id = emp.department_id;
 
DEPARTMENT_NAME

Administration
Accounting
Purchasing
Human Resources
IT
Public Relations
Executive
Shipping
Sales
Finance
Marketing
 
11 rows selected.
 

Chapter 11 ■ Semijoins and Antijoins

302

The inner join with DISTINCT looks pretty good. In this case, it actually returns the same exact set of records.
As previously mentioned, the INTERSECT set operation is very close to a semijoin, so let’s try that next in Listing 11-5.

Listing 11-5.  Alternatives to EXISTS and IN: Ugly INTERSECT

SQL> select /* ugly intersect */ department_name
 2 from hr.departments dept,
 3 (select department_id from hr.departments
 4 intersect
 5 select department_id from hr.employees) b
 6 where b.department_id = dept.department_id;
 
DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting
 
11 rows selected.
 

The INTERSECT also looks pretty good, but the syntax is convoluted. Last, let’s try the somewhat obscure =ANY
keyword with a subquery in Listing 11-6.

Listing 11-6.  Alternatives to EXISTS and IN: =ANY Subquery

SQL> select /* ANY subquery */ department_name
 2 from hr.departments dept
 3 where department_id = ANY (select department_id from hr.employees emp);
 
DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting
 
11 rows selected.
 

o

Chapter 11 ■ Semijoins and Antijoins

303

There isn’t much to say about the =ANY version because it is merely an alternate way of writing IN. So, to recap,
the query in Listing 11-3 (inner join) doesn’t look promising because it obviously doesn’t return the same set of data.
And because it returns a row for each match, the total number of records returned is 106 instead of 11. Let’s skip over
the second one using the DISTINCT operator for a moment. Note that the query in Listing 11-5 (an ugly INTERSECT),
although it returns the correct set of records, doesn’t look promising either because it uses convoluted syntax, even for
the simple case I’m illustrating. Of course, the query in Listing 11-6 (using the =ANY syntax) is exactly the same as the
IN version because IN and =ANY are the same thing.

The query in Listing 11-4 (inner join with DISTINCT) looks promising, but is it functionally equivalent to
the queries in Listings 11-1 and 11-2? The short answer is no; it’s not. In many situations the inner join with the
DISTINCT query returns the same data as a semijoin (using IN or EXISTS), as it does in this case. But, this is because
of a convenient fluke of the data model, and it does not make the query in Listing 11-3 equivalent to the semijoin
queries in Listing 11-1 and 11-2. Consider the example in Listing 11-7, which shows a case when the two forms return
different results.

Listing 11-7.  Semijoin and DISTINCT Are Not the Same

SQL> select /* SEMI using IN */ department_id
 2 from hr.employees
 3 where department_id in (select department_id from hr.departments);
 
DEPARTMENT_ID

 10
 20
 20
 30
 30
 30
 30
 30
 30
 40
 50
 50
 50
 . . .
 80
 110
 110
 
106 rows selected.
 
SQL>
SQL> select /* inner join with distinct */ distinct emp.department_id
 2 from hr.departments dept, hr.employees emp
 3 where dept.department_id = emp.department_id;
 

Chapter 11 ■ Semijoins and Antijoins

304

DEPARTMENT_ID

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 
11 rows selected.
 

So it’s clear from this example that the two constructs are not equivalent. The IN/EXISTS form takes each record
in the first set and, if there is at least one match in the second set, returns the record. It does not apply a DISTINCT
operator at the end of the processing (in other words, it doesn’t sort and throw away duplicates). Therefore, it is
possible to get repeating values, assuming that there are duplicates in the records returned by Query 1. The DISTINCT
form, on the other hand, retrieves all the rows, sorts them, and then throws away any duplicate values. As you can see
from the example, these are clearly not the same. And as you might expect from the description, the DISTINCT version
can end up doing significantly more work because it has no chance to bail out of the subquery early. I talk more about
this shortly.

There is another common mistake that is made with the EXISTS syntax that should probably be mentioned.
If you use EXISTS, you need to make sure you include a subquery that is correlated to the outer query. If the subquery
does not reference the outer query, it’s meaningless. Listing 11-8 shows an example from a web page that is currently
number one on Google for the search term “Oracle EXISTS.”

Listing 11-8.  Common Mistake with EXISTS: Noncorrelated Subquery

select
 book_key
from
 book
where
 exists (select book_key from sales) ;
 

Because the subquery in this example is not related to the outer query, the end result is to return every record in
the book table (as long as there is at least one record in the sales table). This is probably not what the author of this
statement intended. Listing 11-9 shows a few examples demonstrating the difference between using correlated and
noncorrelated subqueries—the first two showing EXISTS with a proper correlated subquery, and the last two showing
EXISTS with noncorrelated subqueries.

Listing 11-9.  Common Mistake with EXISTS: Correlated vs. Noncorrelated Subquery

SQL> select /* correlated */ department_id
 2 from hr.departments dept
 3 where exists (select department_id from hr.employees emp
 4 where emp.department_id = dept.department_id);
 

Chapter 11 ■ Semijoins and Antijoins

305

DEPARTMENT_ID

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 
11 rows selected.
 
SQL>
SQL> select /* not correlated */ department_id
 2 from hr.departments dept
 3 where exists (select department_id from hr.employees emp);
 
DEPARTMENT_ID

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260
 270
 
27 rows selected.
 

Chapter 11 ■ Semijoins and Antijoins

306

SQL>
SQL> select /* not correlated no nulls */ department_id
 2 from hr.departments dept
 3 where exists (select department_id from hr.employees emp
 4 			 where department_id is not null);
 
DEPARTMENT_ID

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260
 270
 
27 rows selected.
 
SQL>
SQL> select /* non-correlated totally unrelated */ department_id
 2 from hr.departments dept
 3 where exists (select null from dual);
 
DEPARTMENT_ID

 10
 20
 30
 40
 50
 60
 70

Chapter 11 ■ Semijoins and Antijoins

307

 80
 90
 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260
 270
 
27 rows selected.
 
SQL>
SQL> select /* non-correlated empty subquery */ department_id
 2 from hr.departments dept
 3 where exists (select 'anything' from dual where 1=2);
 
no rows selected
 

So the correlated queries get the records we expect (in other words, only the ones that have a match in the second
query). Obviously, the noncorrelated subqueries do not work as expected. They return every record from the first table,
which is actually what you’ve asked for if you write a query that way. In fact, as you can see in the next-to-last example
(with the noncorrelated query against the dual table), no matter what you select in the subquery, all the records from
the first table are returned. The last example shows what happens when no records are returned from the subquery.
In this case, no records are returned at all. So, without a correlated subquery, you either get all the records in the outer
query or none of the records in the outer query, without regard to what the inner query is actually doing.

Semijoin Plans
I mentioned in the introduction that semijoins are not really a join method on their own, but rather are an option of
other join methods. The three most common join methods in Oracle are nested loops, hash joins, and merge joins.
Each of these methods can have the semi option applied to it. Remember, also, that it is an optimization that allows
processing to stop when the first match is found in the subquery. Let’s use a little pseudocode to exemplify the process
more fully. The outer query is Q1 and the inner (subquery) is Q2. What you see in Listing 11-10 is the basic processing
of a nested loop semijoin.

Chapter 11 ■ Semijoins and Antijoins

308

Listing 11-10.  Pseudocode for Nested Loop Semijoin

open Q1
while Q1 still has records
 fetch record from Q1
 result = false
 open Q2
 while Q2 still has records
 fetch record from Q2
 if (Q1.record matches Q2.record) then = semijoin optimization
 result = true
 exit loop
 end if
 end loop
 close Q2
 if (result = true) return Q1 record
end loop
close Q1
 

The optimization provided by the semi option is the IF statement that lets the code exit the inner loop as soon as it
finds a match. Obviously, with large datasets, this technique can result in significant time savings compared with a normal
nested loops join that must loop through every record returned by the inner query for every row in the outer query. At this
point, you may be thinking that this technique could save a lot of time with a nested loops join vs. the other two, and you’d
be right because the other two have to get all the records from the inner query before they start checking for matches.
So the nested loops joins in general have the most to gain from this technique. Keep in mind that the optimizer still picks
which join method to use based on its costing algorithms, which include the various semi options.

Now let’s rerun the queries from Listings 11-1 and 11-2 and look at the plans the optimizer generates (shown in
Listing 11-11). Note that some of the plan output has been removed for brevity.

Listing 11-11.  Semijoin Execution Plans

SQL> -- semi_ex1.sql
SQL>
SQL> select /* in */ department_name
 2 from hr.departments dept
 3 where department_id in (select department_id from hr.employees emp);
 
DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting
 
11 rows selected.
 

Chapter 11 ■ Semijoins and Antijoins

309

Execution Plan
--
Plan hash value: 954076352
 
--
| Id | Operation | Name | Rows |
--
0	SELECT STATEMENT		
1	MERGE JOIN SEMI		11
2	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27
3	INDEX FULL SCAN	DEPT_ID_PK	27
4	SORT UNIQUE		107
5	INDEX FULL SCAN	EMP_DEPARTMENT_IX	107
--
Predicate Information (identified by operation id):

 4 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
 filter("DEPARTMENT_ID"="DEPARTMENT_ID")
 
Statistics
--
 0 recursive calls
 0 db block gets
 5 consistent gets
 0 physical reads
 0 redo size
 758 bytes sent via SQL*Net to client
 544 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 1 sorts (memory)
 0 sorts (disk)
 11 rows processed
 
SQL>
SQL> select /* exists */ department_name
 2 from hr.departments dept
 3 where exists (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);
 
DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales

Chapter 11 ■ Semijoins and Antijoins

310

Executive
Finance
Accounting
 
11 rows selected.
 
Elapsed: 00:00:00.05
 
Execution Plan
--
Plan hash value: 954076352
 
--
| Id | Operation | Name | Rows |
--
0	SELECT STATEMENT		
1	MERGE JOIN SEMI		11
2	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27
3	INDEX FULL SCAN	DEPT_ID_PK	27
4	SORT UNIQUE		107
5	INDEX FULL SCAN	EMP_DEPARTMENT_IX	107
--
Predicate Information (identified by operation id):

 4 - access("EMP"."DEPARTMENT_ID"="DEPT"."DEPARTMENT_ID")
 filter("EMP"."DEPARTMENT_ID"="DEPT"."DEPARTMENT_ID")
 
Statistics
--
 0 recursive calls
 0 db block gets
 5 consistent gets
 0 physical reads
 0 redo size
 758 bytes sent via SQL*Net to client
 544 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 1 sorts (memory)
 0 sorts (disk)
 11 rows processed
 

The autotrace statistics are included so that you can see that these statements are indeed processed the same
way. The plans are identical and the statistics are identical. I make this point to dispel the long-held belief that queries
written with EXIST behave very differently than queries written with IN. This was an issue in the past (version 8i), but
it has not been an issue for many years. The truth is that the optimizer can and does transform queries in both forms
to the same statement.

Note that there is a way to get a better idea of the decision-making process the optimizer goes through when
parsing a statement. You can have the optimizer log its actions in a trace file by issuing the following command:
 
alter session set events '10053 trace name context forever, level 1';
 

Chapter 11 ■ Semijoins and Antijoins

311

Setting this event causes a trace file to be created in the USER_DUMP_DEST directory when a hard parse is performed.
I call it Wolfganging, because Wolfgang Breitling was the first guy really to analyze the content of these 10053 trace files
and publish his findings. For further information, please refer to Wolfgang’s paper called “A Look Under the Hood of CBO.”
(http://www.centrexcc.com/A%20Look%20under%20the%20Hood%20of%20CBO%20-%20the%2010053%20Event.pdf)
At any rate, a close look at 10053 trace data for each statement confirms that both statements are transformed into
the same statement before the optimizer determines a plan. Listing 11-12 and 11-13 show excerpts of 10053 trace files
generated for both the IN and the EXISTS versions.

Listing 11-12.  Excerpts from 10053 traces for the IN version

QUERY BLOCK TEXT

select /* using in */ department_name
 from hr.departments dept
 where department_id IN (select department_id from hr.employees emp)

Cost-Based Subquery Unnesting

SU: Unnesting query blocks in query block SEL$1 (#1) that are valid to unnest.
Subquery removal for query block SEL$2 (#2)
RSW: Not valid for subquery removal SEL$2 (#2)
Subquery unchanged.
Subquery Unnesting on query block SEL$1 (#1)SU: Performing unnesting that does not require costing.
SU: Considering subquery unnest on query block SEL$1 (#1).
SU: Checking validity of unnesting subquery SEL$2 (#2)
SU: Passed validity checks.
SU: Transforming ANY subquery to a join.
 
Final query after transformations:******* UNPARSED QUERY IS *******
SELECT "DEPT"."DEPARTMENT_NAME" "DEPARTMENT_NAME" FROM "HR"."EMPLOYEES" "EMP","HR"."DEPARTMENTS"
"DEPT" WHERE "DEPT"."DEPARTMENT_ID"="EMP"."DEPARTMENT_ID" 

Listing 11-13.  Excerpts from 10053 traces for the EXISTS version

QUERY BLOCK TEXT

select /* using exists */ department_name
 from hr.departments dept
 where EXISTS (select null from hr.employees emp
 where emp.department_id = dept.department_id)

Cost-Based Subquery Unnesting

SU: Unnesting query blocks in query block SEL$1 (#1) that are valid to unnest.
Subquery Unnesting on query block SEL$1 (#1)SU: Performing unnesting that does not require costing.
SU: Considering subquery unnest on query block SEL$1 (#1).
SU: Checking validity of unnesting subquery SEL$2 (#2)
SU: Passed validity checks.
SU: Transforming EXISTS subquery to a join.
 

http://www.centrexcc.com/A%20Look%20under%20the%20Hood%20of%20CBO%20-%20the%2010053%20Event.pdf

Chapter 11 ■ Semijoins and Antijoins

312

Final query after transformations:******* UNPARSED QUERY IS *******
SELECT "DEPT"."DEPARTMENT_NAME" "DEPARTMENT_NAME" FROM "HR"."EMPLOYEES"
 "EMP","HR"."DEPARTMENTS" "DEPT" WHERE "EMP"."DEPARTMENT_ID"="DEPT"."DEPARTMENT_ID"
 

As you can see in the trace file excerpts, subquery unnesting has occurred on both queries and they have both
been transformed into the same statement (in other words, the Final Query after Transformations section is exactly
the same for both versions). Oracle Database releases from 10gR2 onward behave the same way, by the way.

Controlling Semijoin Plans
Now let’s look at some of the methods to control the execution plan, should the optimizer need a little help. There are
two mechanisms at your disposal. One mechanism is a set of hints that you can apply to individual queries. The other
is an instance-level parameter that affects all queries.

Controlling Semijoin Plans Using Hints
There are several hints that may be applied to encourage or discourage semijoins. As of 11gR2, the following hints
are available:

SEMIJOIN: Perform a semijoin (the optimizer gets to pick which kind).

NO_SEMIJOIN: Obviously, don’t perform a semijoin.

NL_SJ: Perform a nested loops semijoin (deprecated as of 10g).

HASH_SJ: Perform a hash semijoin (deprecated as of 10g).

MERGE_SJ: Perform a merge semijoin (deprecated as of 10g).

The more specific hints (NL_SJ, HASH_SJ, MERGE_SJ) have been deprecated since 10g. Although they continue
to work as in the past, even with 12c, be aware that the documentation says they may be going away at some point.
All the semijoin-related hints need to be specified in the subquery, as opposed to in the outer query. Listing 11-14
shows an example using the NO_SEMIJOIN hint.

Listing 11-14.  EXISTS with NO_SEMIJOIN Hint

SQL> set autotrace trace
SQL> -- semi_ex5a.sql - no_semijoin hint
SQL>
SQL> select /* exists no_semijoin */ department_name
 2 from hr.departments dept
 3 where exists (select /*+ no_semijoin */ null from hr.employees emp
 4 where emp.department_id = dept.department_id);
 
DEPARTMENT_NAME

Human Resources
Executive
Marketing
Shipping
Accounting

Chapter 11 ■ Semijoins and Antijoins

313

Administration
Purchasing
Public Relations
Sales
Finance
IT
 
11 rows selected.
 
Execution Plan
--
Plan hash value: 3628941896
 
--
| Id | Operation | Name | Rows |
--
0	SELECT STATEMENT		
1	VIEW	VM_NWVW_2	106
2	HASH UNIQUE		106
3	NESTED LOOPS		
4	NESTED LOOPS		106
5	INDEX FULL SCAN	EMP_DEPARTMENT_IX	107
6	INDEX UNIQUE SCAN	DEPT_ID_PK	1
7	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	1
--
Predicate Information (identified by operation id):

 6 - access("EMP"."DEPARTMENT_ID"="DEPT"."DEPARTMENT_ID")
 
Statistics
--
 0 recursive calls
 0 db block gets
 111 consistent gets
 0 physical reads
 0 redo size
 758 bytes sent via SQL*Net to client
 544 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 11 rows processed
 

In this example, I turned off the optimizer’s ability to use semijoins via the NO_SEMIJOIN hint. As expected, the
query no longer does a semijoin, but instead joins the two row sources and removes duplicates as indicated by the
HASH UNIQUE operation. This is actually different behavior than exhibited in Oracle 11g, in which a FILTER operation
was used to combine the two row sources. Listing 11-15 shows the Oracle 11g plan output for the same statement.

Chapter 11 ■ Semijoins and Antijoins

314

Listing 11-15.  EXISTS with NO_SEMIJOIN Hint (Oracle 11g)

Execution Plan
--
Plan hash value: 440241596
 
--
| Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |
--
0	SELECT STATEMENT		1	16	17 (0)	00:00:01
* 1	FILTER					
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	3 (0)	00:00:01
* 3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	2	6	1 (0)	00:00:01
--
 
Predicate Information (identified by operation id):

 1 - filter(EXISTS (SELECT 0 FROM "HR"."EMPLOYEES" "EMP" WHERE
 "EMP"."DEPARTMENT_ID"=:B1))
 3 - access("EMP"."DEPARTMENT_ID"=:B1)
 

Note that the Predicate Information section of 11g explain plan output shows the FILTER operation is used to
enforce the EXISTS clause. As is often the case, a new version of Oracle changes the plan choices the optimizer makes,
so never assume you know what the choice is. Always verify!

Controlling Semijoin Plans at the Instance Level
There is also a hidden parameter that exerts control over the optimizer’s semijoin choices; _always_semi_join was
a normal parameter originally, but was changed to a hidden parameter in 9i. Listing 11-16 shows a list of the valid
values for the parameter.

Listing 11-16.  Valid Values for _always_semi_join

SYS@LAB112> select NAME_KSPVLD_VALUES name, VALUE_KSPVLD_VALUES value
 2 from X$KSPVLD_VALUES
 3 where NAME_KSPVLD_VALUES like nvl('&name',NAME_KSPVLD_VALUES);
Enter value for name: _always_semi_join
  
NAME VALUE
-------------------- -------------
_always_semi_join HASH
_always_semi_join MERGE
_always_semi_join NESTED_LOOPS
_always_semi_join CUBE
_always_semi_join CHOOSE
_always_semi_join OFF
 

The parameter has a somewhat misleading name because it does not force semijoins at all. The default value is
CHOOSE, which allows the optimizer to evaluate all the semi-join methods and to choose the one it thinks is the most
efficient. Setting the parameter to HASH, MERGE, or NESTED_LOOPS appears to reduce the optimizer’s choices to the
specified join method. Setting the parameter to OFF disables semijoins. The parameter can be set at the session level.

Chapter 11 ■ Semijoins and Antijoins

315

Listing 11-17 contains an example showing how the parameter can be used to change the optimizer’s choice from a
MERGE semi to a NESTED_LOOPS semi.

Listing 11-17.  Using _always_semi_join to Change Plan to NESTED_LOOPS Semijoin

SQL> @semi_ex1a
SQL> -- semi_ex1a.sql
SQL>
SQL> select /* using in */ department_name
 2 from hr.departments dept
 3 where department_id IN (select department_id from hr.employees emp);
 
DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting
 
11 rows selected.
 
Execution Plan
--
Plan hash value: 954076352
 
--
| Id | Operation | Name | Rows |
--
0	SELECT STATEMENT		
1	MERGE JOIN SEMI		11
2	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27
3	INDEX FULL SCAN	DEPT_ID_PK	27
4	SORT UNIQUE		107
5	INDEX FULL SCAN	EMP_DEPARTMENT_IX	107
--
Predicate Information (identified by operation id):

 4 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
 filter("DEPARTMENT_ID"="DEPARTMENT_ID")
 
SQL> alter session set "_always_semi_join"=NESTED_LOOPS;
 
Session altered.
 

Chapter 11 ■ Semijoins and Antijoins

316

SQL> @semi_ex1a
SQL> -- semi_ex1a.sql
SQL>
SQL> select /* using in */ department_name
 2 from hr.departments dept
 3 where department_id IN (select department_id from hr.employees emp);
 
DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting
 
11 rows selected.
 
Execution Plan
--
Plan hash value: 1089943216
 
--
| Id | Operation | Name | Rows |
--
0	SELECT STATEMENT		
1	NESTED LOOPS		
2	NESTED LOOPS		11
3	SORT UNIQUE		107
4	INDEX FULL SCAN	EMP_DEPARTMENT_IX	107
5	INDEX UNIQUE SCAN	DEPT_ID_PK	1
6	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	1
--
Predicate Information (identified by operation id):

 5 - access("DEPARTMENT_ID"="DEPARTMENT_ID") 

Semijoin Restrictions
There is only one major documented restriction controlling when the optimizer can use a semijoin (in 11gR2).
The optimizer does not choose a semijoin for any subqueries inside an OR branch. In previous versions of Oracle,
the inclusion of the DISTINCT keyword would also disable semijoins, but that restriction no longer exists. Listing 11-18
contains an example showing a semijoin being disabled inside an OR branch.

Chapter 11 ■ Semijoins and Antijoins

317

Listing 11-18.  Semijoins disabled inside an OR branch in 11gR2

SQL> select /* exists with or */ department_name
 2 from hr.departments dept
 3 where 1=2 or exists (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);
 
DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting
 
11 rows selected.
 
Execution Plan
--
Plan hash value: 1089943216
 
--
| Id | Operation | Name | Rows |
--
0	SELECT STATEMENT		11
1	NESTED LOOPS		
2	NESTED LOOPS		11
3	SORT UNIQUE		107
4	INDEX FULL SCAN	EMP_DEPARTMENT_IX	107
* 5	INDEX UNIQUE SCAN	DEPT_ID_PK	1
6	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	1
--
 
Predicate Information (identified by operation id):

 5 - access("EMP"."DEPARTMENT_ID"="DEPT"."DEPARTMENT_ID")

In 12c, however, this restriction seems to have been lifted, as demonstrated in Listing 11-19. As you can see,
a semijoin plan is chosen.

Listing 11-19.  Semijoin Restriction Lifted in 12c

SQL> select /* exists with or */ department_name
 2 from hr.departments dept
 3 where 1=2 or exists (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);
 

Chapter 11 ■ Semijoins and Antijoins

318

DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting
 
11 rows selected.
 
Execution Plan
--
Plan hash value: 954076352
 
--
| Id | Operation | Name | Rows |
--
0	SELECT STATEMENT		
1	MERGE JOIN SEMI		11
2	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27
3	INDEX FULL SCAN	DEPT_ID_PK	27
4	SORT UNIQUE		107
5	INDEX FULL SCAN	EMP_DEPARTMENT_IX	107
--
 
Predicate Information (identified by operation id):

 4 - access("EMP"."DEPARTMENT_ID"="DEPT"."DEPARTMENT_ID")
 filter("EMP"."DEPARTMENT_ID"="DEPT"."DEPARTMENT_ID") 

Semijoin Requirements
Semijoins are an optimization that can improve performance of some queries dramatically. They are not used that
often, however. Here, briefly, are the requirements for Oracle’s cost-based optimizer to decide to use a semijoin:

The statement must use either the keyword •	 IN (= ANY) or the keyword EXISTS.

The statement must have a subquery in the •	 IN or EXISTS clause.

If the statement uses the •	 EXISTS syntax, it must use a correlated subquery
(to get the expected results).

The •	 IN or EXISTS clause may not be contained inside an OR branch.

Chapter 11 ■ Semijoins and Antijoins

319

Many systems have queries with massive numbers of literals (thousands sometimes) inside IN clauses. These are
often generated statements that get populated by doing a query to find the list in the first place. These statements can
occasionally benefit from being rewritten to let the optimizer take advantage of a semijoin—that is, taking the query
that populated the literals in the IN clause and combining it with the original, instead of running them as two separate
queries.

One of the reasons that developers avoid this approach is fear of the unknown. The IN and EXISTS syntax was at
one time processed very differently, leading to situations in which performance could vary considerably depending
on the method chosen. The good news is that the optimizer is smart enough now to transform either form into a
semijoin, or not, depending on the optimizer costing algorithms. The question of whether to implement a correlated
subquery with EXISTS or the more simple IN construct is now pretty much a moot point from a performance
standpoint. And with that being the case, there seems to be little reason to use the more complicated EXISTS format.
No piece of software is perfect, though; occasionally, the optimizer makes incorrect choices. Fortunately, when the
optimizer does make a mistake, there are tools available to “encourage” it to do the right thing.

Antijoins
Antijoins are basically the same as semijoins in that they are an optimization option that can be applied to nested loop,
hash, and merge joins. However, they are the opposite of semijoins in terms of the data they return. Those mathematician
types familiar with relational algebra would say that antijoins can be defined as the complement of semijoins.

Figure 11-2 shows a Venn diagram that is often used to illustrate a MINUS operation (all the records from table A,
MINUS the records from table B). The diagram in Figure 11-2 is a reasonable representation of an antijoin as well.
The Oracle Database SQL Language Reference, 11g Release 2,() describes the antijoin this way: “An antijoin returns
rows from the left side of the predicate for which there are no corresponding rows on the right side of the predicate.
It returns rows that fail to match (NOT IN) the subquery on the right side”
(http://docs.oracle.com/cd/E11882_01/server.112/e41084/queries006.htm#sthref2260).

Figure 11-2.  Illustration of an antijoin

The Oracle manual also provides this example of an antijoin
(http://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_10002.htm#i2182875):

SELECT * FROM employees
 WHERE department_id NOT IN
 (SELECT department_id FROM departments
 WHERE location_id = 1700)
 ORDER BY last_name;
 

As with semijoins, there is no specific SQL syntax that invokes an anti-join. Antijoins are one of several choices
that the optimizer may use when the SQL statement contains the keywords NOT IN or NOT EXISTS. By the way, NOT IN
is much, much more common than NOT EXISTS, probably because it is easier to understand.

So let’s take a look at our standard queries, now altered to anti form (in other words, using NOT IN and NOT EXISTS
instead of IN and EXISTS) in Listing 11-20.

http://docs.oracle.com/cd/E11882_01/server.112/e41084/queries006.htm#sthref2260
http://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_10002.htm#i2182875

Chapter 11 ■ Semijoins and Antijoins

320

Listing 11-20.  Standard NOT IN and NOT EXISTS Examples

SQL> -- anti_ex1.sql
SQL>
SQL> select /* NOT IN */ department_name
 2 from hr.departments dept
 3 where department_id NOT IN
 4 (select department_id from hr.employees emp);
 
no rows selected
 
SQL>
SQL> select /* NOT EXISTS */ department_name
 2 from hr.departments dept
 3 where NOT EXISTS (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
 
16 rows selected.
 

Clearly NOT IN and NOT EXISTS do not return the same data in this example, and are therefore not functionally
equivalent. The reason for this behavior has to do with how the queries deal with null values being returned by the
subquery. If a null value is returned to a NOT IN operator, then no records are returned by the overall query, which
seems counterintuitive. But, if you think about it for a minute, it should make a little more sense. In the first place,
the NOT IN operator is just another way of saying !=ANY. So you can think of it as a loop comparing values. If it finds a
match, the record is discarded. If it doesn’t, the record gets returned to the user. But what if it doesn’t know whether
the records match? Remember that a null is not equal to anything, not even another null. In this case, Oracle has
chosen to return a value of FALSE, even though the theoretical answer is unknown. C. J. Date1 would probably argue
that this is a shortcoming of Oracle’s implementation of relational theory, because it should provide for all three
potential answers. At any rate, this is the way it works in Oracle.

1C.J. Date is most well known for his work, while working for IBM in the late 1960's, with Ted Codd on the development of the
relational model for database management.

Chapter 11 ■ Semijoins and Antijoins

321

Assuming that your requirements are to return records even in the case of nulls being returned by the subquery,
you have the following options:

Apply an •	 NVL function to the column or columns returned by the subquery.

Add an •	 IS NOT NULL predicate to the subquery.

Implement a •	 NOT NULL constraint or constraints

Don’t use •	 NOT IN; use the NOT EXISTS form, which doesn’t care about nulls.

In many cases a NOT NULL constraint is the best option, but there are situations when there are valid arguments
against them. Listing 11-21 shows two examples of dealing with the null issue.

Listing 11-21.  Avoiding Nulls with NOT IN

SQL> select /* IN with NVL */ department_name
 2 from hr.departments dept
 3 where department_id NOT IN
 4 (select nvl(department_id,-10) from hr.employees emp);
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
 
16 rows selected.
 
SQL>
SQL> select /* IN with NOT NULL */ department_name
 2 from hr.departments dept
 3 where department_id NOT IN (select department_id
 4 from hr.employees emp where department_id is not null);
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services

Chapter 11 ■ Semijoins and Antijoins

322

Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
 
16 rows selected.
 

As you can see, although an unconstrained NOT IN statement is not the same as a NOT EXISTS, applying an NVL
function or adding an IS NOT NULL clause to the subquery predicate solves the issue.

Although NOT IN and NOT EXISTS are the most commonly chosen syntax options for producing an antijoin,
there are at least two other options that can return the same data. The MINUS operator can obviously be used for this
purpose. A clever trick with an outer join can also be used. Listing 11-22 shows examples of both techniques.

Listing 11-22.  Alternative Syntax to NOT IN and NOT EXISTS

SQL> select /* MINUS */ department_name
 2 from hr.departments
 3 where department_id in
 4 (select department_id from hr.departments
 5 minus
 6 select department_id from hr.employees);
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
 
16 rows selected.
 

Chapter 11 ■ Semijoins and Antijoins

323

SQL> select /* LEFT OUTER */ department_name
 2 from hr.departments dept left outer join
 3 hr.employees emp on dept.department_id = emp.department_id
 4 where emp.department_id is null;
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
 
16 rows selected.
 
SQL> select /* LEFT OUTER OLD (+) */ department_name
 2 from hr.departments dept, hr.employees emp
 3 where dept.department_id = emp.department_id(+)
 4 and emp.department_id is null;
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
 
16 rows selected.
 

Chapter 11 ■ Semijoins and Antijoins

324

So the MINUS is slightly convoluted but it returns the right data and is functionally equivalent to the NOT EXISTS
form and the null constrained NOT IN form. The LEFT OUTER statement probably needs a little discussion. It makes
use of the fact that an outer join creates a dummy record on the right side for each record on the left that doesn’t have
an actual match. Because all the columns in the dummy record are null, we can get the records without matches by
adding the EMP.DEPARTMENT_ID IS NULL clause to the outer join. This statement is also functionally equivalent to the
NOT EXISTS statement and the null constrained NOT IN form. There is a myth that this form performs better than NOT
EXISTS, and maybe this was true at some point, but it is not the case now. Therefore, there appears to be little reason
to use it because it is considerably less clear in its intent.

Antijoin Plans
As with semijoins, antijoins are an optimization option that may be applied to nested loop joins, hash joins, or merge
joins. Also remember that it is an optimization that allows processing to stop when the first match is found in the
subquery. Listing 11-23 shows the pseudocode that should help to describe the process more fully. Note that the outer
query is Q1 and the inner (subquery) is Q2.

Listing 11-23.  Pseudocode for Nested Loop Antijoin

open Q1
while Q1 still has records
 fetch record from Q1
 result = true
 open Q2
 while Q2 still has records
 fetch record from Q2
 if (Q1.record matches Q2.record) then = antijoin optimization
 result = false = difference from semijoin
 exit loop
 end if
 end loop
 close Q2
 if (result = true) return Q1 record
end loop
close Q1
 

This example is basically a nested loop antijoin. The optimization provided by the anti option is the IF statement
that lets the code bail out of the inner loop as soon as it finds a match. Obviously, with large datasets, this technique
can result in significant time savings compared with a normal nested loops join that must loop through every record
returned by the inner query.

Now let’s rerun our first two antijoin examples (the standard NOT IN and NOT EXISTS queries) in Listing 11-24
and look at the plans the optimizer generates.

Listing 11-24.  Antijoin Execution Plans

SQL> select /* NOT IN */ department_name
 2 from hr.departments dept
 3 where department_id NOT IN (select department_id from hr.employees emp);
 
no rows selected
 

Chapter 11 ■ Semijoins and Antijoins

325

Execution Plan
--
Plan hash value: 4208823763

| Id | Operation | Name | Rows |

0	SELECT STATEMENT		
1	MERGE JOIN ANTI NA		17
2	SORT JOIN		27
3	TABLE ACCESS BY INDEX ROWID BATCHED	DEPARTMENTS	27
4	INDEX FULL SCAN	DEPT_ID_PK	27
5	SORT UNIQUE		107
6	TABLE ACCESS FULL	EMPLOYEES	107

Predicate Information (identified by operation id):

 5 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
 filter("DEPARTMENT_ID"="DEPARTMENT_ID")
 
SQL>
SQL> select /* NOT EXISTS */ department_name
 2 from hr.departments dept
 3 where NOT EXISTS (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
 
16 rows selected.
 

Chapter 11 ■ Semijoins and Antijoins

326

Execution Plan
--
Plan hash value: 1314441467
 
--
| Id | Operation | Name | Rows |
--
0	SELECT STATEMENT		
1	MERGE JOIN ANTI		17
2	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27
3	INDEX FULL SCAN	DEPT_ID_PK	27
4	SORT UNIQUE		107
5	INDEX FULL SCAN	EMP_DEPARTMENT_IX	107
--
 
Predicate Information (identified by operation id):

 4 - access("EMP"."DEPARTMENT_ID"="DEPT"."DEPARTMENT_ID")
 filter("EMP"."DEPARTMENT_ID"="DEPT"."DEPARTMENT_ID")
 

Notice that the NOT EXISTS statement generated a MERGE JOIN ANTI plan whereas the NOT IN statement
generated a MERGE JOIN ANTI NA plan. The MERGE JOIN ANTI is the standard antijoin that has been available since
version 7 or thereabouts. The ANTI NA that was applied to the MERGE JOIN, however, is a new optimization that
was introduced in 11g. (NA stands for null aware.) This new optimization allows the optimizer to deal with NOT IN
queries when the optimizer doesn’t know if nulls can be returned by the subquery. Prior to 11g, antijoins could
not be performed on NOT IN queries unless the optimizer was sure the nulls would not be returned. Note that this
optimization technique has nothing at all to do with the “unintuitive” behavior of NOT IN clauses with respect to
nulls that was mentioned previously. The query still returns no records if a null is returned by the subquery, but it
does it a lot faster with the ANTI NA option. Listing 11-25 provides another example that shows how the various ways
of handling nulls in the subquery affect the optimizer’s choices. (Note that the fsp.sql script shows some execution
statistics from v$sql along with the operation and options from v$sql_plan if a semi- or antijoin is used.)

Listing 11-25.  Antijoin Execution Plans

SQL > set echo on
SQL > @flush_pool
SQL > alter system flush shared_pool;
 
System altered.
 
SQL > @anti_ex2
SQL > set echo on
SQL > -- anti_ex2.sql
SQL >
SQL > select /* IN */ department_name
 2 from hr.departments dept
 3 where department_id not in
 4 (select department_id from hr.employees emp);
 

Chapter 11 ■ Semijoins and Antijoins

327

no rows selected
SQL >
SQL > select /* IN with NVL */ department_name
 2 from hr.departments dept
 3 where department_id not in
 4 (select nvl(department_id,-10) from hr.employees emp);
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
 
16 rows selected.
 
SQL >
SQL > select /* IN with NOT NULL */ department_name
 2 from hr.departments dept
 3 where department_id not in (select department_id
 4 from hr.employees emp where department_id is not null);
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
 
16 rows selected.
 

Chapter 11 ■ Semijoins and Antijoins

328

SQL>
SQL > select /* EXISTS */ department_name
 2 from hr.departments dept
 3 where not exists (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
 
16 rows selected.
 
SQL >
SQL > set echo off
SQL > set echo on
SQL > @fsp
SQL > select distinct s.sql_id,
 2 -- s.child_number,
 3 s.plan_hash_value plan_hash,
 4 sql_text,
 5 -- decode(options,'SEMI',operation||' '||options,null) join
 6 case when options like '%SEMI%' or options like '%ANTI%' then
 7 operation||' '||options end join
 8 from v$sql s, v$sql_plan p
 9 where s.sql_id = p.sql_id
 10 and s.child_number = p.child_number
 11 and upper(sql_text) like upper(nvl('&sql_text','%department%'))
 12 and sql_text not like '%from v$sql where sql_text like nvl(%'
 13 and s.sql_id like nvl('&sql_id',s.sql_id)
 14 order by 1, 2, 3
 15 /
Enter value for sql_text:
Enter value for sql_id:
 

Chapter 11 ■ Semijoins and Antijoins

329

SQL_ID PLAN_HASH SQL_TEXT JOIN
------------- ---------- --- ------------------
0pcrmdk1tw0tf 4201340344 select /* IN */ department_name from MERGE JOIN ANTI NA
 hr.departments dept where department_id not
 in (select department_id from hr.employees emp)
 
56d82nhza8ftu 3082375452 select /* IN with NOT NULL */ department_name MERGE JOIN ANTI
 from hr.departments dept where department_id
 not in (select department_id from hr.employees
 emp where department_id is not null)
 
5c77dgzy60ubx 3082375452 select /* EXISTS */ department_name from MERGE JOIN ANTI
 hr.departments dept where not exists
 (select null from hr.employees emp where
 emp.department_id = dept.department_id)
 
a71yzhpc0n2uj 3822487693 select /* IN with NVL */ department_name from MERGE JOIN ANTI
 hr.departments dept where department_id
 not in (select nvl(department_id,-10) from
 hr.employees emp)
 

As you can see, the EXISTS, NOT IN with NOT NULL, and NOT IN with NVL all use the normal antijoin, whereas
the NOT IN that ignores the handling of nulls must use the new null-aware antijoin (ANTI NA). Now let’s rerun our
examples of LEFT OUTER and MINUS and see what plans they come up with. Listing 11-26 shows the results of the
optimizer for several alternative syntax variations.

Listing 11-26.  Alternate Antijoin Syntax Execution Plans

SQL> set echo on
SQL> @flush_pool
SQL> alter system flush shared_pool;
 
System altered.
 
SQL > @anti_ex3
SQL > set echo on
SQL > -- anti_ex3.sql
SQL >
SQL > select /* NOT EXISTS */ department_name
 2 from hr.departments dept
 3 where not exists (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction

Chapter 11 ■ Semijoins and Antijoins

330

Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
 
16 rows selected.
 
SQL >
SQL > select /* NOT IN NOT NULL */ department_name
 2 from hr.departments dept
 3 where department_id not in (select department_id
 4 from hr.employees emp where department_id is not null);
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
 
16 rows selected.
 
SQL >
SQL > select /* LEFT OUTER */ department_name
 2 from hr.departments dept left outer join
 3 hr.employees emp on dept.department_id = emp.department_id
 4 where emp.department_id is null;
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits

Chapter 11 ■ Semijoins and Antijoins

331

Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
 
16 rows selected.

SQL >
SQL > select /* LEFT OUTER OLD (+) */ department_name
 2 from hr.departments dept, hr.employees emp
 3 where dept.department_id = emp.department_id(+)
 4 and emp.department_id is null;
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

SQL >
SQL > select /* MINUS */ department_name
 2 from hr.departments
 3 where department_id in
 4 (select department_id from hr.departments
 5 minus
 6 select department_id from hr.employees);
 
DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services

Chapter 11 ■ Semijoins and Antijoins

332

Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
16 rows selected.
SQL >
SQL > set echo off
SQL > @fsp
Enter value for sql_text:
Enter value for sql_id:
 
SQL_ID PLAN_HASH SQL_TEXT JOIN
------------- ---------- -- ---------------
6tt0zwazv6my9 3082375452 select /* NOT EXISTS */ department_name MERGE JOIN ANTI
 from hr.departments dept where not exists
 (select null from hr.employees emp where
 emp.department_id = dept.department_id)
 
as34zpj5n5dfd 3082375452 select /* LEFT OUTER */ department_name MERGE JOIN ANTI
 from hr.departments dept left outer join
 hr.employees emp on dept.department_id =
 emp.department_id where emp.department_id is null
 
czsqu5txh5tyn 3082375452 select /* NOT IN NOT NULL */ department_name MERGE JOIN ANTI
 from hr.departments dept where department_id
 not in (select department_id from hr.employees
 emp where department_id is not null)
 
dcx0kqhwbuv6r 3082375452 select /* LEFT OUTER OLD (+) */ department_name MERGE JOIN ANTI
 from hr.departments dept, hr.employees emp where
 dept.department_id = emp.department_id(+) and
 emp.department_id is null
 
gvdsm57xf24jv 2972564128 select /* MINUS */ department_name from
 hr.departments where department_id in
 (select department_id from hr.departments
 minus select department_id from hr.employees)
 

Although all these statements return the same data, the MINUS does not use the antijoin optimization. If you look
closely, you can see that all the other statements have the same plan hash value—meaning, they have exactly the
same plan.

Chapter 11 ■ Semijoins and Antijoins

333

Controlling Antijoin Plans
Not surprisingly, the mechanisms for controlling antijoin plans are similar to those available for controlling semijoins.
As before, you have both hints and parameters to work with.

Controlling Antijoin Plans Using Hints
There are several hints:

ANTIJOIN: Perform an antijoin (the optimizer gets to pick which kind).

USE_ANTI: Perform an antijoin (this is an older version of the ANTIJOIN hint).

NL_AJ: Perform a nested loops antijoin (deprecated as of 10g).

HASH_AJ: Perform a hash antijoin (deprecated as of 10g).

MERGE_AJ: Perform a merge antijoin (deprecated as of 10g).

As with the hints controlling semijoins, several of the antijoin hints (NL_AJ, HASH_AJ, MERGE_AJ) have been
documented as being deprecated. Nevertheless, they continue to work in 12c. However, it should be noted that these
specific hints do not work in situations when the optimizer must use the new null-aware version of antijoin (more on
that in a moment). All the antijoin hints should be specified in the subquery, as opposed to in the outer query. Also note
that there is not a NO_ANTIJOIN hint, which is a bit unusual. Listing 11-27 shows an example of using the NL_AJ hint.

Listing 11-27.  Controlling Antijoin Execution Plans with Hints

SQL> set autotrace traceonly exp
SQL> @anti_ex4
SQL> -- anti_ex4.sql
SQL>
SQL> select /* IN */ department_name
 2 from hr.departments dept
 3 where department_id not in (select /*+ nl_aj */ department_id
 4 from hr.employees emp);
 
Execution Plan
--
Plan hash value: 4208823763

| Id | Operation | Name | Rows |

0	SELECT STATEMENT		
1	MERGE JOIN ANTI NA		17
2	SORT JOIN		27
3	TABLE ACCESS BY INDEX ROWID BATCHED	DEPARTMENTS	27
4	INDEX FULL SCAN	DEPT_ID_PK	27
5	SORT UNIQUE		107
6	TABLE ACCESS FULL	EMPLOYEES	107

Chapter 11 ■ Semijoins and Antijoins

334

Predicate Information (identified by operation id):

 5 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
 filter("DEPARTMENT_ID"="DEPARTMENT_ID")
 
SQL>
SQL> select /* EXISTS */ department_name
 2 from hr.departments dept
 3 where not exists (select /*+ nl_aj */ null from hr.employees emp
 4 where emp.department_id = dept.department_id);
 
Execution Plan
--
Plan hash value: 3082375452
 
--
| Id | Operation | Name | Rows |
--
0	SELECT STATEMENT		
1	NESTED LOOPS ANTI		17
2	TABLE ACCESS FULL	DEPARTMENTS	27
3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	41
--
Predicate Information (identified by operation id):

 3 - access("EMP"."DEPARTMENT_ID"="DEPT"."DEPARTMENT_ID") 

Controlling Antijoin Plans at the Instance Level
There are also a number of parameters (all hidden) that affect the optimizer’s behavior with respect to antijoins:

•	 _always_anti_join

•	 _gs_anti_semi_join_allowed

•	 _optimizer_null_aware_antijoin

•	 _optimizer_outer_to_anti_enabled

The main parameter to be concerned about is _always_anti_join, which is equivalent to _always_semi_join in
its behavior (it has the same valid values, and the options do the same things). Note that it’s been documented as being
obsolete for some time. Nevertheless, as with _always_semi_join, it still appears to work in 12c. Listing 11-28 shows an
example of using a hint and turning off antijoins altogether with the _optimizer_null_aware_antijoin parameter.

Listing 11-28.  Controlling Antijoin Execution Plans with Parameters

SQL> -- anti_ex5.sql
SQL>
SQL> select /* EXISTS */ department_name
 2 from hr.departments dept
 3 where not exists (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);
 

Chapter 11 ■ Semijoins and Antijoins

335

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll
 
16 rows selected.
 
SQL>
SQL> select /* EXISTS with hint */ department_name
 2 from hr.departments dept
 3 where not exists (select /*+ hash_aj */ null from hr.employees emp
 4 where emp.department_id = dept.department_id);
 
DEPARTMENT_NAME

NOC
Manufacturing
Government Sales
IT Support
Benefits
Shareholder Services
Retail Sales
Control And Credit
Recruiting
Operations
Treasury
Payroll
Corporate Tax
Construction
Contracting
IT Helpdesk
 
16 rows selected.
 

Chapter 11 ■ Semijoins and Antijoins

336

SQL>
SQL> select /* IN */ department_name
 2 from hr.departments dept
 3 where department_id not in
 4 (select department_id from hr.employees emp);
 
no rows selected
 
SQL>
SQL> alter session set "_optimizer_null_aware_antijoin"=false;
 
Session altered.
 
SQL>
SQL> select /* IN with AAJ=OFF*/ department_name
 2 from hr.departments dept
 3 where department_id not in
 4 (select department_id from hr.employees emp);
 
no rows selected
 
SQL>
SQL> alter session set "_optimizer_null_aware_antijoin"=true;
 
Session altered.
 
SQL>
SQL> set echo off
SQL> @fsp
Enter value for sql_text:
Enter value for sql_id:
 
SQL_ID PLAN_HASH SQL_TEXT JOIN
------------- ---------- --- --------------------
0kvb76bzacc7b 3587451639 select /* EXISTS with hint */ department_name HASH JOIN ANTI
 from hr.departments dept where not exists
 (select /*+ hash_aj */ null from hr.employees
 emp where emp.department_id = dept.department_id)
 
0pcrmdk1tw0tf 4201340344 select /* IN */ department_name from MERGE JOIN ANTI NA
 hr.departments dept where department_id not in
 (select department_id from hr.employees emp)
 
5c77dgzy60ubx 3082375452 select /* EXISTS */ department_name from NESTED LOOPS ANTI
 hr.departments dept where not exists
 (select null from hr.employees emp where
 emp.department_id = dept.department_id)
 
67u11c3rv1aag 3416340233 select /* IN with AAJ=OFF*/ department_name from
 hr.departments dept where department_id not in
 (select department_id from hr.employees emp)
 

Chapter 11 ■ Semijoins and Antijoins

337

Antijoin Restrictions
As with semijoins, antijoin transformations cannot be performed if the subquery is on an OR branch of a WHERE clause.
I trust you will take my word for this one, because the behavior has already been demonstrated with semijoins in the
previous sections.

As of 12c, there are no major restrictions on the use of antijoins. The major restriction in 10g was that any
subquery that could return a null was not a candidate for antijoin optimization. The new ANTI NA (and ANTI SNA)
provide the optimizer with the capability to apply the antijoin optimization even in those cases when a null may be
returned by a subquery. Note that this does not change the somewhat confusing behavior causing no records to be
returned from a subquery contained in a NOT IN clause if a null value is returned by the subquery.

Because 10g is still in wide use, a brief discussion of the restriction that has been removed in 11g and above by the
null-aware antijoin is warranted. When a NOT IN clause is specified in 10g, the optimizer checks to see if the column
or columns being returned are guaranteed not to contain nulls. This is done by checking for NOT NULL constraints,
IS NOT NULL predicates, or a function that translates null into a value (typically NVL). If all three of these checks fail,
the 10g optimizer does not choose an antijoin. Furthermore, it transforms the statement by applying an internal
function (LNNVL) that has the possible side effect of disabling potential index access paths. Listing 11-29 shows an
example from a 10.2.0.4 database.

Listing 11-29.  10g NOT NULL Antijoin Behavior

> !sql
sqlplus "/ as sysdba"
 
SQL*Plus: Release 10.2.0.4.0 - Production on Tue Jun 29 14:50:25 2010
 
Copyright (c) 1982, 2007, Oracle. All Rights Reserved.
 
Connected to:
Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
 
SQL> @anti_ex6
SQL> -- anti_ex6.sql
SQL>
SQL> set autotrace trace exp
SQL>
SQL> select /* NOT IN */ department_name
 2 from hr.departments dept
 3 where department_id not in (select department_id from hr.employees emp);
 
Execution Plan
--
Plan hash value: 3416340233
 
--
|Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |
--
0	SELECT STATEMENT		26	416	29 (0)	00:00:01
*1	FILTER					
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01
*3	TABLE ACCESS FULL	EMPLOYEES	2	6	2 (0)	00:00:01
--
 

Chapter 11 ■ Semijoins and Antijoins

338

Predicate Information (identified by operation id):

 1 - filter(NOT EXISTS (SELECT /*+ */ 0 FROM "HR"."EMPLOYEES" "EMP"
 WHERE LNNVL("DEPARTMENT_ID"<>:B1)))
 3 - filter(LNNVL("DEPARTMENT_ID"<>:B1))
 
SQL> select /* NOT NULL */ department_name
 2 from hr.departments dept
 3 where department_id not in (select department_id
 4 from hr.employees emp where department_id is not null);
 
Execution Plan
--
Plan hash value: 3082375452

|Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT		17	323	2 (0)	00:00:01
1	NESTED LOOPS ANTI		17	323	2 (0)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	41	123	0 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
 filter("DEPARTMENT_ID" IS NOT NULL)
 
SQL>
SQL> select /* NVL */ department_name
 2 from hr.departments dept
 3 where department_id not in (select nvl(department_id,'-10')
 4 from hr.employees emp);
 
Execution Plan
--
Plan hash value: 2918349777
 
--
|Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |
--
0	SELECT STATEMENT		17	323	5 (20)	00:00:01
*1	HASH JOIN ANTI		17	323	5 (20)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01
3	TABLE ACCESS FULL	EMPLOYEES	107	321	2 (0)	00:00:01
--
 

Chapter 11 ■ Semijoins and Antijoins

339

Predicate Information (identified by operation id):

 1 - access("DEPARTMENT_ID"=NVL("DEPARTMENT_ID",(-10))
 

The first statement in this example is the same old NOT IN query that we’ve run several times already in 12c. Note
that in 10g, instead of doing an ANTI NA, it doesn’t apply the anti optimization at all. This is because of the restriction
guaranteeing that nulls are not returned from the subquery in 10g. The second statement (NOT NULL) applies the NOT
NULL predicate to the WHERE clause in the subquery, which enables the optimizer to pick a standard antijoin. The third
statement uses the NVL function to ensure that no nulls are returned by the subquery. Notice that it also is able to
apply the antijoin. Last, notice the Predicate Information section below the plan for the first statement (NOT IN). Note
that the optimizer has transformed the statement by adding the LNNVL function, which can have the unpleasant side
effect of disabling index access paths. The other plans do not have this transformation applied. Listing 11-30 shows
the same NOT IN statement run in 12c.

Listing 11-30.  12c NOT NULL Antijoin Behavior

SQL> -- anti_ex6.sql
SQL>
SQL> set autotrace trace exp
SQL>
SQL> select /* NOT IN */ department_name
 2 from hr.departments dept
 3 where department_id not in (select department_id from hr.employees emp);
 
Execution Plan
--
Plan hash value: 4208823763

| Id | Operation | Name | Rows |

0	SELECT STATEMENT		
1	MERGE JOIN ANTI NA		17
2	SORT JOIN		27
3	TABLE ACCESS BY INDEX ROWID BATCHED	DEPARTMENTS	27
4	INDEX FULL SCAN	DEPT_ID_PK	27
5	SORT UNIQUE		107
6	TABLE ACCESS FULL	EMPLOYEES	107

Predicate Information (identified by operation id):

 5 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
 filter("DEPARTMENT_ID"="DEPARTMENT_ID")
 

Notice that in 12c the optimizer generates the new null-aware ANTI join (ANTI NA). Also note that the internally
applied LNNVL function that is used in 10g is no longer necessary.

Chapter 11 ■ Semijoins and Antijoins

340

Antijoin Requirements
Requirements is such a strong word. Oracle’s optimizer is a very complex piece of software. Producing an exhaustive
list of every possible way to get a specified result is a difficult task at best. With respect to antijoins, Oracle has recently
implemented some clever ways of making use of this join option that you would not normally expect. So please take
these “requirements” as a list of the most probable ways to cause Oracle to produce an anti-join, as opposed to an
exhaustive list:

The statement should use either the •	 NOT IN (!= ALL) or NOT EXISTS phrases.

The statement should have a subquery in the •	 NOT IN or NOT EXISTS clause.

The •	 NOT IN or NOT EXISTS clause should not be contained inside an OR branch.

Subqueries in •	 NOT EXISTS clauses should be correlated to the outer query.

Note■■   10g requires NOT IN subqueries to be coded to not return nulls (11g and higher doesn’t).

Antijoins are a powerful optimization option that can be applied by the optimizer. They can provide impressive
performance improvements, particularly when large data volumes are involved. Although the NOT IN syntax is more
intuitive, it also has some counterintuitive behavior when it comes to dealing with nulls. The NOT EXISTS syntax is
better suited to handling subqueries that may return nulls, but is, in general, a little harder to read and—probably for
that reason—is not used as often. The outer join trick is even less intuitive than the NOT EXISTS syntax and, in general,
provides no advantage over it. The MINUS operator does not appear to offer any advantages over the other forms and
does not currently use the antijoin optimization. It is apparent that Oracle’s intent is to allow the optimizer to use the
antijoin option whenever possible because of the dramatic performance enhancement potential that it provides.

Summary
Antijoins and sSemijoins are options that the optimizer can apply to many of the common join methods. The basic
idea of these optimization options is to cut short the processing of the normal hash, merge, or nested loop joins. In
some cases, antijoins and semijoins can provide dramatic performance improvements. There are multiple ways to
construct SQL statements that result in the optimizer using these options. The most common are the IN and EXISTS
keywords. When these optimizations were first released, the processing of the statements varied significantly,
depending on whether you used IN or EXISTS. Over the years, the optimizer has been enhanced to allow many
statement transformations; the result is that, in 11g and higher, there is little difference between using one form or the
other. In many cases, the statements get transformed into the same form anyway. In this chapter you’ve seen how this
optimization technique works, when it can be used, and how to verify whether it is being used. You’ve also seen some
mechanisms for controlling the optimizer’s use of this feature.

341

Chapter 12

Indexes

Indexes are critical structures needed for efficient retrieval of rows, for uniqueness enforcement, and for the efficient
implementation of referential constraints. Oracle Database provides many index types suited for different needs of
application access methods. Effective choice of index type and critical choice of columns to index are of paramount
importance for optimal performance. Inadequate or incorrect indexing strategy can lead to performance issues.
In this chapter, I discuss basic implementation of indexes, various index types, their use cases, and strategy to choose
optimal index type. Indexes available in Oracle Database as of version 12c can be classified broadly into one of three
categories based on the algorithm they use: B-tree indexes, bitmap indexes, and index-organized tables, or IOTs.

Implementation of bitmap indexes is suitable for columns with infrequent update, insert, and delete activity.
Bitmap indexes are better suited for static columns with lower distinct values—a typical case in data warehouse
applications. A gender column in a table holding population data is a good example, because as there are only a few
distinct values for this column. I discuss this in more detail later in this chapter.

Note■■   All tables mentioned in this chapter refer to the objects in SH schema supplied by Oracle Corporation
example scripts.

B-tree indexes are commonly used in all applications. There are many index types such as partitioned indexes,
compressed indexes, and function-based indexes implemented as B-tree indexes. Special index types such as IOTs
and secondary indexes on IOTs are also implemented as B-tree indexes.

THE IMPORTANCE OF CHOOSING CORRECTLY

I have a story to share about the importance of indexing choice. During an application upgrade, an application
designer chose bitmap indexes on a few key tables that were modified heavily. After the application upgrade,
the application response time was not acceptable. Because this application was a warehouse management
application, performance issues were affecting the shipping and order fulfillment process of this U.S. retail giant.

We were called in to troubleshoot the issue. We reviewed the database performance metrics and quickly realized
that the poor choice of index type was the root cause of the performance issue. Database metrics were showing
that the application was suffering from locking contention, too. These bitmap indexes used to grow from about
100MB in the morning to around 4 to 5GB by midafternoon. The designer even introduced a job to rebuild the
index at regular intervals. We resolved the issue by converting the bitmap indexes to B-tree indexes. This story
demonstrates you the importance of choosing an optimal indexing strategy.

Chapter 12 ■ Indexes

342

Understanding Indexes
Is a full table scan access path always bad? Not necessarily. Efficiency of an access path is very specific to the
construction of the SQL statement, application data, distribution of data, and the environment. No one access path is
suitable for all execution plans. In some cases, a full table scan access path is better than an index-based access path.
Next, I discuss choice of index usage, considerations for choosing columns to index, and special considerations for
null clauses.

When to Use Indexes
In general, index-based access paths perform better if the predicates specified in the SQL statement are
selective—meaning, that few rows are fetched applying the specified predicates. A typical index-based access path
usually involves following three steps:

	 1.	 Traversing the index tree and collecting the rowids from the leaf block after applying the
SQL predicates on indexed columns

	 2.	 Fetching the rows from the table blocks using the rowids

	 3.	 Applying the remainder of the predicates on the rows fetched to derive a final result set

The second step of accessing the table block is costlier if numerous rowids are returned during step 1. For every
rowid from the index leaf blocks, table blocks need to be accessed, and this might result in multiple physical IOs,
leading to performance issues. Furthermore, table blocks are accessed one block at a time physically and can magnify
performance issues. For example, consider the SQL statement in Listing 12-1 accessing the sales table with just
one predicate, country='Spain'; the number of rows returned from step 5 is estimated to be 7985. So, 7985 rowids
estimated to be retrieved from that execution step and table blocks must be accessed at least 7985 times to retrieve
the row pieces. Some of these table block accesses might result in physical IO if the block is not in the buffer cache
already. So, the index-based access path might perform worse for this specific case.

Listing 12-1.  Index Access Path

create index sales_fact_c2 on sales_fact (country);
 
select /*+ index (s sales_fact_c2) */ count(distinct(region))
from sales_fact s where country='Spain';
 
--
| Id | Operation | Name | E-Rows | Cost (%CPU)|
--
0	SELECT STATEMENT			930 (100)
1	SORT AGGREGATE		1	
2	VIEW	VW_DAG_0	7	930 (0)
3	HASH GROUP BY		7	930 (0)
4	TABLE ACCESS BY INDEX	SALES_FACT	7985	930 (0)
	ROWID BATCHED			
* 5	INDEX RANGE SCAN	SALES_FACT_C2	7985	26 (0)
--
 
select count(distinct(region)) from sales_fact s where country='Spain';
  

Chapter 12 ■ Indexes

343

| Id | Operation | Name | E-Rows | Cost (%CPU)|

0	SELECT STATEMENT			309 (100)
1	SORT AGGREGATE		1	
2	VIEW	VW_DAG_0	7	309 (1)
3	HASH GROUP BY		7	309 (1)
* 4	TABLE ACCESS FULL	SALES_FACT	7985	309 (1)

In Listing 12-1, in the first SELECT statement, I force an index-based access path using the hint index
(s sales_fact_c2), and the optimizer estimates the cost of the index-based access plan as 930. The execution plan
for the next SELECT statement without the hint shows that the optimizer estimates the cost of the full table scan access
path as 309. Evidently, the full table scan access path is estimated to be cheaper and more suited for this SQL statement.

Note■■   In Listing 12-1 and the other listings in this chapter, the statements have been run and their execution plans
displayed. However, for brevity, much of the output has been elided.

Let’s consider another SELECT statement. In Listing 12-2, all three columns are specified in the predicate of the
SQL statement. Because the predicates are more selective, the optimizer estimates that eight rows will be retrieved
from this SELECT statement, and the cost of the execution plan is 3. I force the full table scan execution plan in the
subsequent SELECT statement execution, and then the cost of this execution plan is 309. Index-based access is more
optimal for this SQL statement.

Listing 12-2.  Index Access Path 2

select product, year, week from sales_fact
where product='Xtend Memory' and year=1998 and week=1;
 
--
| Id | Operation | Name | E-Rows | Cost (%CPU)|
--
| 0 | SELECT STATEMENT | | | 3 (100)|
|* 1 | INDEX RANGE SCAN| SALES_FACT_C1 | 8 | 3 (0)|
--
 
select /*+ full(sales_fact) */ product, year, week from sales_fact where product='Xtend Memory'and
year=1998 and week=1;
 
--
| Id | Operation | Name | E-Rows | Cost (%CPU)|
--
| 0 | SELECT STATEMENT | | | 309 (100)|
|* 1 | TABLE ACCESS FULL| SALES_FACT | 8 | 309 (1)|
--
 

Evidently, no single execution plan is better for all SQL statements. Even for the same statement, depending on
the data distribution and the underlying hardware, execution plans can behave differently. If the data distribution

Chapter 12 ■ Indexes

344

changes, the execution plans can have different costs. This is precisely why you need to collect statistics that reflect the
distribution of data so the optimizer can choose the optimal plan.

Furthermore, full table scans and fast full scans perform multiblock read calls whereas index range scans or
index unique scans do single-block reads. Multiblock reads are much more efficient than single-block reads on a
block-by-block basis. Optimizer calculations factor this difference and choose an index-based access path or full table
access path as appropriate. In general, an Online Transaction Processing (OLTP) application uses index-based access
paths predominantly, and the data warehouse application uses full table access paths predominantly.

A final consideration is parallelism. Queries can be tuned to execute faster using parallelism when the predicates
are not selective enough. The cost of an execution plan using a parallel full table scan can be cheaper than the cost of
a serial index range scan, leading to an optimizer choice of a parallel execution plan.

Choice of Columns
Choosing optimal columns for indexing is essential to improve SQL access performance. The choice of columns to
index should match the predicates used by the SQL statements. The following are considerations for choosing an
optimal indexing column:

If the application code uses the equality or range predicates on a column while accessing •	
a table, it’s a good strategy to consider indexing that column. For multicolumn indexes,
the leading column should be the column used in most predicates. For example, if you have
a choice to index the columns c1 and c2, then the leading column should be the column used
in most predicates.

It is also important to consider the cardinality of the predicates and the selectivity of the •	
columns. For example, if a column has just two distinct values with a uniform distribution,
then that column is probably not a good candidate for B-tree indexes because 50 percent of
the rows will be fetched by equality predicates on the column value. On the other hand, if the
column has two distinct values with skewed distribution—in other words, one value occurs
in a few rows and the application accesses that table with the infrequently occurring column
value—it is preferable to index that column.

An example is a processed column in a work-in-progress table with three distinct values •	
(P, N, and E). The application accesses that table with the processed=‘N’ predicate. Only a
few unprocessed rows are left with a status of ‘N’ in processed_column, so access through
the index is optimal. However, queries with the predicate Processed=‘Y’ should not use the
index because nearly all rows are fetched by this predicate. Histograms can be used so that the
optimizer can choose the optimal execution plan, depending on the literal or bind variables.

Note■■   Cardinality is defined as the number of rows expected to be fetched by a predicate or execution step. Consider
a simple equality predicate on the column assuming uniform distribution in the column values. Cardinality is calculated as
the number of rows in the table divided by the number of distinct values in the column. For example, in the sales table,
there are 918,000 rows in the table, and the prod_id column has 72 distinct values, so the cardinality of the equality
predicate on the prod_id column is 918,000 ÷ 72 = 12,750. So, in other words, the predicate prod_id=:b1 expects
to fetch 12,750 rows. Columns with lower cardinality are better candidates for indexing because the index selectivity is
better. For unique columns, cardinality of an equality predicate is one. Selectivity is a measure ranging between zero and
one, simplistically defined as 1 ÷ NDV, where NDV stands for number of distinct values. So, the cardinality of a predicate
can be defined as the selectivity multiplied by the number of rows in the table.

Chapter 12 ■ Indexes

345

Think about column ordering, and arrange the column order in the index to suit the •	
application access patterns. For example, in the sales table, the selectivity of the prod_id
column is 1 ÷ 72 and the selectivity of the cust_id column is 1 ÷ 7059. It might appear that
column cust_id is a better candidate for indexes because the selectivity of that column is
lower. However, if the application specifies equality predicates on the prod_id column and
does not specify cust_id column in the predicate, then the cust_id column need not be
indexed even though the cust_id column has better selectivity. If the application uses the
predicates on both the prod_id and cust_id columns, then it is preferable to index both
columns, with the cust_id column as the leading column. Consideration should be given
to the column usage in the predicates instead of relying on the selectivity of the columns.

You should also consider the cost of an index. Inserts, deletes, and updates (updating the •	
indexed columns) maintain the indexes—meaning, if a row is inserted into the sales table,
then a new value pair is added to the index matching the new value. This index maintenance
is costlier if the columns are updated heavily, because the indexed column update results in
a delete and insert at the index level internally, which could introduce additional contention
points, too.

Consider the length of the column. If the indexed column is long, then the index is big. •	
The cost of that index may be higher than the overall gain from the index. A bigger index
also increases undo size and redo size.

In a multicolumn index, if the leading column has only a few distinct values, consider •	
creating that index as a compressed index. The size of these indexes are then smaller, because
repeating values are not stored in a compressed index. I discuss compressed indexes later in
this chapter.

If the predicates use functions on indexed columns, the index on that column may not be •	
chosen. For example, the predicate to_char(prod_id) =:B1 applies a to_char function on the
prod_id column. A conventional index on the prod_id column might not be chosen for this
predicate, and a function-based index needs to be created on the to_char(prod_id) column.

Do not create bitmap indexes on columns modified aggressively. Internal implementation •	
of a bitmap index is more suitable for read-only columns with few distinct values. The size of
the bitmap index grows rapidly if the indexed columns are updated. Excessive modification
to a bitmap index can lead to enormous locking contention, too. Bitmap indexes are more
prevalent in data warehouse applications.

The Null Issue
It is common practice for a SQL statement to specify the IS NULL predicate. Null values are not stored in single-column
indexes, so the predicate IS NULL does not use a single-column index. But, null values are stored in a multicolumn
index. By creating a multicolumn index with a dummy second column, you can enable the use of an index for the IS
NULL clause

In Listing 12-3, a single-column index T1_N1 is created on column n1. The optimizer does not choose the
index access path for the SELECT statement with the predicate n1 is null. Another index, t1_n10, is created on the
expression (n1,0), and the optimizer chooses the access path using the index because the null values are stored in
this multicolumn index. The size of the index is kept smaller by adding a dummy value of 0 to the index.

Chapter 12 ■ Indexes

346

Listing 12-3.  NULL Handling

drop table t1;
create table t1 (n1 number, n2 varchar2(100));
insert into t1 select object_id, object_name from dba_objects where rownum<101;
commit;
create index t1_n1 on t1(n1);
select * from t1 where n1 is null;
 
--
| Id | Operation | Name | E-Rows | Cost (%CPU)|
--
| 0 | SELECT STATEMENT | | | 3 (100)|
|* 1 | TABLE ACCESS FULL| T1 | 1 | 3 (0)|
--
 
create index t1_n10 on t1(n1,0);
select * from t1 where n1 is null;
 
--
| Id | Operation | Name | E-Rows | Cost (%CPU)|
--
0	SELECT STATEMENT			2 (100)
1	TABLE ACCESS BY INDEX ROWID BATCHED	T1	1	2 (0)
* 2	INDEX RANGE SCAN	T1_N10	5	1 (0)
-- 

Index Structural Types
Oracle Database provides various types of indexes to suit application access paths. These index types can be classified
loosely into three broad categories based on the structure of an index: B-tree indexes, bitmap indexes, and IOTs.

B-tree indexes
B-tree indexes implement a structure similar to an inverted tree with a root node, branch nodes, and leaf nodes, and
they use tree traversal algorithms to search for a column value. The leaf node holds the (value, rowid) pair for that
index key column, and the rowid refers to the physical location of a row in the table block. The branch block holds the
directory of leaf blocks and the value ranges stored in those leaf blocks. The root block holds the directory of branch
blocks and the value ranges addressed in those branch blocks.

Figure 12-1 shows the B-tree index structure for a column with a number datatype. This figure is a generalization
of the index structure to help you improve your understanding; the actual index structures are far more complex. The
root block of the index holds branch block addresses and the range of values addressed in the branch blocks. The
branch blocks hold the leaf block addresses and the range of values stored in the leaf blocks.

Chapter 12 ■ Indexes

347

A search for a column value using an index usually results in an index range scan or an index unique scan. Such
a search starts at the root block of the index tree, traverses to the branch block, and then traverses to the leaf block.
Rowids are fetched from the leaf blocks from the (column value, rowid) pairs, and each row piece is fetched from the
table block using the rowid. Without the indexes, searching for a key inevitably results in a full table scan of the table.

In Figure 12-1, if the SQL statement is searching for a column value of 12,000 with a predicate n1=12000, the index
range scan starts at the root block, traverses to the second branch block because the second branch block holds the range
of values from 11,001 to 22,000, and then traverses to the fourth leaf block because that leaf block holds the column value
range from 11,001 to 16,000. As the index stores the sorted column values, the range scan quickly accesses the column
value matching n1=12000 from the leaf block entries, reads the rowids associated with that column value, and accesses the
rows from the table using those rowids. Rowids are pointers to the physical location of a row in the table block.

B-tree indexes are suitable for columns with lower selectivity. If the columns are not selective enough, the index
range scan is slower. Furthermore, less selective columns retrieve numerous rowids from the leaf blocks, leading to
excessive single-block access to the table.

Bitmap Indexes
Bitmap indexes are organized and implemented differently than B-tree indexes. Bitmaps are used to associate the
rowids with the column value. Bitmap indexes are not suitable for columns with a higher number of updates or for
tables with heavy Data Manipulation Language (DML) activity. Bitmap indexes are suitable for data warehouse tables

Figure 12-1.  B-tree index structure

Chapter 12 ■ Indexes

348

with mostly read-only operations on columns with lower distinct values. If the tables are loaded regularly, as in the
case of a typical data warehouse table, it is important to drop the bitmap index before the load, then load the data and
recreate the bitmap index.

Bitmap indexes can be created on partitioned tables, too, but they must be created as local indexes. As of Oracle
Database release 12c, bitmap indexes cannot be created as global indexes. Bitmap indexes cannot be created as
unique indexes either.

In Listing 12-4, two new bitmap indexes are added on columns country and region. The SELECT statement
specifies predicates on columns country and region. The execution plan shows three major operations: bitmaps from
the bitmap index sales_fact_part_bm1 fetched by applying the predicate country=‘Spain’, bitmaps from the bitmap
index sales_fact_part_bm2 fetched by applying the predicate region=‘Western Europe’, and then those two bitmaps
are ANDed to calculate the final bitmap using the BITMAP AND operation. The resulting bitmap is converted to rowids,
and the table rows are accessed using those rowids.

Listing 12-4.  Bitmap Indexes

drop index sales_fact_part_bm1;
drop index sales_fact_part_bm2;
 
create bitmap index sales_fact_part_bm1 on sales_fact_part (country) Local;
create bitmap index sales_fact_part_bm2 on sales_fact_part (region) Local;
 
select * from sales_fact_part
where country='Spain' and region='Western Europe' ;

| Id | Operation | Name | Pstart| Pstop |

0	SELECT STATEMENT			
1	PARTITION LIST ALL		1	5
2	TABLE ACCESS BY LOCAL INDEX	SALES_FACT_PART	1	5
	ROWID BATCHED			
3	BITMAP CONVERSION TO ROWIDS			
4	BITMAP AND			
* 5	BITMAP INDEX SINGLE VALUE	SALES_FACT_PART_BM1	1	5
* 6	BITMAP INDEX SINGLE VALUE	SALES_FACT_PART_BM2	1	5

Bitmap indexes can introduce severe locking issues if the index is created on columns modified heavily by DML
activity. Updates to a column with a bitmap index must update a bitmap, and the bitmaps usually cover a set of
rows. So, an update to one row can lock a set of rows in that bitmap. Bitmap indexes are used predominantly in data
warehouse applications; they are of limited use in OLTP applications.

Index-Organized Tables
Conventional tables are organized as heap tables because the table rows can be stored in any table block. Fetching
a row from a conventional table using a primary key involves primary key index traversal, followed by a table block
access using the rowid. In IOTs, the table itself is organized as an index, all columns are stored in the index tree itself,
and the access to a row using a primary key involves index access only. This access using IOTs is better because all
columns can be fetched by accessing the index structure, thereby avoiding the table access. This is an efficient access
pattern because the number of accesses is minimized.

Chapter 12 ■ Indexes

349

With conventional tables, every row has a rowid. When rows are created in a conventional table, they do not
move (row chaining and row migration are possible, but the headpiece of the row does not move). However, IOT rows
are stored in the index structure itself, so rows can be migrated to different leaf blocks as a result of DML operations,
resulting in index leaf block splitting and merging. In a nutshell, rows in the IOTs do not have physical rowids whereas
rows in the heap tables always have fixed rowids.

IOTs are appropriate for tables with the following properties:

•	 Tables with shorter row length: Tables with fewer short columns are appropriate for IOTs.
If the row length is longer, the size of the index structure can be unduly large, leading to more
resource usage than the heap tables.

•	 Tables accessed mostly through primary key columns: Although secondary indexes can be
created on IOTs, secondary indexes can be resource intensive if the primary key is longer.
I cover secondary indexes later in this section.

In Listing 12-5, an IOT sales_iot is created by specifying the keywords organization index. Note that the
SELECT statement specifies only a few columns in the primary key, and the execution plan shows that columns are
retrieved by an index range scan, thereby avoiding a table access. Had this been a conventional heap table, you would
see an index unique scan access path followed by rowid-based table access.

Listing 12-5.  Index Organized Tables

drop table sales_iot;
create table sales_iot
 (prod_id number not null,
 cust_id number not null,
 time_id date not null,
 channel_id number not null,
 promo_id number not null,
 quantity_sold number (10,2) not null,
 amount_sold number(10,2) not null,
 primary key (prod_id, cust_id, time_id, channel_id, promo_id)
)
organization index ;
insert into sales_iot select * from sales;
commit;
 
@analyze_table
 
select quantity_sold, amount_sold from sales_iot where
prod_id=13 and cust_id=2 and channel_id=3 and promo_id=999;
 
--
| Id | Operation | Name | E-Rows | Cost (%CPU)|
--
| 0 | SELECT STATEMENT | | | 3 (100)|
|* 1 | INDEX RANGE SCAN| SYS_IOT_TOP_94835 | 1 | 3 (0)|
--
 

A secondary index can be created on an IOT, too. Conventional indexes store the (column value, rowid) pair.
But, in IOTs, rows do not have a physical rowid; instead, a (column value, logical rowid) pair is stored in the secondary
index. This logical rowid is essentially a primary key column with the values of the row stored efficiently. Access
through the secondary index fetches the logical rowid using the secondary index, then uses the logical rowid to access
the row piece using the primary key IOT structure.

Chapter 12 ■ Indexes

350

In Listing 12-6, a secondary index sales_iot_sec is created on an IOT sales_iot. The SELECT statement
specifies the predicates on secondary index columns. The execution plan shows an all index access, where logical
rowids are fetched from the secondary index sales_iot_sec with an index range scan access method, and then rows
are fetched from the IOT primary key using the logical rowids fetched with an index unique scan access method. Also,
note that the size of the secondary index is nearly one half the size of the primary index, and secondary indexes can be
resource intensive if the primary key is longer.

Listing 12-6.  Secondary Indexes on an IOT

drop index sales_iot_sec ;
create index sales_iot_sec on
 sales_iot (channel_id, time_id, promo_id, cust_id) ;
 
select quantity_sold, amount_sold from sales_iot where
channel_id=3 and promo_id=999 and cust_id=12345 and time_id='30-JAN-00';

| Id | Operation | Name | E-Rows | Cost (%CPU)|

0	SELECT STATEMENT			7 (100)
* 1	INDEX UNIQUE SCAN	SYS_IOT_TOP_94835	4	7 (0)
* 2	INDEX RANGE SCAN	SALES_IOT_SEC	4	3 (0)

select segment_name, sum(bytes/1024/1024) sz from dba_segments
where segment_name in ('SYS_IOT_TOP_94835','SALES_IOT_SEC')
group by segment_name ;
 
SEGMENT_NAME SZ
------------------------------ ----------
SALES_IOT_SEC 36
SYS_IOT_TOP_94835 72
 

IOTs are special structures that are useful to eliminate additional indexes on tables with short rows that undergo
heavy DML and SELECT activity. However, adding secondary indexes on IOTs can cause an increase in index size,
redo size, and undo size if the primary key is longer.

Partitioned Indexes
Indexes can be partitioned similar to a table partitioning scheme. There is a variety of ways to partition the indexes.
Indexes can be created on partitioned tables as local or global indexes, too. Furthermore, there are various partitioning
schemes available, such as range partitioning, hash partitioning, list partitioning, and composite partitioning. From
Oracle Database version 10g onward, partitioned indexes also can be created on nonpartitioned tables.

Local Indexes
Locally partitioned indexes are created with the LOCAL keyword and have the same partition boundaries as the table.
In a nutshell, there is an index partition associated with each table partition. Availability of the table is better because
the maintenance operations can be performed at the individual partition level. Maintenance operations on the index
partitions lock only the corresponding table partitions, not the whole table. Figure 12-2 shows how a local index
corresponds to a table partition.

Chapter 12 ■ Indexes

351

If the local index includes the partitioning key columns and if the SQL statement specifies predicates on the
partitioning key columns, the execution plan needs to access just one or a few index partitions. This concept is known
as partition elimination. Performance improves if the execution plan searches in a minimal number of partitions.
In Listing 12-6, a partitioned table sales_fact_part is created with a partitioning key on the year column. A local
index sales_fact_part_n1 is created on the product and year columns. First, the SELECT statement specifies the
predicates on just the product column without specifying any predicate on the partitioning key column. In this case,
all five index partitions must be accessed using the predicate product = 'Xtend Memory'. Columns Pstart and Pstop
in the execution plan indicate that all partitions are accessed to execute this SQL statement.

Next, the SELECT statement in Listing 12-7 specifies the predicates on columns product and year. Using the
predicate year=1998, the optimizer determines that only the second partition is to be accessed, eliminating access
to all other partitions, because only the second partition stores the year column 1998 as indicated by the Pstart and
Pstop columns in the execution plan. Also, the keywords in the execution plan TABLE ACCESS BY LOCAL INDEX ROWID
BATCHED indicate that the row is accessed using a local index.

Listing 12-7.  Local Indexes

drop table sales_fact_part;
CREATE table sales_fact_part
partition by range (year)
(partition p_1997 values less than (1998) ,
 partition p_1998 values less than (1999),
 partition p_1999 values less than (2000),
 partition p_2000 values less than (2001),
 partition p_max values less than (maxvalue)
)
AS SELECT * from sales_fact;
 
create index sales_fact_part_n1 on sales_fact_part(product, year) local;
 
select * from (
 select * from sales_fact_part where product = 'Xtend Memory'
) where rownum <21 ;
 

Figure 12-2.  Local partitioned index

Chapter 12 ■ Indexes

352

| Id | Operation | Name | Pstart| Pstop |

0	SELECT STATEMENT			
* 1	COUNT STOPKEY			
2	PARTITION LIST ALL		1	5
3	TABLE ACCESS BY LOCAL	SALES_FACT_PART	1	5
	INDEX ROWID BATCHED			
* 4	INDEX RANGE SCAN	SALES_FACT_PART_N1	1	5

select * from (
 select * from sales_fact_part where product = 'Xtend Memory' and year=1998
) where rownum <21 ;

| Id | Operation | Name | Pstart| Pstop |

0	SELECT STATEMENT			
* 1	COUNT STOPKEY			
2	PARTITION LIST SINGLE		KEY	KEY
3	TABLE ACCESS BY LOCAL	SALES_FACT_PART	1	1
	INDEX ROWID BATCHED			
* 4	INDEX RANGE SCAN	SALES_FACT_PART_N1	1	1

Although the application availability is important, consider another point: If the predicate does not specify the
partitioning key column, then all index partitions must be accessed to identify the candidate rows in the case of local
indexes. This could lead to a performance issue if the partition count is very high, in the order of thousands. Even
then, you want to measure the impact of creating the index as a local instead of a global index.

Creating local indexes improves the concurrency, too. I discuss this concept while discussing hash partitioning
schemes.

Global Indexes
Global indexes are created with the keyword GLOBAL. In global indexes, partition boundaries of the index and the table
do not need to match, and the partition keys can be different between the table and the index. Figure 12-3 shows how
a global index bound does not have to match a table partition.

Chapter 12 ■ Indexes

353

In Listing 12-8, a global index sales_fact_part_n1 is created on the year column. The partition boundaries are
different between the table and the index, even though the partitioning column is the same. The subsequent SELECT
statement specifies the predicate year=1998 to access the table, and the execution plan shows that partition 1 of the
index and partition 2 of the table are accessed. Partition pruning was performed both at the table and index levels.

Listing 12-8.  Global Indexes

create index sales_fact_part_n1 on sales_fact_part (year)
global partition by range (year)
 (partition p_1998 values less than (1999),
 partition p_2000 values less than (2001),
 partition p_max values less than (maxvalue)
);
 
select * from (
 select * from sales_fact_part where product = 'Xtend Memory' and year=1998
) where rownum <21 ;

| Id | Operation | Name | Pstart| Pstop |

0	SELECT STATEMENT			
* 1	COUNT STOPKEY			
2	PARTITION LIST SINGLE		1	1
3	TABLE ACCESS BY LOCAL	SALES_FACT_PART	1	1
	INDEX ROWID BATCHED			
* 4	INDEX RANGE SCAN	SALES_FACT_PART_N1	1	1

Figure 12-3.  Global partitioned index

Chapter 12 ■ Indexes

354

Maintenance on the global index leads to acquiring a higher level lock on the table, thereby reducing application
availability. In contrast, maintenance can be done at the partition level in the local indexes, affecting only the
corresponding table partition. In the example in Listing 12-8, rebuilding the index Sales_fact_part_n1 acquires a
table-level lock in exclusive mode, leading to application downtime.

Unique indexes can be created as global indexes without including partitioning columns. But, the partitioning
key of the table should be included in the case of local indexes to create a unique local index.

The partitioning scheme discussed so far is known as a range partitioning scheme. In this scheme, each partition
stores rows with a range of partitioning column values. For example, clause partition p_2000 values less than
(2001) specifies the upper boundary of the partition, so partition p_2000 stores rows with year column values less
than 2001. The lower boundary of this partition is determined by the prior partition specification partition p_1998
values less than (1999). So, partition p_2000 stores the year column value range between 1999 and 2000.

Hash Partitioning vs. Range Partitioning
In the hash partitioning scheme, the partitioning key column values are hashed using a hashing algorithm to identify
the partition to store the row. This type of partitioning scheme is appropriate for partitioning columns populated
with artificial keys, such as rows populated with sequence-generated values. If the distribution of the column value is
uniform, then all partitions store a nearly equal number of rows.

There are a few added advantages with the hash partitioning scheme. There is an administration overhead with
the range partitioning scheme because new partitions need to be added regularly to accommodate future rows.
For example, if the partitioning key is order date_column, then the new partitions must be added (or the partition with
maxvalue specified must be split) to accommodate rows with future date values. With the hash partitioning scheme,
the overhead is avoided because the rows are distributed equally among the partitions using a hashing algorithm.
All partitions have nearly equal numbers of rows if the distribution of the column value is uniform and there is no
reason to add more partitions regularly.

Note■■   Because of the nature of hashing algorithms, it is better to use a partition count of binary powers (in other
words, 2, 4, 8, and so on). If you are splitting the partitions, it’s better to double the number of partitions to keep near
equal-size partitions. If you do not do this, the partitions all have different numbers of rows, which defeats the purpose
of partitioning.

Hash partitioned tables and indexes are effective in combating concurrency-related performance associated with
unique and primary key indexes. It is typical of primary key columns to be populated using a sequence of generated
values. Because the indexes store the column values in a sorted order, the column values for new rows go into the
rightmost leaf block of the index. After that leaf block is full, subsequently inserted rows go into the new rightmost leaf
block, with the contention point moving from one leaf block to another leaf block. As the concurrency of the insert into
the table increases, sessions modify the rightmost leaf block of the index aggressively. Essentially, the current rightmost
leaf block of that index is a major contention point. Sessions wait for block contention wait events such as buffer busy
waits. In Real Application Clusters(RAC), this problem is magnified as a result of global cache communication overhead,
and the event gc buffer busy becomes the top wait event. This type of index that grows rapidly on the right-hand side is
called a right-hand growth index.

Concurrency issues associated with right-hand growth indexes can be eliminated by hash partitioning the index
with many partitions. For example, if the index is partitioned by a hash with 32 partitions, then inserts are spread
effectively among the 32 rightmost leaf blocks because there are 32 index trees (an index tree for an index partition).
Partitioning the table using a hash partitioning scheme and then creating a local index on that partitioned table also
has the same effect.

Chapter 12 ■ Indexes

355

In Listing 12-9, a hash partitioned table sales_fact_part is created and the primary key id column is populated from
the sequence sfseq. There are 32 partitions in this table with 32 matching index partitions for the sales_fact_part_n1
index, because the index is defined as a local index. The subsequent SELECT statement accesses the table with the predicate
id=1000. The Pstart and Pstop columns in the execution plan show that partition pruning has taken place and only
partition 25 is being accessed. The optimizer identifies partition 25 by applying a hash function on the column value 1000.

Listing 12-9.  Hash Partitioning Scheme

drop sequence sfseq;
create sequence sfseq cache 200;
 
drop table sales_fact_part;
CREATE table sales_fact_part
partition by hash (id)
partitions 32
AS SELECT sfseq.nextval id , f.* from sales_fact f;
 
create unique index sales_fact_part_n1 on sales_fact_part(id) local;
 
select * from sales_fact_part where id =1000;
--
| Id | Operation | Name | Pstart| Pstop |
--
0	SELECT STATEMENT			
1	PARTITION HASH SINGLE		25	25
2	TABLE ACCESS BY LOCAL	SALES_FACT_PART	25	25
	INDEX ROWID			
* 3	INDEX UNIQUE SCAN	SALES_FACT_PART_N1	25	25
--
 

If the data distribution is uniform in the partitioning key, as in the case of values generated from a sequence, then the
rows are distributed uniformly to all partitions. You can use the dbms_rowid package to measure the data distribution in a
hash partitioned table. In Listing 12-10, I use the dbms_rowid.rowid_object call to derive the object_id of the partition.
Because every partition has its own object_id, you can aggregate the rows by object_id to measure the distribution of
rows among the partitions. The output shows that all partitions have a nearly equal number of rows.

Listing 12-10.  Hash Partitioning Distribution

select dbms_rowid.rowid_object(rowid) obj_id, count(*) from sales_fact_part
group by dbms_rowid.rowid_object(rowid);
 
OBJ_ID COUNT(*)
------- ----------
 94855 3480
 94866 3320
 94873 3544
...
 94869 3495
 94876 3402
 94881 3555
 
32 rows selected.
 

Chapter 12 ■ Indexes

356

Rows are distributed uniformly among partitions using the hashing algorithm. In a few cases, you might need to
precalculate the partition where a row is to be stored. This knowledge is useful to improve massive loading of data into
a hash partitioned table. As of Oracle Database version 12c, the ora_hash function can be used to derive the partition
ID if supplied with a partition key value. For example, for a table with 32 partitions, ora_hash(column_name, 31, 0)
returns the partition ID. The second argument to the ora_hash function is the partition count less one. In Listing 12-11,
I use both ora_hash and dbms_rowid.rowid_object to show the mapping between object_id and the hashing
algorithm output. A word of caution, though: In future releases of Oracle Database, you need to test this before relying
on this strategy because the internal implementation of hash partitioned tables may change.

Listing 12-11.  Hash Partitioning Algorithm

select dbms_rowid.rowid_object(rowid) obj_id, ora_hash (id, 31, 0) part_id ,count(*)
from sales_fact_part
group by dbms_rowid.rowid_object(rowid), ora_hash(id,31,0)
order by 1;
 
OBJ_ID PART_ID COUNT(*)
------- -------- ---------
 94851 0 3505
 94852 1 3492
 94853 2 3572
...
 94880 29 3470
 94881 30 3555
 94882 31 3527
 
32 rows selected.
 

In essence, concurrency can be increased by partitioning the table and creating the right-hand growth indexes as
local indexes. If the table cannot be partitioned, then that index alone can be partitioned to hash partitioning schema
to resolve the performance issue.

Solutions to Match Application Characteristics
Oracle Database also provides indexing facilities to match the application characteristics. For example, some
applications might be using function calls heavily, and SQL statements from those applications can be tuned using
function-based indexes. I now discuss a few special indexing options available in Oracle Database.

Compressed Indexes
Compressed indexes are a variation of the conventional B-tree indexes. This type of index is more suitable for
columns with repeating values in the leading columns. Compression is achieved by storing the repeating values in the
leading columns once in the index leaf block. Pointers from the row area point to these prefix rows, avoiding explicit
storage of these repeating values in the row area. Compressed indexes can be smaller compared with conventional
indexes if the column has many repeating values. There is a minor increase in CPU usage during the processing of
compressed indexes, which can be ignored safely.

Chapter 12 ■ Indexes

357

The simplified syntax for the compressed index specification clause is as follows:
 
Create index <index name> on <schema.table_name>
 (col1 [,col2... coln])
Compress N Storage-parameter-clause
;
 

The number of leading columns to compress can be specified while creating a compressed index using the syntax
compress N. For example, to compress two leading columns in a three-column index, the clause compress 2 can be
specified. Repeating values in the first two columns are stored in the prefix area just once. You can only compress the
leading columns; for example, you can’t compress columns 1 and 3.

In Listing 12-12, a compressed index sales_fact_c1 is created on columns product, year, and week, with a
compression clause compress 2 specified to compress the two leading columns. In this example, the repeating values
of the product and year columns are stored once in the leaf blocks because the compress 2 clause is specified.
Because there is higher amount of repetition in these two column values, the index size is reduced from 6MB
(conventional index) to 2MB (compressed index) by compressing these two leading columns.

Listing 12-12.  Compressed Indexes

 select * from (
 select product, year,week, sale from sales_fact
 order by product, year,week
) where rownum <21;
 
PRODUCT YEAR WEEK SALE
------------------------------ ---------- ----- ----------
1.44MB External 3.5" Diskette 1998 1 9.71
1.44MB External 3.5" Diskette 1998 1 38.84
1.44MB External 3.5" Diskette 1998 1 9.71
...
 
create index sales_fact_c1 on sales_fact (product, year, week);
 
select 'Compressed index size (MB) :' ||trunc(bytes/1024/1024, 2)
from user_segments where segment_name='SALES_FACT_C1';
 
Compressed index size (MB) :6
...
create index sales_fact_c1 on sales_fact (product, year, week) compress 2;
 
select 'Compressed index size (MB) :' ||trunc(bytes/1024/1024,2)
from user_segments where segment_name='SALES_FACT_C1';
 
Compressed index size (MB) :2
 

In Figure 12-4, a high-level overview of a compressed index leaf block is shown. This compressed index is a
two-column index on the continent and country columns. Repeating values of continent columns are stored
once in the prefix area of the index leaf blocks because the index is created with the clause compress 1. Pointers are
used from the row area pointing to the prefix rows. For example, the continent column value ASIA occurs in three
rows—(Asia, Hong Kong), (Asia, India), and (Asia, Indonesia)—but is stored once in the prefix area, and these three
rows reuse the continent column value, avoiding explicit storage of the value three times. This reuse of column values
reduces the size of the index.

Chapter 12 ■ Indexes

358

It is evident that data properties play a critical role in the compression ratio. If the repetition count of the column
values is higher, then the compressed indexes provide greater benefit. If there is no repetition, then the compressed
index might be bigger than the conventional index. So, compressed indexes are suitable for indexes with fewer
distinct values in the leading columns. Columns compression and prefix_length in the dba_indexes/user_indexes
view shows the compression attributes of the indexes.

The number of columns to choose for compression depends on the column value distribution. To identify
the optimal number of columns to compress, the analyze index/validate structure statement can be used.
In Listing 12-13, an uncompressed index sales_fact_c1 is analyzed with the validate structure clause. This
analyze statement populates the index_stats view. The column index_stats.opt_cmpr_count displays the optimal
compression count; for this index, it’s 2. The column index_stats.cmpr_pctsave displays the index size savings
compressing with the opt_cmpr_count columns. In this example, there is a savings of 67 percent in index space usage;
so, the size of the compressed index with the compress 2 clause is 33 percent of the conventional uncompressed
index size. This size estimate computes to 1.98MB and is close enough to actual index size.

Listing 12-13.  Optimal Compression Count

analyze index sales_fact_c1 validate structure;
 
select opt_cmpr_count, opt_cmpr_pctsave from index_stats
where name ='SALES_FACT_C1';
 
OPT_CMPR_COUNT OPT_CMPR_PCTSAVE
-------------- ----------------
-------------2 --------------67
 

Beware that the analyze index validate structure statement acquires a share-level lock on the table and
might induce application downtime.

There are a few restrictions on compressed indexes. For example, all columns can be compressed in the case of
nonunique indexes, and all but the last column can be compressed in the case of unique indexes.

Figure 12-4.  Compressed index

Chapter 12 ■ Indexes

359

Function-Based Indexes
If a predicate applies a function on an indexed column, then the index on that column might not be chosen by the
optimizer. For example, the index on the id column may not be chosen for the predicate to_char(id)= ‘1000’ because
the to_char function is applied on the indexed column. This restriction can be overcome by creating a function-based
index on the expression to_char(id). Function-based indexes prestore the results of functions. Expressions specified
in the predicate must match the expressions specified in the function-based index, though.

A function-based index can be created on user-defined functions, but those functions must be defined as
deterministic functions—meaning, they must always return a consistent value for every execution of the function.
User-defined functions that do not adhere to this rule can’t be used to create the function-based indexes.

In Listing 12-14, a SELECT statement accesses the sales_fact_part table using the clause to_char(id)= ‘1000’.
Without a function-based index, the optimizer chooses a full table scan access plan. A function-based index
fact_part_fbi1 with the expression to_char(id) is added, and the optimizer chooses an index-based access path
for the SELECT statement.

Listing 12-14.  Function-Based Index

drop index sales_fact_part_fbi1;
select * from sales_fact_part where to_char(id)='1000';
 
--
| Id | Operation | Name | Pstart| Pstop |
--
0	SELECT STATEMENT			
1	PARTITION HASH ALL		1	32
* 2	TABLE ACCESS FULL	SALES_FACT_PART	1	32
--
 
create index sales_fact_part_fbi1 on sales_fact_part(to_char(id)) ;
@analyze_table_sfp
select * from sales_fact_part where to_char(id)='1000';
 
--
| Id | Operation | Name | Pstart| Pstop |
--
0	SELECT STATEMENT			
1	TABLE ACCESS BY GLOBAL	SALES_FACT_PART	ROWID	ROWID
	INDEX ROWID BATCHED		ROWID	ROWID
* 2	INDEX RANGE SCAN	SALES_FACT_PART_FBI1		
--
 
Predicate Information (identified by operation id):

 2 - access("SALES_FACT_PART"."SYS_NC00009$"='1000')
 

Note the access predicates printed at the end of Listing 12-14: "SYS_NC00009$"='1000'. A few implementation
details of the function-based indexes are presented in Listing 12-15. Function-based indexes add a virtual column,
with the specified expression as the default value, and then index that virtual column. This virtual column is visible
in the dba_tab_cols view, and the dba_tab_cols.data_default column shows that expression used to populate the
virtual column. Further viewing of dba_ind_columns shows that the virtual column is indexed.

Chapter 12 ■ Indexes

360

Listing 12-15.  Virtual Columns and Function-Based Index

select data_default, hidden_column, virtual_column from dba_tab_cols
where table_name='SALES_FACT_PART' and virtual_column='YES';
 
DATA_DEFAULT HID VIR
------------------------------ --- ---
TO_CHAR("ID") YES YES
 
select index_name,column_name from dba_ind_columns
where index_name='SALES_FACT_PART_FBI1';
 
INDEX_NAME COLUMN_NAME
------------------------------ -------------
SALES_FACT_PART_FBI1 SYS_NC00009$
 

It is important to collect statistics on the table after adding a function-based index. If not, that new virtual column
does not have statistics, which might lead to performance anomalies. The script analyze_table_sfp.sql is used to
collect statistics on the table with cascade=>true. Listing 12-16 shows the contents of the script analyze_table_sfp.sql.

Listing 12-16.  analyze_table_sfp.sql

begin
 dbms_stats.gather_table_stats (
 ownname =>user,
 tabname=>'SALES_FACT_PART',
 cascade=>true);
end;
/
 

Function-based indexes can be implemented using virtual columns explicitly, too. An index can be added over
that virtual column optionally. The added advantage with this method is that you can also use a partitioning scheme
with a virtual column as the partitioning key. In Listing 12-17, a new virtual column, id_char, is added to the table
using the VIRTUAL keyword. Then, a globally partitioned index on the id_char virtual column is created.
The execution plan of the SELECT statement shows that table is accessed using the new index, and the predicate
to_char(id)='1000' is rewritten to use the virtual column with the predicate id_char='1000'.

Listing 12-17.  Virtual Columns and Function-Based Index

alter table sales_fact_part add
 (id_char varchar2(40) generated always as (to_char(id)) virtual);
 
create index sales_fact_part_c1 on sales_fact_part (id_char)
global partition by hash (id_char)
partitions 32 ;
 
@analyze_table_sfp
select * from sales_fact_part where to_char(id)='1000' ;
 

Chapter 12 ■ Indexes

361

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	PARTITION HASH SINGLE	
2	TABLE ACCESS BY GLOBAL INDEX ROWID BATCHED	SALES_FACT_PART
* 3	INDEX RANGE SCAN	SALES_FACT_PART_C1
--
 
Predicate Information (identified by operation id):

 3 - access("SALES_FACT_PART"."ID_CHAR"='1000') 

Reverse Key Indexes
Reverse key indexes were introduced by Oracle as another option to combat performance issues associated with
right-hand growth indexes discussed in “Hash Partitioning vs. Range Partitioning.” In reverse key indexes, column
values are stored in reverse order, character by character. For example, column value 12345 is stored as 54321 in the
index. Because the column values are stored in reverse order, consecutive column values are stored in different leaf
blocks of the index, thereby avoiding the contention issues with right-hand growth indexes. In the table blocks, these
column values are stored as 12345, though.

There are two issues with reverse key indexes:

The range scan on reverse key indexes is not possible for range operators such as between, •	
less than, greater than, and so on. This is understandable because the underlying assumption
of an index range scan is that column values are stored in ascending or descending logical key
order. Reverse key indexes break this assumption because the column values are stored in the
reverse order, no logical key order is maintained, and so index range scans are not possible
with reverse key indexes.

Reverse key indexes can increase physical reads artificially because the column values are •	
stored in numerous leaf blocks and those leaf blocks might need to be read into the buffer
cache to modify the block. But, the cost of this increase in IO should be measured against the
concurrency issues associated with right-hand growth indexes.

In Listing 12-18, a reverse key index Sales_fact_part_n1 is created with a REVERSE keyword. First, the SELECT
statement with the predicate id=1000 uses the reverse key index, because equality predicates can use reverse key
indexes. But, the next SELECT statement with the predicate id between 1000 and 1001 uses the full table scan access
path because the index range scan access path is not possible with reverse key indexes.

Chapter 12 ■ Indexes

362

Listing 12-18.  Reverse Key Indexes

drop index sales_fact_part_n1;
create unique index sales_fact_part_n1 on sales_fact_part (id) global reverse ;
 
select * from sales_fact_part where id=1000;

| Id | Operation | Name | Pstart| Pstop |

0	SELECT STATEMENT			
1	TABLE ACCESS BY GLOBAL	SALES_FACT_PART	25	25
	INDEX ROWID			
* 2	INDEX UNIQUE SCAN	SALES_FACT_PART_N1		

select * from sales_fact_part where id between 1000 and 1001;
 
--
| Id | Operation | Name | Pstart| Pstop |
--
0	SELECT STATEMENT			
1	PARTITION HASH ALL		1	32
* 2	TABLE ACCESS FULL	SALES_FACT_PART	1	32
--
 

Especially in RAC, right-hand growth indexes can cause intolerable performance issues. Reverse key indexes
were introduced to combat this performance problem, but you should probably consider hash partitioned indexes
instead of reverse key indexes.

Descending Indexes
Indexes store column values in ascending order by default; this can be switched to descending order using descending
indexes. If your application fetches the data in a specific order, then the rows need to be sorted before the rows are sent
to the application. These sorts can be avoided using descending indexes. These indexes are useful if the application
is fetching the data millions of times in a specific order—for example, customer data fetched from the customer
transaction table in the reverse chronological order.

In Listing 12-19, an index Sales_fact_c1 together with the columns product desc, year desc, week desc
specifies a descending order for these three columns. The SELECT statement accesses the table by specifying an ORDER
BY clause with the sort order product desc, year desc, week desc matching the index sort order. The execution
plan shows there is no sort step, even though there is an ORDER BY clause in the SELECT statement.

Listing 12-19.  Descending Indexes

drop index sales_fact_c1;
create index sales_fact_c1 on sales_fact
(product desc, year desc, week desc) ;
 
@analyze_sf.sql
 
select year, week from sales_fact s
where year in (1998,1999,2000) and week<5 and product='Xtend Memory'
order by product desc,year desc, week desc ;
 

Chapter 12 ■ Indexes

363

| Id | Operation | Name | E-Rows | Cost (%CPU)|

0	SELECT STATEMENT			5 (100)
1	INLIST ITERATOR			
* 2	INDEX RANGE SCAN	SALES_FACT_C1	109	5 (0)

select index_name, index_type from dba_indexes
where index_name='SALES_FACT_C1';
 
INDEX_NAME INDEX_TYPE
------------------------------ ------------------------------
SALES_FACT_C1 FUNCTION-BASED NORMAL
 

Descending indexes are implemented as a function-based index as of Oracle Database release 11gR2.

Solutions to Management Problems
Indexes can be used to resolve operational problems faced in the real world. For example, to see the effects of a
new index on a production application, you can use invisible indexes. You can also use invisible indexes to drop the
indexes safely or, if working with Exadata, to test whether the indexes are still needed.

Invisible Indexes
In certain scenarios, you might want to add an index to tune the performance of a SQL statement, but you may not be
sure about the negative impact of the index. Invisible indexes are useful to measure the impact of a new index with
less risk. An index can be added to the database marked as invisible, and the optimizer does not choose that index.
You can make an index invisible to ensure there is no negative consequence of the absence of the index.

After adding the index to the database, you can set a parameter optimizer_use_invisible_indexes to TRUE in
your session without affecting the application performance, and then review the execution plan of the SQL statement.
In Listing 12-20, the first SELECT statement uses the index sales_fact_c1 in the execution plan. The next SQL
statement marks the sales_fact_c1 index as invisible, and the second execution plan of the same SELECT statement
shows that the index is ignored by the optimizer.

Listing 12-20.  Invisible Indexes

select * from (
 select * from sales_fact where product = 'Xtend Memory' and year=1998 and week=1
) where rownum <21 ;

| Id | Operation | Name | Rows | Bytes|

0	SELECT STATEMENT		7	490
* 1	COUNT STOPKEY			
2	TABLE ACCESS BY INDEX ROWID BATCHED	SALES_FACT	7	490
* 3	INDEX RANGE SCAN	SALES_FACT_C1	9	

alter index sales_fact_c1 invisible;
 

Chapter 12 ■ Indexes

364

select * from (
 select * from sales_fact where product = 'Xtend Memory' and year=1998 and week=1
) where rownum <21;

| Id | Operation | Name | Rows | Bytes |

0	SELECT STATEMENT		7	490
* 1	COUNT STOPKEY			
* 2	TABLE ACCESS FULL	SALES_FACT	7	490

In Listing 12-20, the execution plan shows that the optimizer chooses the sales_fact_c1 index after setting the
parameter to TRUE at the session level.

There is another use case for invisible indexes. These indexes are useful to reduce the risk while dropping unused
indexes. It is not a pleasant experience to drop unused indexes from a production database, only to realize later that
the dropped index is used in an important report. Even after performing extensive analysis, it is possible that the
dropped index might be needed for a business process, and recreating indexes might lead to application downtime.
From Oracle Database version 11g onward, you can mark the index as invisible, wait for few weeks, and then drop the
index with less risk if no process is affected. If the index is needed after marking it as invisible, then that index can be
reverted quickly to visible with just a SQL statement.

Listing 12-21.  optimizer_use_invisible_indexes

alter session set optimizer_use_invisible_indexes = true;
select * from (
 select * from sales_fact where product = 'Xtend Memory' and year=1998 and week=1
) where rownum <21 ;

| Id | Operation | Name | Rows | Bytes|

0	SELECT STATEMENT		7	490
* 1	COUNT STOPKEY			
2	TABLE ACCESS BY INDEX ROWID BATCHED	SALES_FACT	7	490
* 3	INDEX RANGE SCAN	SALES_FACT_C1	9	

Invisible indexes are maintained during DML activity similar to any other indexes. This operational feature is
useful in reducing the risk associated with dropping indexes.

Virtual Indexes
Have you ever added an index only to realize later that the index is not chosen by the optimizer because of data
distribution or some statistics issue? Virtual indexes are useful to review the effectiveness of an index. Virtual indexes
do not have storage allocated and, so, can be created quickly. Virtual indexes are different from invisible indexes in
that invisible indexes have storage associated with them, but the optimizer cannot choose them; virtual indexes do
not have storage segments associated with them. For this reason, virtual indexes are also called nosegment indexes.

The session-modifiable underscore parameter _use_nosegment_indexes controls whether the optimizer can
consider a virtual index. This parameter is FALSE by default, and the application does not choose virtual indexes.

Chapter 12 ■ Indexes

365

You can test the virtual index using the following method without affecting other application functionality: create
the index, enable the parameter to TRUE in your session, and verify the execution plan of the SQL statement. In Listing 12-22,
a virtual index sales_virt was created with the nosegment clause. After modifying the parameter to TRUE in the current
session, the execution plan of the SELECT statement is checked. The execution plan shows that this index is chosen by the
optimizer for this SQL statement. After reviewing the plan, this index can be dropped and recreated as a conventional
index.

Listing 12-22.  Virtual Indexes

create index sales_virt on sales (cust_id, promo_id) nosegment;
 
alter session set "_use_nosegment_indexes"=true;
 
explain plan for
select * from sh.sales
where cust_id=:b1 and promo_id=:b2;
 
select * from table(dbms_xplan.display) ;

| Id | Operation | Name | Cost(%CPU)|

0	SELECT STATEMENT		9 (0)
1	TABLE ACCESS BY GLOBAL INDEX ROWID BATCHED	SALES	9 (0)
* 2	INDEX RANGE SCAN	SALES_VIRT	1 (0)

Virtual indexes do not have storage associated with them, so these indexes are not maintained. But, you can
collect statistics on these indexes as if they are conventional indexes. Virtual indexes can be used to improve the
cardinality estimates of predicates without incurring the storage overhead associated with conventional indexes.

Bitmap Join Indexes
Bitmap join indexes are useful in data warehouse applications to materialize the joins between fact and dimension
tables. In data warehouse tables, fact tables are typically much larger than the dimension tables, and the dimension
and fact tables are joined using a primary key, with a foreign key relationship between them. These joins are costlier
because of the size of the fact tables, and performance can be improved for these queries if the join results can be
prestored. Materialized views are one option to precalculate the join results; bitmap join indexes are another option.

In Listing 12-23, a typical data warehouse query and its execution plan is shown. The sales table is a fact table
and the other tables are dimension tables in this query. The sales table is joined to other dimension tables by primary
key columns on the dimension tables. The execution plan shows the sales table is the leading table in this join
processing, and the other dimension tables are joined to derive the final result set. These are the four join operations
in this execution plan. This execution plan can be very costly if the fact table is huge.

Listing 12-23.  A Typical Data Warehouse Query

select sum(s.quantity_sold), sum(s.amount_sold)
 from sales s, products p, customers c, channels ch
where s.prod_id = p.prod_id and
 s.cust_id = c.cust_id and
 s.channel_id = ch.channel_id and

Chapter 12 ■ Indexes

366

 p.prod_name='Y box' and
 c.cust_first_name='Abigail' and
 ch.channel_desc = 'Direct_sales' ;

| Id | Operation | Name |Rows |Bytes|

0	SELECT STATEMENT		1	75
1	SORT AGGREGATE		1	75
* 2	HASH JOIN		10	750
* 3	TABLE ACCESS FULL	CUSTOMERS	43	516
4	NESTED LOOPS			
5	NESTED LOOPS		1595	8K
6	MERGE JOIN CARTESIAN		1	43
* 7	TABLE ACCESS FULL	PRODUCTS	1	30
8	BUFFER SORT		1	13
* 9	TABLE ACCESS FULL	CHANNELS	1	13
10	PARTITION RANGE ALL			
11	BITMAP CONVERSION TO ROWIDS			
12	BITMAP AND			
*13	BITMAP INDEX SINGLE VALUE	SALES_PROD_BIX		
*14	BITMAP INDEX SINGLE VALUE	SALES_CHANNEL_BIX		
15	TABLE ACCESS BY LOCAL INDEX ROWID	SALES	3190	63800

In Listing 12-24, a bitmap join index Sales_bji1 is created to precalculate the join results. Notice the index creation
statement joins the sales and dimension tables similar to the join predicates specified in the query. The SELECT statement
is reexecuted after creating the index, and the execution plan of the SELECT statement shows access to the bitmap join
index, followed by access to the sales table without any join processing. Internally, three new virtual columns are added
to this table, and an index is created on these three virtual columns. In a nutshell, the bitmap join index materializes the
result set with the indexes on the virtual columns, thereby avoiding costly join processing.

Listing 12-24.  Bitmap Join Index

alter table products modify primary key validate;
 
alter table customers modify primary key validate;
 
alter table channels modify primary key validate;
 
create bitmap index sales_bji1 on sales (p.prod_name, c.cust_first_name, ch.channel_desc)
from sales s, products p, customers c, channels ch
where s.prod_id = p.prod_id and
 s.cust_id = c.cust_id and
 s.channel_id = ch.channel_id
LOCAL ;
 
select sum(s.quantity_sold), sum(s.amount_sold)
 from sales s, products p, customers c, channels ch
where s.prod_id = p.prod_id and
 s.cust_id = c.cust_id and
 s.channel_id = ch.channel_id and

Chapter 12 ■ Indexes

367

 p.prod_name='Y box' and
 c.cust_first_name='Abigail' and
 ch.channel_desc = 'Direct_sales';
 
--
| Id | Operation | Name | Rows | Bytes |
--
0	SELECT STATEMENT		1	20
1	SORT AGGREGATE		1	20
2	PARTITION RANGE ALL		19	380
3	TABLE ACCESS BY LOCAL INDEX	SALES	19	380
	ROWID BATCHED			
4	BITMAP CONVERSION TO ROWIDS			
* 5	BITMAP INDEX SINGLE VALUE	SALES_BJI1		
--
 

There are a few restrictions on bitmap join indexes: all dimensions need to have validated primary or unique
constraints defined, the index must be local, and so on. The first three statements in Listing 12-24 modify the
constraint state to validated to enable creation of a bitmap join index.

Bitmap join indexes are useful in data warehouse environments, adhering to a good data model. These indexes
are not useful in OLTP applications, though.

Summary
A good choice of index type and an optimal choice of indexed columns are essential to maintaining application
performance. Armed with this new knowledge of various index types, you should focus on matching index types
to application access paths. Because Oracle Database provides rich index functionality, it is best to use optimal
index types to suit your application access patterns. It’s also vitally important to add indexes only when necessary.
Unnecessary indexes waste space, increase redo size and undo size, and waste valuable CPU cycles and memory.

369

Chapter 13

Beyond the SELECT

This chapter is a collection of topics involving SQL statements that are not straight SELECTs. These statements are
often referred to as Data Manipulation Language (or DML) statements. In this chapter, I provide some information on
some of the less well-known options to the standard DML commands—namely, INSERT, UPDATE, DELETE, and MERGE.
I also focus on alternate approaches, with an eye toward improving performance.

INSERT
INSERT is the primary command used in the SQL language to load data. If you are reading this book, you probably
already have a pretty good handle on the INSERT command. In this section, I talk about some of the less often used
options, some of which I rarely, if ever, see in the wild. I believe this is because of a lack of familiarity more than a lack
of functionality.

There are two basic methods that Oracle uses for inserts. For simplicity, let’s call them the slow way and the fast
way. The slow way is usually called conventional. With this mechanism, the data go through the buffer cache, empty
space in existing blocks is reused, undo is generated for all data and metadata changes, and redo is generated for all
changes by default. This is a lot of work, which is why I call it the slow way. The fast way is also called direct path.
This method does not look for space in existing blocks; it just starts inserting data above the high-water mark. The fast
way protects the data dictionary with undo and redo for metadata changes, but it generates no undo for data changes.
It can also avoid redo generation for data changes in some cases, such as nologging operations. Keep in mind that,
by default, indexes on tables loaded with direct path inserts still generate both undo and redo.

Direct Path Inserts
Direct path inserts can be invoked by using the APPEND hint (parallel inserts do this by default, by the way). In Oracle
Database 11g Release 2, the APPEND_VALUES hint was added and can be used for inserts that specify a VALUES clause as
opposed to using SELECT to provide the values for inserting. Listing 13-1 shows a simple example of both forms.

Listing 13-1.  Simple Insert APPEND and APPEND_VALUES

insert /*+ append */ into big_emp select * from hr.employees;
 
insert /*+ append_values */ into dual (dummy) values ('Y');
 

There are a few issues with the fast approach, however.

Only one direct path write can occur on a table at any given time. •	

Data are inserted above the high-water mark, so any available space in the blocks below •	
the high-water mark are not used by the direct path inserts.

w

Chapter 13 ■ Beyond the SELECT

370

The session that performs the •	 INSERT APPEND can’t do anything with the table (even select
from it) after the INSERT until a commit or rollback is issued.

Some of the less frequently used data structures (object types, IOTs, and so on) are not •	
supported.

Referential constraints are not supported (in other words, they cause the •	 INSERT to be
executed using the conventional method).

The first item in the list is the biggest issue. In an OLTP-type system with many small inserts occurring frequently,
the direct path mechanism just does not work. The second bulleted item is also a big issue. It makes no sense for
small inserts to be applied in empty blocks above the high-water mark. This results in a huge waste of space. In fact,
in Oracle Database 11g, the behavior of the APPEND hint was modified to allow it to be used in INSERT statements using
the VALUES clause (prior to 11g, it is ignored unless the insert statement has a SELECT clause). This behavior change
resulted in a bug being logged because it was using so much space for small inserts. The eventual resolution was to
return the APPEND hint to its original behavior and introduce the APPEND_VALUES hint in Oracle Database 11gR2. At any
rate, note that the direct path inserts are designed for large, “bulk” inserts only.

Note also that, as with most hints, the APPEND hint is silently ignored if for any reason it is not possible for Oracle
to obey the hint. When this occurs with the APPEND hint, the insert is done using the conventional mechanism.
Listing 13-2 shows an example of the APPEND hint being ignored because of a foreign key constraint.

Listing 13-2.  Disabled APPEND Hint

SQL> @constraints
Enter value for owner: KRM
Enter value for table_name: BIG_EMP
Enter value for constraint_type:
 
TABLE_NAME CONSTRAINT_NAME C SEARCH_CONDITION STATUS
----------- -------------------- - ---------------------------------- -------
BIG_EMP BIG_EMP_MANAGER_FK R ENABLED
BIG_EMP SYS_C0026608 C "JOB_ID" IS NOT NULL ENABLED
BIG_EMP SYS_C0026607 C "HIRE_DATE" IS NOT NULL ENABLED
BIG_EMP SYS_C0026606 C "EMAIL" IS NOT NULL ENABLED
BIG_EMP SYS_C0026605 C "LAST_NAME" IS NOT NULL ENABLED
 
SQL> @mystats
Enter value for name: write direct
 
NAME VALUE
--- -------
physical writes direct 0
 
SQL>
SQL>
SQL> insert /*+ append */ into big_emp select * from hr.employees;
 
107 rows created.
 
SQL> @mystats
Enter value for name: direct
 

Chapter 13 ■ Beyond the SELECT

371

NAME VALUE
--- -------
physical writes direct 0
 
SQL> select count(*) from big_emp;
 
COUNT(*)

 107
 

The APPEND hint definitely does not do what it is intended to do in this case. The inserts are not done with direct
path writes, as shown by the physical direct writes statistic and by the fact that you can select from the table after the
insert. (If the insert had been done with direct path writes, you would have had to issue a commit or rollback before
you could select from the table). Listing 13-3 shows the expected behavior if you disable the foreign key constraint
responsible for disabling the APPEND hint.

Listing 13-3.  Disabling Constraint Enables APPEND Hint

SQL> alter table big_emp disable constraint BIG_EMP_MANAGER_FK;
 
Table altered.
 
SQL> insert /*+ append */ into big_emp select * from hr.employees;
 
107 rows created.
 
SQL> @mystats
Enter value for name: direct
 
NAME VALUE
-- ---------------
physical writes direct 2
 
SQL> select count(*) from big_emp;
select count(*) from big_emp
 *
ERROR at line 1:
ORA-12838: cannot read/modify an object after modifying it in parallel
 

The direct path method is clearly used in this example, as you can see from the statistics and from the fact that
you cannot select from the table without issuing a commit first. By the way, the error message is a bit of a red herring.
It says that the object was modified in parallel, which in this case is not true. This is a holdover from an earlier version
in which a parallel insert was the only way to do an insert above the high-water mark. Next I discuss a couple of
unusual variants on the INSERT statement.

Multitable Inserts
The multitable insert is rarely used, even though it has been around since at least version 9i. This construct can
be useful for ETL-type processing when data are staged and then rearranged as they are loaded into permanent
structures. In these cases, it is fairly common to stage data in a nonnormalized format that is later split into multiple
tables or some other more normalized structure. The multitable insert is a convenient way to accomplish this type of

Chapter 13 ■ Beyond the SELECT

372

work without having to write a bunch of procedural code. The syntax is very straightforward; just use INSERT ALL
and then supply multiple INTO clauses.

These clauses can specify the same or different tables. Only one set of input values can be used (either via
a VALUES clause or a subquery), but the individual values can be reused or not used at all. Listing 13-4 shows an
example of the syntax inserting into a single table. (Note that the scripts are provided in the online code suite to
create the people and denormalized_people tables).

Listing 13-4.  Basic Multitable Insert into a Single Table

INSERT ALL
 INTO people (person_id, first_name, last_name) -- the parent
 VALUES (person_id, first_name, last_name)
 INTO people (first_name, last_name, parent_id) -- the child
 VALUES (child1, last_name, person_id)
 INTO people (first_name, last_name, parent_id) -- the child
 VALUES (child2, last_name, person_id)
 INTO people (first_name, last_name, parent_id) -- the child
 VALUES (child3, last_name, person_id)
 INTO people (first_name, last_name, parent_id) -- the child
 VALUES (child4, last_name, person_id)
 INTO people (first_name, last_name, parent_id) -- the child
 VALUES (child5, last_name, person_id)
 INTO people (first_name, last_name, parent_id) -- the child
 VALUES (child6, last_name, person_id)
 SELECT person_id, first_name, last_name,
 child1, child2, child3, child4, child5, child6
FROM denormalized_people;
 

This example shows that multiple INTO clauses can be used, although in this case all the INTO clauses referenced
the same table. You can just as easily insert into multiple tables (hence the term multitable insert), as shown in
Listing 13-5.

Listing 13-5.  Basic Multitable Insert

INSERT ALL
 INTO parents (person_id, first_name, last_name)
 VALUES (person_id, first_name, last_name)
 INTO children (first_name, last_name, parent_id)
 VALUES (child1, last_name, person_id)
 INTO children (first_name, last_name, parent_id)
 VALUES (child1, last_name, person_id)
 INTO children (first_name, last_name, parent_id)
 VALUES (child1, last_name, person_id)
 INTO children (first_name, last_name, parent_id)
 VALUES (child1, last_name, person_id)
 INTO children (first_name, last_name, parent_id)
 VALUES (child1, last_name, person_id)
 INTO children (first_name, last_name, parent_id)
 VALUES (child1, last_name, person_id)
SELECT person_id, first_name, last_name,
 child1, child2, child3, child4, child5, child6
FROM denormalized_people;
 

Chapter 13 ■ Beyond the SELECT

373

Conditional Insert
The INSERT command also has the ability to do conditional processing. It’s like having a CASE statement embedded in
the INSERT statement.

In the previous example, you inserted a record for every child, but most likely some of the child columns are null
in this kind of a repeating column layout. So, it would be nice if we could avoid creating these records without having
to write procedural code. This is exactly the situation a conditional insert was built for. By the way, this type of data
layout is often seen when loading files from external systems. Creating external tables on files is an excellent way to
load them, and it allows these less common insert options to be applied directly to the data-loading process, rather
than after the files have been staged in an Oracle table. Listing 13-6 shows an example of the conditional insert in
which the parent fields are always loaded but the child fields are loaded only if they have data in them.

Listing 13-6.  Conditional Insert

INSERT ALL
WHEN 1=1 THEN -- always insert the parent
 INTO people (person_id, first_name, last_name)
 VALUES (person_id, first_name, last_name)
WHEN child1 is not null THEN -- only insert non-null children
 INTO people (first_name, last_name, parent_id)
 VALUES (child1, last_name, person_id)
WHEN child2 is not null THEN
 INTO people (first_name, last_name, parent_id)
 VALUES (child2, last_name, person_id)
WHEN child3 is not null THEN
 INTO people (first_name, last_name, parent_id)
 VALUES (child3, last_name, person_id)
WHEN child4 is not null THEN
 INTO people (first_name, last_name, parent_id)
 VALUES (child4, last_name, person_id)
WHEN child5 is not null THEN
 INTO people (first_name, last_name, parent_id)
 VALUES (child5, last_name, person_id)
WHEN child6 is not null THEN
 INTO people (first_name, last_name, parent_id)
 VALUES (child6, last_name, person_id)
SELECT person_id, first_name, last_name,
 child1, child2, child3, child4, child5, child6
FROM denormalized_people; 

DML Error Logging
And now for something really cool: DML error logging. This feature provides a mechanism for preventing your one
million-row insert from failing because a few rows had problems. This feature was introduced in 10gR2 and it’s similar
to the SQL*Loader error logging feature. DML error logging basically diverts any records that otherwise cause the
statement to fail, placing them in an errors table. This is an extremely useful feature that is rarely used, which is a
little surprising because it’s very easy to implement. DML error logging also provides excellent performance and
saves a lot of coding. Without this feature, we have to create a bad records table, write procedural code to handle
any exceptions raised by any single record, insert the problem records into the bad records table, and preserve the
integrity of the transaction by handling the error records in an autonomous transaction, which is a lot of work. By the
way, the LOG ERRORS clause works with the other DML statements as well (UPDATE, DELETE, and MERGE).

Chapter 13 ■ Beyond the SELECT

374

Here is how to enable DML error logging:

	 1.	 Create the error log table using DBMS_ERRLOG.CREATE_ERROR_LOG.

	 2.	 Specify the LOG ERRORS clause on the INSERT.

That’s it. Listing 13-7 shows how the CREATE_ERROR_LOG procedure works.

Listing 13-7.  CREATE_ERROR_LOG

SQL> EXECUTE DBMS_ERRLOG.CREATE_ERROR_LOG('big_emp', 'big_emp_bad');
PL/SQL procedure successfully completed.
SQL> desc big_emp
 Name Null? Type
 --- -------- ----------------
 EMPLOYEE_ID NUMBER(6)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 EMAIL NOT NULL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)
 
SQL> desc big_emp_bad
 Name Null? Type
 --- -------- -----------------
 ORA_ERR_NUMBER$ NUMBER
 ORA_ERR_MESG$ VARCHAR2(2000)
 ORA_ERR_ROWID$ ROWID
 ORA_ERR_OPTYP$ VARCHAR2(2)
 ORA_ERR_TAG$ VARCHAR2(2000)
 EMPLOYEE_ID VARCHAR2(4000)
 FIRST_NAME VARCHAR2(4000)
 LAST_NAME VARCHAR2(4000)
 EMAIL VARCHAR2(4000)
 PHONE_NUMBER VARCHAR2(4000)
 HIRE_DATE VARCHAR2(4000)
 JOB_ID VARCHAR2(4000)
 SALARY VARCHAR2(4000)
 COMMISSION_PCT VARCHAR2(4000)
 MANAGER_ID VARCHAR2(4000)
 DEPARTMENT_ID VARCHAR2(4000)
 

As you can see, all the columns in the errors table are created as VARCHAR2(4000), which allows columns of most
datatypes to be inserted into the errors table, even if records are failing as a result of data being too large to fit into a
column or because of inconsistent datatype issues, such as number columns that contain nonnumeric data. There
are also a few extra columns for the error number, the error message, and the rowid. Last, there is a column called
ORA_ERR_TAG$ that allows user-defined data to be placed in the row for debugging purposes (such as the step the ETL
process was on, or something of that nature).

Chapter 13 ■ Beyond the SELECT

375

The syntax is very straightforward. You simply add the keywords LOG ERRORS INTO and specify the name of
your errors table. As another option, you can tell Oracle how many errors to allow before giving up and canceling the
statement. This is done with the REJECT LIMIT clause. Note that, by default, REJECT LIMIT is set to zero, so if you hit
one error, the statement aborts and rolls back (just the statement, not the transaction). The single error is preserved in
the errors table, though. In most cases, you probably want to set REJECT LIMIT to UNLIMITED, which allows the INSERT
statement to complete regardless of how many records are diverted to the errors table. It is somewhat surprising that
UNLIMITED is not the default, because this is the most common usage. Listing 13-8 shows a simple example.

Listing 13-8.  Insert Error Logging

SQL>
SQL> insert into big_emp
 2 (employee_id, first_name, last_name,
 3 hire_date, email, department_id)
 4 values (300,'Bob', 'Loblaw',
 5 '01-jan-10', 'bob@yourfavoritelawyer.com', 12345)
 6 log errors into big_emp_bad;
 '01-jan-10', 'bob@yourfavoritelawyer.com', 12345)
 *
ERROR at line 5:
ORA-12899: value too large for column "KRM"."BIG_EMP"."EMAIL" (actual: 26, maximum: 25)
 
SQL> insert into big_emp
 2 (employee_id, first_name, last_name,
 3 hire_date, email, department_id)
 4 values (301,'Bob', 'Loblaw',
 5 '01-jan-10', 'bob@yflawyer.com', 12345)
 6 log errors into big_emp_bad;
 '01-jan-10', 'bob@yflawyer.com', 12345)
 *
ERROR at line 5:
ORA-01400: cannot insert NULL into ("KRM"."BIG_EMP"."JOB_ID")
 
SQL> insert into big_emp
 2 (employee_id, first_name, last_name,
 3 hire_date, email, department_id,job_id)
 4 values (302,'Bob', 'Loblaw',
 5 '01-jan-10', 'bob@yflawyer.com', 12345, 1)
 6 log errors into big_emp_bad;
 '01-jan-10', 'bob@yflawyer.com', 12345, 1)
 *
ERROR at line 5:
ORA-01438: value larger than specified precision allowed for this column
 
SQL> insert into big_emp
 2 (employee_id, first_name, last_name,
 3 hire_date, email, department_id,job_id)
 4 values (303,'Bob', 'Loblaw',
 5 '01-jan-10', 'bob@yflawyer.com', '2A45', 1)

http://bob@yourfavoritelawyer.com/
http://bob@yourfavoritelawyer.com/
http://bob@yflawyer.com/
http://bob@yflawyer.com/
http://bob@yflawyer.com/
http://bob@yflawyer.com/
http://bob@yflawyer.com/

Chapter 13 ■ Beyond the SELECT

376

 6 log errors into big_emp_bad;
 '01-jan-10', 'bob@yflawyer.com', '2A45', 1)
 *
ERROR at line 5:
ORA-01722: invalid number
 
SQL>
SQL> SELECT ORA_ERR_MESG$, ORA_ERR_TAG$, employee_id FROM big_emp_bad;
 
ORA_ERR_MESG$
--
ORA_ERR_TAG$
--
EMPLOYEE_ID
--
ORA-01438: value larger than specified precision allowed for this column
 
302
 
ORA-01722: invalid number
 
303
 
ORA-12899: value too large for column "KRM"."BIG_EMP"."EMAIL" (actual: 26, maximum: 25)
 
300
 
ORA-01400: cannot insert NULL into ("KRM"."BIG_EMP"."JOB_ID")
 
301 

Improving Insert Error Logging
The example in Listing 13-8 shows several insert statements, all of which fail. The records that fail to be inserted
into the table, regardless of the error that caused the failure, are inserted automatically into the errors table. Because
I didn’t specify a value for REJECT LIMIT, all the statements are rolled back when they encounter the first error.
Therefore, no records are actually inserted into the big_emp table. All the error records are preserved, though. I did
this to demonstrate that a single errors table can be reused for multiple loads, preserving the records across multiple
insert statements. Note that error logging is rarely used in this manner in real life. In real life, REJECT LIMIT is, in
general, set to UNLIMITED. Listings 13-9 and 13-10 show better examples of using a multirow INSERT statement.
Listing 13-9 shows what happens to an insert when a record fails without the error logging clause; Listing 13-10 shows
how it works with the error logging clause.

http://bob@yflawyer.com/

Chapter 13 ■ Beyond the SELECT

377

Listing 13-9.  Better Insert Error Logging

SQL> set echo on
SQL> create table test_big_insert as select * from dba_objects where 1=2;
 
Table created.
 
SQL>
SQL> desc test_big_insert
 Name Null? Type
 --- -------- ----------------------
 OWNER VARCHAR2(30)
 OBJECT_NAME VARCHAR2(128)
 SUBOBJECT_NAME VARCHAR2(30)
 OBJECT_ID NUMBER
 DATA_OBJECT_ID NUMBER
 OBJECT_TYPE VARCHAR2(19)
 CREATED DATE
 LAST_DDL_TIME DATE
 TIMESTAMP VARCHAR2(19)
 STATUS VARCHAR2(7)
 TEMPORARY VARCHAR2(1)
 GENERATED VARCHAR2(1)
 SECONDARY VARCHAR2(1)
 NAMESPACE NUMBER
 EDITION_NAME VARCHAR2(30)
 
SQL>
SQL> alter table test_big_insert modify object_id number(2);
 
Table altered.
 
SQL>
SQL> insert into test_big_insert
 2 select * from dba_objects
 3 where object_id is not null;
 select * from dba_objects
 *
ERROR at line 2:
ORA-01438: value larger than specified precision allowed for this column
 

Because I set up the situation, I have a pretty good idea which column is causing the problem. The object_id
column is modified in the listing. But, in real life, the troublesome column is not usually so obvious. In fact, without
the Error Logging clause, it can be quite difficult to determine which row is causing the problem.

The error message doesn’t give me any information about which column or which record is causing the failure.
I can determine which column is causing the problem by specifying the column names manually in the SELECT.
However, there is no way to know which rows are causing the problem. The Error Logging clause in Listing 13-10 solves
both problems. Remember that all the column’s values are saved in the errors table, along with the error messages,
making it easy to determine where the problem lies.

Chapter 13 ■ Beyond the SELECT

378

Listing 13-10.  Better Insert Error Logging (continued)

SQL>
SQL> EXECUTE DBMS_ERRLOG.CREATE_ERROR_LOG('test_big_insert', 'tbi_errors');
 
PL/SQL procedure successfully completed.
 
SQL>
SQL> insert into test_big_insert
 2 select * from dba_objects
 3 where object_id is not null
 4 log errors into tbi_errors
 5 reject limit unlimited;
 
98 rows created.
 
SQL>
SQL> select count(*) from dba_objects
 2 where object_id is not null
 3 and length(object_id) < 3;
 
 COUNT(*)

 98
SQL> select count(*) from test_big_insert;
 
 COUNT(*)

 98
SQL>
SQL> select count(*) from dba_objects
 2 where object_id is not null
 3 and length(object_id) > 2;
 
 COUNT(*)

 73276
SQL> select count(*) from tbi_errors;
 
 COUNT(*)

 73276
SQL> rollback;
 
Rollback complete.
 
SQL> select count(*) from test_big_insert;
 
 COUNT(*)

 0
SQL> select count(*) from tbi_errors;
 
 COUNT(*)

 73282
 

Chapter 13 ■ Beyond the SELECT

379

This example shows the Error Logging clause with REJECT LIMIT at UNLIMITED, which allows the statement to
complete despite the fact that most of the records fail to be inserted. In addition, you can see that, although a rollback
removed the records from the base table, the error records remain.

DML Error Logging Restrictions
Although DML error logging is extremely robust, you should be aware of the following caveats:

The •	 LOG ERRORS clause does not cause implicit commits. The insert of error records is handled
as an autonomous transaction—meaning, you can commit or rollback the entire set of
records inserted into the base table (along with other pending changes), even if errors are
returned and bad records are inserted into the errors table. The records loaded into the errors
table are preserved even if the transaction is rolled back.

The •	 LOG ERRORS clause does not disable the APPEND hint. Inserts into the base table are done
using the direct path write mechanism if the APPEND hint is used. However, any inserts into the
errors table do not use direct path writes. In general, this is not a problem because you rarely
expect to load a lot of data into an errors table.

Direct path insert operations that violate a unique constraint or index cause the statement to •	
fail and roll back.

Any •	 UPDATE operation that violates a unique constraint or index causes the statement to fail
and rollback.

Any operation that violates a deferred constraint causes the statement to fail and •	 rollback.

The •	 LOG ERRORS clause does not track the values of LOBs, LONGs, or object-type columns. It can
be used with tables that contain these unsupported types of columns, but the unsupported
columns are not added to the errors table. To create the errors table for a table that contains
unsupported column types, you must use the skip_unsupported parameter of the
CREATE_ERROR_LOG procedure. The default for this parameter is FALSE, which causes the
procedure to fail when attempting to create an errors table for a table with unsupported
column types. Listing 13-11 shows the proper syntax for creating an errors table when there
are unsupported column types in the base table.

Listing 13-11.  DBMS_ERRLOG.CREATE_ERROR_LOG Parameters

exec DBMS_ERRLOG.CREATE_ERROR_LOG(err_log_table_owner => '&owner', -
 dml_table_name => '&table_name', -
 err_log_table_name => '&err_log_table_name', -
 err_log_table_space => NULL, -
 skip_unsupported => TRUE);
 

As you can see, the INSERT statement has several options that are rarely used. The most useful of these features,
in my opinion, is DML error logging (which can also be used with the other DML commands). It allows very difficult
problems, such as corruption issues, to be identified fairly easily, and it provides excellent performance compared
with the row-by-row processing that is required without it. Note also the fairly extreme performance improvement
provided by direct path inserts vs. conventional inserts; there are drawbacks with regard to recoverability and
serialization, but for bulk loading of data, the positives generally far outweigh the negatives.

Chapter 13 ■ Beyond the SELECT

380

UPDATE
Massive updates are almost always a bad idea. I recently reviewed a system that updates a billion-plus rows in a single
table every night—a full year forecast and every single value is recalculated every night. Aside from the observation
that forecasting that far in the future is not necessary for items that have a 90-day turnaround time, it’s much faster to
load a billion records from scratch than to update a billion records.

Using CTAS vs. UPDATE
The traditional method when doing this type of processing is to do a truncate and then a reload. But, what if the
truncate-and-reload method just won’t work? One alternative is to use Create Table As Select (CTAS) to create
a new table and then just replace the original table with the newly created one. It sounds easy if you say it fast. Of
course, there are many details that must be addressed. Listing 13-12 shows a quick demonstration of the potential
difference in performance between these two approaches.

Listing 13-12.  Performance Delta between UPDATE and CTAS

SQL> set autotrace on
SQL> set timing on
SQL> update skew2 set col1 = col1*1;
 
32000004 rows updated.
 
Elapsed: 00:27:56.41
 
Execution Plan
--
Plan hash value: 1837483169
 
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	UPDATE STATEMENT		32M	793M	28370 (1)	00:05:41
1	UPDATE	SKEW2				
2	TABLE ACCESS FULL	SKEW2	32M	793M	28370 (1)	00:05:41
--
 
Statistics
--
 1908 recursive calls
 32743098 db block gets
 163363 consistent gets
 317366 physical reads
 8187521328 redo size
 1373 bytes sent via SQL*Net to client
 1097 bytes received via SQL*Net from client
 5 SQL*Net roundtrips to/from client
 1 sorts (memory)
 0 sorts (disk)
 32000004 rows processed
 

Chapter 13 ■ Beyond the SELECT

381

SQL> create table skew_temp as
 2 select pk_col, col1*1 col1, col2, col3, col4 from skew2;
 
Table created.
 
Elapsed: 00:00:44.30
 
SQL> set timing off
SQL>
SQL> select count(*) from skew_temp;
 
 COUNT(*)

 32000004
 
SQL> @find_sql_stats
Enter value for sql_text: %skew2%
Enter value for sql_id:
 
SQL_ID ROWS_PROCESSED AVG_ETIME AVG_PIO AVG_LIO SQL_TEXT
------------- -------------- ---------- -------- ------------ --------------
2aqsvr3h3qrrg 32000004 1,676.78 928,124 65,409,243 update skew2
 set col1 = col
4y4dquf0mkhup 32000004 44.30 162,296 492,575 create table
 skew_temp as s
 

As you can see, the update took almost 30 minutes (1676.78 seconds) whereas the CTAS table took less than a
minute (44.30 seconds). So it’s clear that there are significant performance benefits to be had by recreating the table
vs. updating all the records. And as you might already expect from the previous example, recreating a table can also
be more efficient than updating a relatively small portion of the rows. Listing 13-13 shows a comparison of the two
methods when updating approximately 10 percent of the rows.

Listing 13-13.  Performance Delta between UPDATE and CTAS: 10 Percent

SQL> select count(*) from skew2 where col1 = 1;
 
 COUNT(*)

 3199971
 
Elapsed: 00:00:10.90
SQL> select 3199971/32000004 from dual;
 
3199971/32000004

 .099999081
 
Elapsed: 00:00:00.01
SQL> -- about 10% of the rows col1=1
SQL>
SQL> update skew2 set col1=col1*1 where col1 = 1;
 
3199971 rows updated.
 

Chapter 13 ■ Beyond the SELECT

382

Elapsed: 00:03:11.63
SQL> drop table skew_temp;
 
Table dropped.
 
Elapsed: 00:00:00.56
SQL> create table skew_temp as
 2 select pk_col, case when col1 = 1 then col1*1 end col1,
 3 col2, col3, col4 from skew2;
 
Table created.
 
Elapsed: 00:01:23.62
 
SQL> alter table skew2 rename to skew_old;
 
Table altered.
 
Elapsed: 00:00:00.06
SQL> alter table skew_temp rename to skew2;
 
Table altered.
 
Elapsed: 00:00:00.05
 

In this example, I recreated a table using CTAS in less than half the time it took to update about 10 percent of
the records. Obviously, there are many details that are ignored in the previous two examples. These examples had
no constraints or indexes or grants to deal with, making them considerably less complicated than most real-life
situations. Each of these complications can be dealt with in an automated fashion, however.

Using INSERT APPEND vs. UPDATE
Listing 13-14 shows a more realistic example of using an INSERT APPEND technique to replace an UPDATE statement.
For this example, I use a script from the online code suite called recreate_table.sql. It uses the dbms_metadata
package to generate a script with the necessary Data Definition Language (DDL) to recreate a table and its dependent
objects. It then uses an INSERT APPEND in place of UPDATE to move the data. The last step is to use ALTER TABLE
RENAME to swap the new table for the original one. After the script is generated, it should be edited to customize how
the steps are performed. For example, you may want to comment out the swap of the tables via the RENAME at the end
until you’re sure everything works as expected. Note that the particulars of the INSERT APPEND also have to be built
when editing the script. Note also that the script renames all existing indexes because you cannot have duplicate
index names, even if they are on different tables.

Listing 13-14.  INSERT APPEND Instead of a Mass UPDATE

SQL>
SQL> @recreate_table
Enter value for owner: KRM
Enter value for table_name: SKEW2
 

Chapter 13 ■ Beyond the SELECT

383

... Output supressed for readability
 
SQL> @recreate_SKEW2.sql
SQL> ALTER INDEX SYS_C0029558 RENAME TO SYS_C0029558_OLD;
 
Index altered.
 
Elapsed: 00:00:00.02
SQL> ALTER INDEX SKEW2_COL1 RENAME TO SKEW2_COL1_OLD;
 
Index altered.
 
Elapsed: 00:00:00.02
SQL> ALTER INDEX SKEW2_COL4 RENAME TO SKEW2_COL4_OLD;
 
Index altered.
 
Elapsed: 00:00:00.02
SQL>
SQL> CREATE TABLE "KRM"."SKEW2_TEMP"
 2 ("PK_COL" NUMBER,
 3 "COL1" NUMBER,
 4 "COL2" VARCHAR2(30),
 5 "COL3" DATE,
 6 "COL4" VARCHAR2(1)
 7) SEGMENT CREATION IMMEDIATE
 8 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 9 STORAGE(INITIAL 1483735040 NEXT 1048576
 MINEXTENTS 1 MAXEXTENTS 2147483645
 10 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL
 11 DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 12 TABLESPACE "USERS" ;
 
Table created.
 
Elapsed: 00:00:00.10
SQL>
SQL> INSERT /*+APPEND*/ INTO SKEW2_TEMP SELECT /*+PARALLEL(a 4)*/
 2 PK_COL,
 3 COL1,
 4 case when COL1 = 2 then 'ABC' else COL2 end,
 5 COL3,
 6 COL4
 7 FROM SKEW2 a;
 
32000004 rows created.
 
Elapsed: 00:00:52.87
SQL>
SQL> CREATE INDEX "KRM"."SKEW2_COL1" ON "KRM"."SKEW2_TEMP" ("COL1")
 2 PCTFREE 10 INITRANS 2 MAXTRANS 255 NOLOGGING COMPUTE STATISTICS
 3 STORAGE(INITIAL 595591168 NEXT 1048576 MINEXTENTS 1

Chapter 13 ■ Beyond the SELECT

384

 4 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1
 5 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 6 TABLESPACE "USERS"
 7 PARALLEL 8 ;
 
Index created.
 
Elapsed: 00:01:40.16
SQL>
SQL> CREATE INDEX "KRM"."SKEW2_COL4" ON "KRM"."SKEW2_TEMP" ("COL4")
 2 PCTFREE 10 INITRANS 2 MAXTRANS 255 COMPUTE STATISTICS
 3 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 4 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 5 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 6 TABLESPACE "USERS"
 7 PARALLEL 8 ;
 
Index created.
 
Elapsed: 00:01:11.05
SQL>
SQL> CREATE UNIQUE INDEX "KRM"."SYS_C0029558"
 2 ON "KRM"."SKEW2_TEMP" ("PK_COL")
 3 PCTFREE 10 INITRANS 2 MAXTRANS 255 NOLOGGING COMPUTE STATISTICS
 4 STORAGE(INITIAL 865075200 NEXT 1048576
 5 MINEXTENTS 1 MAXEXTENTS 2147483645
 6 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 7 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 8 TABLESPACE "USERS"
 9 PARALLEL 8 ;
 
Index created.
 
Elapsed: 00:01:34.26
SQL>
SQL> -- Note: No Grants found!
SQL> -- Note: No Triggers found!
SQL>
SQL>
SQL> ALTER TABLE "KRM"."SKEW2_TEMP" ADD PRIMARY KEY ("PK_COL")
 2 USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255 NOLOGGING
 3 COMPUTE STATISTICS
 4 STORAGE(INITIAL 865075200 NEXT 1048576
 5 MINEXTENTS 1 MAXEXTENTS 2147483645
 6 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 7 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 8 TABLESPACE "USERS" ENABLE;
 
Table altered.
 

Chapter 13 ■ Beyond the SELECT

385

Elapsed: 00:00:15.16
SQL>
SQL> ALTER TABLE SKEW2 RENAME TO SKEW2_ORIG;
 
Table altered.
 
Elapsed: 00:00:00.04
SQL>
SQL> ALTER TABLE SKEW2_TEMP RENAME TO SKEW2;
 
Table altered.
 
Elapsed: 00:00:00.03
 

The order of the steps is very important. In general, it is much faster to defer the creation of indexes and the
enabling of constraints until after loading the data. Be aware that you need to drop the old table manually (maybe
after a day or two, when everyone is quite sure the operation works correctly). By the way, I think it’s a really bad
idea to drop objects in a script. As a matter of fact, I recommend commenting out the last two statements that do
the RENAME. It’s safer to run them interactively after you make sure everything works as planned. For comparison,
Listing 13-15 shows the timing of the same change made by using a standard UPDATE statement.

Listing 13-15.  Mass UPDATE Timings for Comparison

SQL> select my_rows, total_rows,
 2 100*my_rows/total_rows row_percent from
 3 (select sum(decode(col1,1,1,0)) my_rows, count(*) total_rows
 4* from skew2)
 
 MY_ROWS TOTAL_ROWS ROW_PERCENT
---------- ---------- -----------
 8605185 32000004 26.9
 
1 row selected.
 
Elapsed: 00:00:01.29
SQL> update /*+ parallel 4 */ skew2 set col2 = 'ABC' where col1 = 2;
 
8605185 rows updated.
 
Elapsed: 00:12:37.53
 

To sum up this example, when modifying roughly 27 percent of the rows in the table, the straight UPDATE took
about 12.5 minutes and the rebuild with INSERT APPEND took about 5.5 minutes. Keep in mind that there are many
variables I have not covered in detail. Every situation has differences in the number of dependent objects and the
percentage of rows affected by the update. These factors have a large effect on the outcome, so test thoroughly in your
environment with your specific data.

In this section, you learned that it can be considerably faster to rebuild tables than to update a large percentage
of the rows. Obviously, making use of the direct path write via the APPEND hint is an important part of that. The biggest
negative to this approach is that the table must be offline for the entire time the rebuild is taking place—or at least
protected in some manner from concurrent modifications. This does not usually present a major obstacle because
these types of mass updates are rarely done while users are accessing the table. In cases when concurrent access is
required, partitioning or materialized views can provide the necessary isolation.

Chapter 13 ■ Beyond the SELECT

386

DELETE
Just like massive UPDATEs, massive DELETEs are almost always a bad idea. In general, it is faster (if somewhat more
complicated) to recreate a table or partition (without the rows you wish to eliminate) than it is to delete a large
percentage of the rows. The biggest downside to the approach of recreating is that the object must be protected from
other changes while it is being rebuilt. This is basically the same approach I used in the previous section with the
UPDATE command, but DELETEs can be even more time-consuming.

The basic idea is pretty much the same as with the mass UPDATEs:

	 1.	 Create a temporary table.

	 2.	 Insert the records that are not to be deleted into the temporary table.

	 3.	 Recreate the dependent objects (indexes, constraints, grants, triggers).

	 4.	 Rename the tables.

Let’s use the recreate_table.sql script again to create a script that I can edit, then I’ll modify the INSERT
statement to give me the records that are left behind after my DELETE. Listing 13-16 shows an example of how a DELETE
statement compares with a rebuild using a reciprocal INSERT statement.

Listing 13-16.  Mass DELETE

SQL > delete from skew2 where col1=1;
  
3199972 rows deleted.
 
Elapsed: 00:04:12.64
 
SQL> rollback;
 
Rollback complete.
 
Elapsed: 00:01:48.59
 
SQL> @recreate_SKEW3.sql
SQL> set timing on
SQL>
SQL> ALTER INDEX SYS_C0029558 RENAME TO SYS_C0029558_OLD;
 
Index altered.
 
Elapsed: 00:00:00.03
SQL> ALTER INDEX SKEW2_COL1 RENAME TO SKEW2_COL1_OLD;
 
Index altered.
 
Elapsed: 00:00:00.04
SQL> ALTER INDEX SKEW2_COL4 RENAME TO SKEW2_COL4_OLD;
 
Index altered.
 

Chapter 13 ■ Beyond the SELECT

387

Elapsed: 00:00:00.02
SQL>
SQL> CREATE TABLE "KRM"."SKEW2_TEMP"
 2 ("PK_COL" NUMBER,
 3 "COL1" NUMBER,
 4 "COL2" VARCHAR2(30),
 5 "COL3" DATE,
 6 "COL4" VARCHAR2(1)
 7) SEGMENT CREATION IMMEDIATE
 8 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 9 STORAGE(INITIAL 1483735040 NEXT 1048576
 10 MINEXTENTS 1 MAXEXTENTS 2147483645
 11 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 12 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 13 TABLESPACE "USERS" ;
 
Table created.
 
Elapsed: 00:00:00.11
SQL>
SQL> INSERT /*+APPEND*/ INTO SKEW2_TEMP SELECT /*+PARALLEL(a 4)*/
 2 PK_COL,
 3 COL1,
 4 COL2,
 5 COL3,
 6 COL4
 7 FROM SKEW2 a where col1 != 1;
 
28800032 rows created.
 
Elapsed: 00:00:42.30
SQL>
SQL> CREATE INDEX "KRM"."SKEW2_COL1" ON "KRM"."SKEW2_TEMP" ("COL1")
 2 PCTFREE 10 INITRANS 2 MAXTRANS 255 NOLOGGING COMPUTE STATISTICS
 3 STORAGE(INITIAL 595591168 NEXT 1048576
 4 MINEXTENTS 1 MAXEXTENTS 2147483645
 5 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 6 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 7 TABLESPACE "USERS"
 8 PARALLEL 8 ;
 
Index created.
 
Elapsed: 00:01:36.50
SQL>
SQL> CREATE INDEX "KRM"."SKEW2_COL4" ON "KRM"."SKEW2_TEMP" ("COL4")
 2 PCTFREE 10 INITRANS 2 MAXTRANS 255 COMPUTE STATISTICS
 3 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 4 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 5 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 6 TABLESPACE "USERS"
 7 PARALLEL 8 ;
 

Chapter 13 ■ Beyond the SELECT

388

Index created.
 
Elapsed: 00:01:09.43
SQL>
SQL> CREATE UNIQUE INDEX "KRM"."SYS_C0029558"
 2 ON "KRM"."SKEW2_TEMP" ("PK_COL")
 3 PCTFREE 10 INITRANS 2 MAXTRANS 255 NOLOGGING COMPUTE STATISTICS
 4 STORAGE(INITIAL 865075200 NEXT 1048576
 5 MINEXTENTS 1 MAXEXTENTS 2147483645
 6 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 7 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 8 TABLESPACE "USERS"
 9 PARALLEL 8 ;
 
Index created.
 
Elapsed: 00:01:26.30
SQL>
SQL> -- Note: No Grants found!
SQL> -- Note: No Triggers found!
SQL>
SQL> ALTER TABLE "KRM"."SKEW2_TEMP" ADD PRIMARY KEY ("PK_COL")
 2 USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255
 3 NOLOGGING COMPUTE STATISTICS
 4 STORAGE(INITIAL 865075200 NEXT 1048576
 5 MINEXTENTS 1 MAXEXTENTS 2147483645
 6 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 7 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 8 TABLESPACE "USERS" ENABLE;
 
Table altered.
 
Elapsed: 00:00:20.42
 

Similar to the comparison with the UPDATE statement, the rebuild provides a viable alternative. In this example,
I deleted roughly 10 percent of the records. The DELETE took about 4.25 minutes and the rebuild took about 5.25
minutes. In this case, the straight DELETE was actually faster. But, as the number of records increases, the time to
rebuild remains basically the same whereas the time to run the DELETE increases. Eventually, there is a point when the
rebuild becomes much cheaper than the DELETE.

Truncate

I am sure you are aware of the TRUNCATE command, but I should mention it here anyway. If you need to delete
all the rows from a table or a partition, the TRUNCATE command is the way to do it. Truncating a table moves the
high-water mark rather than actually changing all the blocks that hold records. It is blazingly fast compared with
using the DELETE command. There are only a few very minor negatives.

•	 TRUNCATE is a DDL command, so it issues an implicit commit; once a table is truncated,
there is no going back.

You cannot flash back to the state of the table prior to the truncate.•	

Chapter 13 ■ Beyond the SELECT

389

•	 TRUNCATE works on the whole table or nothing.

In a RAC environment, all the nodes must be sent a message to invalidate the buffers •	
of the table (which is not the case with a DELETE).

In addition to completing extremely quickly, the TRUNCATE command makes a big difference for future queries on
the table. Because full table scans read every block to the high-water mark, and the DELETE command has no
effect on the high-water mark, you may be giving up performance gains for future statements.

MERGE
The MERGE statement was introduced in Oracle Database 9i. It provides the classic UPSERT functionality. MERGE
updates the record if one already exists, or inserts a new record if one doesn’t already exist. (Oracle Database 10g
enhanced the MERGE command to allow it to delete records as well.) The idea is to eliminate the extra code necessary
to do error checking, and to eliminate the additional round-trips to the database when it’s necessary to issue
additional SQL statements (such as write a piece of code that attempts an update, check the status of the update,
and, if the update fails, then issue the insert). The MERGE statement does all this at the database level without all the
additional code. Obviously, it performs better than the procedural code version.

Syntax and Usage
The syntax of the typical MERGE statement is relatively easy to follow. The following is the basic syntax of a MERGE
statement:
 
MERGE INTO table_name
USING (subquery) ON (subquery.column = table.column)
WHEN MATCHED THEN UPDATE ...
WHEN NOT MATCHED THEN INSERT ...
 

The first part of the MERGE statement looks just like an INSERT, specifying the table (or view) that is to be the target
of the inserted, updated, or deleted data. The USING keyword specifies a data source (usually a subquery, although it
could be a staging table as well) and a join condition that tells Oracle how to determine whether a record already exists
in the target table. In addition, you must add an UPDATE clause or an INSERT clause or both. In most cases, you see both
because there is little value in using the MERGE statement without both clauses. Now let’s move on to the UPDATE and
INSERT clauses (they probably should have called these the WHEN MATCHED and WHEN NOT MATCHED clauses instead).

The UPDATE clause tells Oracle what to do when a matching record is found. In most cases, finding a matching
record results in an update to that record. There is also an optional WHERE clause that can be used to limit which
records are updated, even if there is a match. Alternatively, you can delete matching records using yet another WHERE
clause. Note that the records to be deleted must pass the criteria in the main WHERE clause and the criteria in the
DELETE WHERE clause.

The DELETE clause is not actually used that often. It can be handy, though, for a job that needs to do more than
just load data. For example, some ETL processes also perform cleanup tasks. For the DELETE portion of the UPDATE
clause to kick in, a matching record must be found that passes the WHERE clause in the UPDATE clause as well as the
WHERE clause associated with the DELETE. Listing 13-17 shows the MERGE command with an UPDATE clause that contains
a DELETE.

Chapter 13 ■ Beyond the SELECT

390

Listing 13-17.  MERGE with UPDATE Clause

MERGE INTO big_emp t
USING (select * from hr.employees) s
ON (t.employee_id = s.employee_id)
WHEN MATCHED THEN UPDATE SET
-- t.employee_id = s.employee_id, -- ON clause columns not allowed
 t.first_name = t.first_name,
 t.last_name = s.last_name ,
 t.email = s.email ,
 t.phone_number = s.phone_number ,
 t.hire_date = s.hire_date ,
 t.job_id = s.job_id ,
 t.salary = s.salary ,
 t.commission_pct = s.commission_pct ,
 t.manager_id = s.manager_id ,
 t.department_id = s.department_id
 WHERE (S.salary <= 3000)
DELETE WHERE (S.job_id = 'FIRED');
 

The INSERT clause tells Oracle what to do when a matching record is not found. In general, this means
“do an insert.” However, the INSERT clause can be left off altogether. There is also an optional WHERE clause that can
be applied, so it is not always the case that an insert is done if a match is not found. Listing 13-18 shows two versions
of a MERGE statement with an INSERT clause.

Listing 13-18.  MERGE with INSERT Clause

MERGE INTO big_emp t
USING (select * from hr.employees) s
ON (t.employee_id = s.employee_id)
WHEN NOT MATCHED THEN INSERT
(t.employee_id ,
 t.first_name ,
 t.last_name ,
 t.email ,
 t.phone_number ,
 t.hire_date ,
 t.job_id ,
 t.salary ,
 t.commission_pct ,
 t.manager_id ,
 t.department_id)
VALUES
(s.employee_id ,
 s.first_name ,
 s.last_name ,
 s.email ,
 s.phone_number ,
 s.hire_date ,
 s.job_id ,
 s.salary ,
 s.commission_pct ,

Chapter 13 ■ Beyond the SELECT

391

 s.manager_id ,
 s.department_id)
 WHERE (S.job_id != 'FIRED');
 
MERGE INTO big_emp t
USING (select * from hr.employees where job_id != 'FIRED') s
ON (t.employee_id = s.employee_id)
WHEN NOT MATCHED THEN INSERT
(t.employee_id ,
 t.first_name ,
 t.last_name ,
 t.email ,
 t.phone_number ,
 t.hire_date ,
 t.job_id ,
 t.salary ,
 t.commission_pct ,
 t.manager_id ,
 t.department_id)
VALUES
(s.employee_id ,
 s.first_name ,
 s.last_name ,
 s.email ,
 s.phone_number ,
 s.hire_date ,
 s.job_id ,
 s.salary ,
 s.commission_pct ,
 s.manager_id ,
 s.department_id);
 

The statements accomplish the same thing but use a slightly different mechanism. One qualifies the set of
records to be merged in the subquery in the USING clause; the other qualifies the statements to be merged in the WHERE
clause inside the INSERT clause. Be aware that these two forms can have different performance characteristics and
may even result in different plans. Listing 13-19 shows a more realistic example with both the INSERT clause and the
UPDATE clause. Note that the UPDATE clause also contains a DELETE WHERE clause that cleans up records of employees
who have been fired.

Listing 13-19.  Full MERGE

SQL>
SQL> -- delete from big_emp where employee_id > 190;
SQL> -- insert into hr.jobs select 'FIRED', 'Fired', 0, 0 from dual;
SQL> -- update hr.employees set job_id = 'FIRED' where employee_id=197;
SQL> MERGE /*+ APPEND */ INTO big_emp t
 2 USING (select * from hr.employees) s
 3 ON (t.employee_id = s.employee_id)
 4 WHEN MATCHED THEN UPDATE SET
 5 -- t.employee_id = s.employee_id,
 6 t.first_name = t.first_name,
 7 t.last_name = s.last_name ,

Chapter 13 ■ Beyond the SELECT

392

 8 t.email = s.email ,
 9 t.phone_number = s.phone_number ,
 10 t.hire_date = s.hire_date ,
 11 t.job_id = s.job_id ,
 12 t.salary = s.salary ,
 13 t.commission_pct = s.commission_pct ,
 14 t.manager_id = s.manager_id ,
 15 t.department_id = s.department_id
 16 WHERE (S.salary <= 3000)
 17 DELETE WHERE (S.job_id = 'FIRED')
 18 WHEN NOT MATCHED THEN INSERT
 19 (t.employee_id ,
 20 t.first_name ,
 21 t.last_name ,
 22 t.email ,
 23 t.phone_number ,
 24 t.hire_date ,
 25 t.job_id ,
 26 t.salary ,
 27 t.commission_pct ,
 28 t.manager_id ,
 29 t.department_id)
 30 VALUES
 31 (s.employee_id ,
 32 s.first_name ,
 33 s.last_name ,
 34 s.email ,
 35 s.phone_number ,
 36 s.hire_date ,
 37 s.job_id ,
 38 s.salary ,
 39 s.commission_pct ,
 40 s.manager_id ,
 41 s.department_id)
 42 WHERE (S.job_id != 'FIRED');
 
88140 rows merged.
 
Elapsed: 00:00:06.51 

Performance Comparison
So how does the MERGE statement compare with a straight INSERT or CTAS operation? Obviously, there is some
inherent overhead in the MERGE statement that makes such a comparison an unfair test, but MERGE is no slouch. Keep
in mind that just like with the INSERT command, the fastest way to load a lot of data is to make sure it uses the direct
path mechanism by using the APPEND hint. Listing 13-20 compares the performance of INSERT, MERGE, and CTAS. It also
demonstrates that all are capable of doing direct path writes.

Chapter 13 ■ Beyond the SELECT

393

Listing 13-20.  INSERT, MERGE, and CTAS Performance Comparison

SQL> @compare_insert_merge_ctas.sql
 
Table dropped.
 
Elapsed: 00:00:00.69
SQL> @flush_pool
SQL> alter system flush shared_pool;
 
System altered.
 
Elapsed: 00:00:00.46
SQL> select name, value from v$mystat s, v$statname n
 2 where n.statistic# = s.statistic# and name = 'physical writes direct';
 
NAME VALUE
-- ----------
physical writes direct 0
 
Elapsed: 00:00:00.03
SQL> create /* compare_insert_merge_ctas.sql */ table skew3
 2 as select * from skew;
 
Table created.
 
Elapsed: 00:00:32.92
SQL> select name, value from v$mystat s, v$statname n
 2 where n.statistic# = s.statistic# and name = 'physical writes direct';
 
NAME VALUE
-- ----------
physical writes direct 163031
 
Elapsed: 00:00:00.03
SQL>
SQL> truncate table skew3 drop storage;
 
Table truncated.
 
Elapsed: 00:00:01.01
SQL> INSERT /*+ APPEND */ /* compare_insert_merge_ctas.sql */
 2 INTO skew3 select * from skew;
 
32000004 rows created.
 
Elapsed: 00:00:31.23
SQL> select name, value from v$mystat s, v$statname n
 2 where n.statistic# = s.statistic# and name = 'physical writes direct';
 

Chapter 13 ■ Beyond the SELECT

394

NAME VALUE
-- ----------
physical writes direct 326062
 
Elapsed: 00:00:00.03
SQL>
SQL> truncate table skew3 drop storage;
 
Table truncated.
 
Elapsed: 00:00:00.84
SQL> MERGE /*+ APPEND */ /* compare_insert_merge_ctas.sql */
 2 INTO skew3 t
 3 USING (select * from skew) s
 4 ON (t.pk_col = s.pk_col)
 5 WHEN NOT MATCHED THEN INSERT
 6 (t.pk_col, t.col1, t.col2, t.col3, t.col4)
 7 VALUES (s.pk_col, s.col1, s.col2, s.col3, s.col4);
 
32000004 rows merged.
 
Elapsed: 00:00:49.07
SQL> select name, value from v$mystat s, v$statname n
 2 where n.statistic# = s.statistic# and name = 'physical writes direct';
 
NAME VALUE
-- ----------
physical writes direct 489093
 
Elapsed: 00:00:00.01
 
SQL> @fss2
Enter value for sql_text: %compare_insert%
Enter value for sql_id:
 
SQL_ID AVG_ETIME AVG_CPU AVG_PIO AVG_LIO SQL_TEXT
------------- --------- ------- -------- -------- --------------------
6y6ms28kzzb5z 49.07 48.48 162,294 490,664 MERGE /*+ APPEND */
g1pf9b564j7yn 31.22 30.93 162,296 489,239 INSERT /*+ APPEND */
g909cagdbs1t5 32.91 31.25 162,294 494,480 create /* compare_in
 

In this very simple test, you can see that all three approaches are able to use the direct path writes, and that CTAS
and INSERT are very similar in performance. The MERGE statement is considerably slower, as expected because of
its additional capabilities and the necessary overhead associated with them. But, the MERGE statement provides the
most flexibility, so don’t overlook the fact that this single statement can perform multiple types of DML with a single
execution.

Chapter 13 ■ Beyond the SELECT

395

Summary
There are four SQL commands for modifying data: INSERT, UPDATE, DELETE, and MERGE (and the latter is actually
capable of performing all three functions). In this chapter I discussed these commands briefly and focused on one
key performance concept: Direct path inserts are much, much faster than conventional inserts. There is a good
reason for this difference in performance. Direct path inserts do a lot less work. There are a number of drawbacks
when using the technique, however. The biggest drawback is that it is a serial operation; only one process can be
engaging in a direct path insert on a table at any given time, and any other process that wishes to do the same simply
has to wait. Another big drawback is that available space that’s already allocated to the table is not used by direct
path inserts. For these reasons, it’s only applicable to large batch-type loading operations. Nevertheless, it is the
fastest way to insert data into a table and, as such, should be considered whenever performance is among the most
important decision-making criteria. Techniques have been developed for using direct path inserts in the place of
updates and deletes. We explored a couple of these techniques in this chapter as well. Last, I explained several of the
lesser known options of the DML commands, including the extremely powerful Error Logging clause, which can be
applied to all four of the DML commands.

397

Chapter 14

Transaction Processing

After you use Oracle Database for a while, you might have certain expectations of how it behaves. When you enter
a query, you expect a consistent result set to be returned. If you enter a SQL statement to update several hundred
records and the update of one of those rows fails, you expect the entire update to fail and all rows to be returned to
their prior state. If your update succeeds and you commit your work to the database, you expect your changes to
become visible to other users and remain in the database, at least until the data are updated again by someone else.
You expect that when you are reading data, you never block a session from writing, and you also expect the reverse
to be true. These are fundamental truths about how Oracle Database operates, and after you’ve become comfortable
working with Oracle, you tend to take these truths for granted.

However, when you begin to write code for applications, you need to be keenly aware of how Oracle provides the
consistency and concurrency you’ve learned to rely on. Relational databases are intended to process transactions,
and in my opinion, Oracle Database is exceptional at keeping transaction data consistent, accurate, and available.
However, you must design and implement transactions correctly if the protections you receive automatically at
the statement level are to be extended to your transactions. How you design and code a transaction impacts the
integrity and consistency of the application data, and if you do not define the transaction boundaries clearly, your
application may behave in some unexpected ways. Transaction design also influences how well the system performs
when multiple users are retrieving and altering the information within it. Scalability can be severely limited when
transactions are designed poorly.

Although there are only a few transaction control statements, understanding how a transaction is processed
requires an understanding of some of the more complex concepts and architectural components in Oracle Database.
In the next few sections, I briefly cover a few transaction basics, the ACID properties (aka atomicity, consistency,
isolation, and durability), ISO/ANSI SQL transaction isolation levels, and multiversion read consistency. For a more
thorough treatment of these topics, please read the Oracle Concepts Manual (http://www.oracle.com/technetwork/
indexes/documentation/index.html) and then follow up with Tom Kyte’s Expert Oracle Database Architecture Oracle
Database 9i, 10g and 11g Programming Techniques and Solutions (Apress 2010), Chapters 6, 7, and 8. The goal for
this chapter is to acquire a basic understanding of how to design a sound transaction and how to ensure that Oracle
processes your transactions exactly as you intend them to be processed.

What Is a Transaction?
Let’s start by making sure we’re all on the same page when it comes to the word transaction. The definition of a
transaction is a single, logical unit of work. It is comprised of a specific set of SQL statements that must succeed or
fail as a whole. Every transaction has a distinct beginning, with the first executable SQL statement, and a distinct
ending, when the work of the transaction is either committed or rolled back. Transactions that have started but have
not yet committed or rolled back their work are active transactions, and all changes within an active transaction are
considered pending until they are committed. If the transaction fails or is rolled back, then those pending changes
never existed in the database at all.

http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html

Chapter 14 ■ Transaction Processing

398

The most common example of a transaction is a banking transfer. For example, a customer wants to transfer $500
from a checking account to a savings account, which requires a two-step process: a $500 debit from checking and a $500
credit to savings. Both updates must complete successfully to guarantee the accuracy of the data. If both updates cannot be
completed, then both updates must roll back. Transactions are an all-or-nothing proposition, because a partial transaction
may corrupt the data’s integrity. Consider the bank transfer. If the funds are removed from the checking account but the
credit to the savings account fails, the data are no longer consistent and the bank’s financial reporting is inaccurate. The
bank also has a very unhappy customer on its hands because the customer’s $500 has mysteriously disappeared.

It is also necessary to ensure that both updates are committed to the database as a single unit. Committing after
each statement increases the possibility of one statement succeeding and the other statement failing; it also results in
a point in time when the data are inconsistent. From the moment the first commit succeeds until the second commit
completes, the bank records do not represent reality. If a bank manager happens to execute a report summarizing
all account balances during that space of time between the two commits, the total in the deposited accounts would
be short by $500. In this case, the customer is fine because the $500 does eventually end up in her savings account.
Instead, there is a very frustrated accountant working late into the night to balance the books. By allowing the
statements to process independently, the integrity of the data provided to the users becomes questionable.

A transaction should not include any extraneous work. Using the banking example again, it would be wrong to
add the customer’s order for new checks in the transfer transaction. Adding unrelated work violates the definition of
a transaction. There is no logical reason why a check order should depend on the success of a transfer. Nor should the
transfer depend on the check order. Maybe if a customer is opening a new account it would be appropriate to include
the check order with the transaction. The bank doesn’t want to issue checks on a nonexistent account. But then
again, is the customer required to get checks for the account? Probably not. The most important element of coding a
sound transaction is setting the transaction boundaries accurately around a logical unit of work and ensuring that all
operations within the transaction are processed as a whole. To know where those boundaries should be, you need to
understand the application requirements and the business process.

A transaction can be comprised of multiple DML statements, but it can contain only one DDL statement. This is
because every DDL statement creates an implicit commit, which also commits any previously uncommitted work.
Be very cautious when including DDL statements in a transaction. Because a transaction must encompass a complete
logical unit of work, you must be certain that a DDL statement is either issued prior to the DML statements as a
separate transaction or issued after all DML statements have processed successfully. If a DDL statement occurs in the
middle of a transaction, then your “logical unit of work” ends up divided into two not-so-logical partial updates.

ACID Properties of a Transaction
Transaction processing is a defining characteristic of a data management system; it’s what makes a database different
from a file system. There are four required properties for all database transactions: atomicity, consistency, isolation,
and durability. These four properties are known as ACID properties. The ACID properties have been used to define
the key characteristics of database transactions across all brands of database systems since Jim Gray first wrote
about them in 1976, and clearly he defined those characteristics very well because no one has done it better in the
37 years since then. Every transactional database must comply with ACID, but how they choose to implement their
compliance has created some of the more interesting differences in database software products.

All Oracle transactions comply with the ACID properties, which are described in the Oracle Concepts Manual
(http://www.oracle.com/technetwork/indexes/documentation/index.html) as follows:

Atomicity: All tasks of a transaction are performed or none of them are. There are no
partial transactions.

Consistency: The transaction takes the database from one consistent state to another
consistent state.

Isolation: The effect of a transaction is not visible to other transactions until the transaction
is committed.

Durability: Changes made by committed transactions are permanent.

http://www.oracle.com/technetwork/indexes/documentation/index.html

Chapter 14 ■ Transaction Processing

399

Think for a moment about the fundamental behaviors of the individual SQL statements you issue to the Oracle
Database and compare them with the ACID properties just listed. These properties represent the behaviors you expect
at the statement level, because Oracle provides atomicity, consistency, isolation, and durability for SQL statements
automatically without you having to expend any additional effort. Essentially, when you design a transaction to be
processed by the database, your goal is to communicate the entire set of changes as a single operation. As long as
you use transaction control statements to convey the contents of an individual transaction correctly, and set your
transactions to the appropriate isolation level when the default behavior is not what you need, Oracle Database
provides the atomicity, consistency, isolation, and durability required to protect your data.

Transaction Isolation Levels
And now for a little more depth on one particular ACID property: isolation. The definition of isolation in the Oracle
Concepts Manual referenced earlier states that the effects of your transaction cannot be visible until you have
committed your changes. This also means that your changes should not influence the behavior of other active
transactions in the database.

In the banking transaction, I discussed the importance of protecting (isolating) the financial report from your
changes until the entire transaction is complete. If you commit the credit to checking before you commit the debit to
savings, the total bank funds are overstated (briefly) by $500, which violates the isolation property, because any users
or transactions can see that the checking account balance has been reduced before the funds were added to
the savings account.

However, there are two sides to the requirement for transaction isolation. In addition to isolating other
transactions from your updates, you need to be aware of how isolated your transaction needs to be from updates
made by other transactions. To some extent, the way to deal with this issue depends on those business requirements,
but it also depends on how sensitive your transaction is to changes made by other users, and how likely the data are
to change while your transaction is processing. To appreciate the need for isolation, you need to understand how
isolation, or the lack thereof, impacts transactions on a multiuser database.

The ANSI/ISO SQL standard defines four distinct levels of transaction isolation: read uncommitted, read
committed, repeatable read, and serializable. Within these four levels, the standard defines three phenomena that are
either permitted or not permitted at a specific isolation level: dirty reads, nonrepeatable reads, and phantom reads.
Each of the three phenomena is a specific type of inconsistency that can occur in data that are read by one transaction
while another transaction is processing updates. As the isolation level increases, there is a greater degree of separation
between transactions, which results in increasingly consistent data.

The ANSI/ISO SQL standard does not tell you how a database should achieve these isolation levels, nor does
it define which kinds of reads should or should not be permitted. The standard simply defines the impact one
transaction may have on another at a given level of isolation. Table 14-1 lists the four isolation levels and notes
whether a given phenomenon is permitted.

Table 14-1.  ANSI Isolation Levels

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

Read uncommitted Permitted Permitted Permitted

Read committed X Permitted Permitted

Repeatable read X X Permitted

Serializable X X X

Chapter 14 ■ Transaction Processing

400

The definitions of each phenomenon are as follows:

•	 Dirty read: Reading uncommitted data is called a dirty read, and it’s a very appropriate name.
Dirty reads have not been committed, which means that data have not yet been verified
against any constraints set in the database. Uncommitted data may never be committed,
and if this happens, the data were never really part of the database at all. Result sets built from
dirty reads should be considered highly suspect because they can represent a view of the
information that never actually existed.

•	 Nonrepeatable read: A nonrepeatable read occurs when a transaction executes a query
a second time and receives a different result because of committed updates by another
transaction. In this case, the updates by the other transaction have been verified and made
durable, so the data are valid; they’ve just been altered since the last time your transaction
read it.

•	 Phantom read: If a query is executed a second time within a transaction, and additional
records matching the filter criteria are returned, it is considered a phantom read. Phantom
reads result when another transaction has inserted more data and committed its work.

By default, transactions in Oracle are permitted to read the committed work of other users immediately after
the commit. This means that it is possible to get nonrepeatable and phantom reads unless you specifically set
the isolation level for your transaction to either read only or serializable. The important question is “Will either
phenomenon prevent my transaction from applying its changes correctly and taking the database from one consistent
state to the next?” If your transaction does not issue the same query more than once in a single transaction or it does
not need the underlying data to remain consistent for the duration of your transaction, then the answer is no and the
transaction can be processed safely at the default read-committed isolation level.

Only a serializable transaction removes completely the possibility of all three phenomena while still allowing
for updates, thus providing the most consistent view of the data even as they are changing. However, serializable
transactions can reduce the level of concurrency in the database because there is a greater risk of transactions
failing as a result of conflicts with other updates. If you require repeatable reads and you need to update data in the
transaction, setting your transaction to execute in serializable mode is your only option. If your transaction requires
repeatable reads but it does not update data, then you can set your transaction to read-only mode, which guarantees
repeatable reads until your transaction completes or until the system exceeds its undo retention period. I talk about
how to accomplish serializable and repeatable read transactions shortly.

Oracle does not support the read-uncommitted isolation level, nor is it possible to alter the database to do so.
Reading uncommitted data is permitted in other databases to prevent writers from blocking readers and to prevent
readers from blocking writers. Oracle prevents such blocks from occurring with multiversion read consistency, which
provides each transaction with its own read-consistent view of the data. Thanks to multiversion read consistency,
dirty reads are something Oracle users and developers never need to worry about.

Multiversion Read Consistency
As mentioned earlier, the ACID properties do not determine how the database should provide data consistency for
transactions, nor do the ANSI/ISO SQL transaction isolation levels define how to achieve transaction isolation or even
specify the levels of isolation a database product must provide. Each individual vendor determines how to comply
with ACID and the levels of isolation it supports. If you develop applications that operate on multiple database
platforms, it is crucial for you to understand the different implementations provided by each vendor and how those
differences can impact the results of a given transaction.

Fortunately, you only have to worry about one approach in this chapter. Oracle provides data consistency
and concurrency with the multiversion read consistency model. This can be a fairly complex concept to grasp,
although it’s transparent to users. Oracle is able to display simultaneously multiple versions of the data, based on the
specific point in time a transaction requested the information and on the transaction’s isolation level. The database

Chapter 14 ■ Transaction Processing

401

accomplishes this amazing feat by retaining the before-and-after condition of altered data blocks so that the database
can recreate a consistent view of the data for multiple sessions at a single point in time. If a transaction is running in
the default read-committed mode, then a “consistent view of the data” means the results are based on the committed
data as of when a query or update was initiated. When a transaction executes in serializable mode, the read-consistent
view is based on the committed data as of when the transaction began. There is a limit to how far Oracle can reach
into the past to create this consistent view of the data, and that limit depends on the allocation of undo space
configured for the database. If Oracle cannot reach back far enough into the past to support a given statement, that
statement fails with a “snapshot too old” error.

Undo blocks retain the before condition of the data whereas the redo information is stored in the online redo
logs in the SGA. The redo logs contain both the change to the data block and the change to the undo block. The same
structures that provide the means to roll back your changes also provide read-consistent views of the data to multiple
users and multiple transactions. Because a transaction should always encompass a complete logical unit of work, the
undo storage and retention level should be configured to support transactions at the required level of concurrency.
If you are considering dividing your logical unit of work to prevent “snapshot too old” errors, you need to revisit your
code or talk with your DBA. Or maybe do both.

The database buffers of the SGA are updated with changes for a committed transaction, but the changes are not
necessarily written immediately to the data files. Oracle uses the system change number (SCN) to keep a sequential
record of changes occurring throughout the instance and to connect changes to a particular point in time. Should
the database fail, all pending transactions are rolled back so that when the database is restarted, the data are at a
consistent state once again, reflecting only the committed work as of the time of failure. You get the exact same result
if the DBA issues a command to flash the database back to a specific SCN. The database returns to the point in time
marked by the SCN, and any transactions committed after that no longer exist in the database. This is necessary to
prevent partial transactions from being stored in the database.

So how does multiversion read consistency impact individual transactions? If transaction B requests data
that have been altered by transaction A, but transaction A has not committed its changes, Oracle reads the before
condition of the data and returns that view to transaction B. If transaction C begins after transaction A commits its
changes, the results returned to transaction C include the changes committed by transaction A, which means that
transaction C receives a different result than transaction B, but the results are consistent with the point in time when
each session requested the information.

Transaction Control Statements
There are only five transaction control statements: commit, savepoint, rollback, set transaction, and set
constraints. There are relatively few variants of these statements, so learning the syntax and the options for
controlling your transactions is not too difficult. The challenge of coding a transaction is understanding how and
when to use the appropriate combination of statements to ensure your transaction complies with ACID and that it
is processed by the database exactly as you expect.

Commit
Commit, or the SQL standard-compliant version commit work, ends your transaction by making your changes durable
and visible to other users. With the commit write extensions now available, you have the option to change the default
behavior of a commit. Changes can be committed asynchronously with the write nowait extension, and you can also
choose to allow Oracle to write commits in batches. The default behavior processes a commit as commit write wait
immediate, which is how commits were processed in earlier versions of Oracle. This is still the correct behavior for the
majority of applications.

So when might you choose not to wait for Oracle to confirm your work has been written? By choosing an asynchronous
commit, you are allowing the database to confirm that your changes have been received before those changes are
made durable. If the database fails before the commit is written, your transaction is gone yet your application and your
users expect it to be there. Although this behavior may be acceptable for applications that process highly transitive data,

Chapter 14 ■ Transaction Processing

402

for most of us, ensuring the data have indeed been committed is essential. A nowait commit should be considered
carefully before being implemented. You need to be certain that your application can function when committed
transactions seem to disappear.

Savepoint
Savepoints allow you to mark specific points within your transaction and roll back your transaction to the specified
savepoint. You then have the option to continue your transaction rather than starting a brand new one. Savepoints
are sequential, so if you have five savepoints and you roll back to the second savepoint, all changes made for
savepoints 3 through 5 are rolled back.

Rollback
Rollback is the other option for ending a transaction. If you choose to roll back, your changes are reversed and
the data return to their previously consistent state. As noted earlier, you have the option to roll back to a specific
savepoint, but rolling back to a savepoint does not end a transaction. Instead, the transaction remains active until
either a complete rollback or a commit is issued.

Set Transaction
The set transaction command provides multiple options to alter default transaction behavior. Set transaction
read only provides repeatable reads, but you cannot alter data. You also use the set transaction command to
specify serializable isolation. Set transaction can be used to choose a specific rollback segment for a transaction,
but this is no longer recommended by Oracle. In fact, if you are using automatic undo management, this command is
ignored. You can also use set transaction to name your transaction, but the dbms.application_info package is a
better option for labeling your transactions because it provides additional functionality.

Set Constraints
Constraints can be deferred during a transaction with the set constraint or set constraints commands.
The default behavior is to check the constraints after each statement, but in some transactions it may be that the
constraints are not met until all the updates within the transaction are complete. In these cases, you can defer
constraint verification as long as the constraints are created as deferrable. This command can defer a single constraint
or it can defer all constraints.

As far as the SQL language goes, transaction control statements may be some of the simplest and clearest
language options you have. Commit, rollback, and rollback to savepoint will be the transaction control commands
you use most often. You may need to set the isolation level with set transaction occasionally, whereas deferring
constraints is likely to be a rare occurrence. If you want more information about the transaction control statements,
referring to the SQL statement documentation is likely to give you enough information to execute the commands; but,
before you use one of the less common commands, be sure to research and test it extensively so you know absolutely
what effect the nondefault behavior will have on your data.

Grouping Operations into Transactions
By now, you should be well aware that understanding business requirements is central to designing a good transaction.
However, what is considered a logical unit of work in one company may be very different at another. For example,
when an order is placed, is the customer’s credit card charged immediately or is the card charged when the order
ships? If payment is required to place the order, then the procuring the funds should be part of the order transaction.

Chapter 14 ■ Transaction Processing

403

If payments are processed when the product is shipped, then payment may be authorized with the order, but processed
just before shipment. Neither option is more correct than the other, it just depends on how the business has decided
to manage its orders. If a company sells a very limited product, then expecting payment at the time of order is perfectly
reasonable because the company makes that rare item unavailable to other customers. If the product is common, then
customers generally don’t expect to pay until the product ships, and choosing to process payments earlier may cost the
company some business.

In addition to understanding the requirements of the business, there are some general rules for designing a
sound transaction:

Process each logical unit of work as an independent transaction. Do not include extraneous •	
work.

Ensure the data are consistent when your transaction begins and that they remain consistent •	
when the transaction is complete.

Get the resources you need to process your transaction and then release the resources •	
for other transactions. Hold shared resources for as long as you need them, but no longer.
By the same token, do not commit during your transaction just to release locks you still need.
Adding commits breaks up the logical unit of work and does not benefit the database.

Consider other transactions likely to be processing at the same time. Do they need to be •	
isolated from your transaction? Does your transaction need to be isolated from other updates?

Use savepoints to mark specific SQL statements that may be appropriate for midtransaction •	
rollbacks.

Transactions should always be committed or rolled back explicitly. Do not rely on the default •	
behavior of the database or a development tool to commit or roll back. Default behavior
can change.

After you’ve designed a solid transaction, consider wrapping it in a procedure or package. •	
As long as a procedure does not contain any commits or rollbacks within it, it is provided
with the same default atomicity level Oracle provides to all statements. This means that the
protections afforded automatically to statements also apply to your procedure and, therefore,
to your transaction.

Exception handling can have a significant impact on a transaction’s integrity. Exceptions •	
should be handled with relevant application errors, and any unhandled exceptions should
always raise the database error. Using the WHEN OTHERS clause to bypass an error condition
is a serious flaw in your code.

Consider using the •	 dbms_application_info package to label your transactions to help
identify specific sections of code quickly and accurately when troubleshooting errors or
tuning performance. I talk more about dbms_application_info and instrumentation in
the next chapter.

The Order Entry Schema
Before I move on to talking about active transactions, let’s talk about the sample schema we’ll be using for our
transaction examples. The order entry (OE) schema contains a product set that is available for orders, and it is
associated with the human resources schema you may already be familiar with. In this case, some of the employees
are sales representatives who take orders on behalf of customers. Listing 14-1 shows the names of the tables in the
default OE schema.

Chapter 14 ■ Transaction Processing

404

Listing 14-1.  OE Schema Tables

TABLE_NAME

CATEGORIES
CUSTOMERS
INVENTORIES
ORDERS
ORDER_ITEMS
PRODUCT_DESCRIPTIONS
PRODUCT_INFORMATION
WAREHOUSES
 

The OE schema may be missing a few critical components; there are no warehouses in the warehouses table and
there is no inventory in the inventories table, so you are out of stock on everything and you have no place to store
the stock if you did have any. It’s hard to create orders without any inventory, so we need to add data to the existing
tables first.

Start by adding a warehouse to the company’s Southlake, Texas, location where there should be plenty of real estate,
and then add lots of inventory to be sold. I used the dbms_random procedure to generate more than 700,000 items,
so if you choose to follow along, your actual inventory may vary. But, you should end up with enough products in
stock to experiment with a few transactions, and you can always add more. As you create your orders, notice the
product_information table contains some very old computing equipment. If it helps, consider the equipment vintage
and pretend you’re selling collectibles.

The orders table contains an order_status column, but the status is represented by a numeric value. Create
a lookup table for the order status values and, because the existing orders use a range of one through ten, your
order_status table needs to contain ten records. Although this is not a PL/SQL book, I created a few functions and a
procedure to provide some necessary functionality without having to show a lot of extra code that might detract from
the primary purpose of the example. There are functions to get the list price from the product_information table,
one to get a count of the number of line items added to an order, and another one to calculate the order total using
the sum of the line items. The contents of the functions are not important to your transactions, but the code to create
them is included in the download available at the Apress web site, along with the rest of the schema updates.

We also need to create a billing schema and a credit authorization procedure. The procedure accepts a customer
ID number and order total, and then returns a randomly generated number to simulate the process of ensuring
payment for the products. In the real world, billing likely represents an entire accounting system and possibly a
distributed transaction, but for our purposes, we simply need to represent the customers’ promise to pay for the
items they wish to order. Remember, the most important rule for any transaction is that it should contain a complete
logical unit of work. The credit authorization represents the exchange of funds for the product. We’re not in business
to give our products away, and customers aren’t going to send us cash unless they receive something in return. It’s this
exchange that represents a transaction. Listing 14-2 shows the rest of the OE schema changes.

Listing 14-2.  OE Schema Changes

-- create 'billing' user to own a credit authorization procedure
 
conn / as sysdba
create user billing identified by &passwd ;
 
grant create session to billing ;
grant create procedure to billing ;
 
--- add warehouses and inventory using a random number to populate inventory quantities
 

Chapter 14 ■ Transaction Processing

405

connect oe
 
insert into warehouses values (1, 'Finished Goods', 1400) ;
 
insert into inventories
select product_id, 1, round(dbms_random.value(2, 5000),0)
 from product_information;
 
commit;
 
--- check total quantity on hand
 
select sum(quantity_on_hand) from inventories;
 
--- create a sequence for the order id
 
create sequence order_id start with 5000;
 
--- create a table for order status
 
create table oe.order_status
 (
 order_status number(2, 0) not null,
 order_status_name varchar2(12) not null,
 constraint order_status_pk order_status)
);
 
--- add values for order status 1 through 10 to match existing sample data
 
insert into order_status (order_status, order_status_name) values (0, 'Pending');
insert into order_status (order_status, order_status_name) values (1, 'New');
insert into order_status (order_status, order_status_name) values (2, 'Cancelled');
insert into order_status (order_status, order_status_name) values (3, 'Authorized');
insert into order_status (order_status, order_status_name) values (4, 'Processing');
insert into order_status (order_status, order_status_name) values (5, 'Shipped');
insert into order_status (order_status, order_status_name) values (6, 'Delivered');
insert into order_status (order_status, order_status_name) values (7, 'Returned');
insert into order_status (order_status, order_status_name) values (8, 'Damaged');
insert into order_status (order_status, order_status_name) values (9, 'Exchanged');
insert into order_status (order_status, order_status_name) values (10, 'Rejected');
 
--- create a function to get the list prices of order items
 
@get_listprice.fnc
 
--- create a function to get the order total
 
@get_ordertotal.fnc
 
--- create a function to get the order count
 

Chapter 14 ■ Transaction Processing

406

@get_orderitemcount.fnc
 
--- create order detail views
 
@order_detail_views.sql
 
--- Create credit_request procedure
 
connect billing
 
@credit_request.sql
 

Now that you know what we’re selling and we have a customers table to tell us who we might be selling it to,
let’s take a look at an order transaction. Your longstanding customer Maximilian Henner of Davenport, Iowa, has
contacted sales manager John Russell and placed an order for five 12GB hard drives, five 32GB RAM sticks, and 19
boxes of business cards containing 1000 cards per box. Mr. Henner has a credit authorization of $50,000, although our
customers table does not tell us how much he may already owe for prior purchases. This information is stored in our
imaginary billing system. John enters Mr. Henner’s order in the order entry screen of our sales system and creates order
number 2459 for customer 141. The order is a direct order entered into the system by our employee, ID number 145.
When our sales manager sends a copy of this order to his customer, the order should look something like this:

Order no.:	 2459
Customer:	 Maximilian Henner

2102 E Kimberly Rd
Davenport, IA 52807

Sold by:	 John Russell

No. Product Description Qty Price Sale Price Total

1 2255 HD 12GB @7200 /SE 5 775.00 658.75 3293.75

2 2274 RAM, 32MB 5 161.00 136.85 684.25

3 2537 Business cards, box, 1000 19 200.00 170.00 3230.00

Mr. Henner wants to purchase multiple quantities of three different products, so we need to add three items to
the order_item table. Each item needs a product ID, a quantity, and a list price. There is a discount percentage that is
applied to the entire order, and it is used to calculate the discounted price. The discounted priced is multiplied by the
item quantity to produce the line item total.

As we add the items to the order, we also must reduce the on-hand inventory for these items so that another sales
person does not commit to delivering a product that is no longer available. Next, we need to calculate the order total
as a sum of the line items and then call the credit authorization procedure to verify that Mr. Henner has the required
amount available in his credit line. After we have the authorization, we set the order total to equal the amount
charged, and the transaction is complete. All these steps are required for the order to exist and, therefore, these steps
comprise our logical unit of work for an order.

Before we enter the order, check the inventory for the products the customer has requested, as shown in Listing 14-3.

Listing 14-3.  Verify Available Inventory

SQL> select product_id, quantity_on_hand
 from inventories
 where product_id in (2255, 2274, 2537)
 order by product_id ;
 

Chapter 14 ■ Transaction Processing

407

PRODUCT_ID QUANTITY_ON_HAND
---------- ----------------
 2255 672
 2274 749
 2537 2759
 

When we look at the statements as they are received by the database to create this order, reduce the inventory,
and obtain a credit authorization, they might look something like the transaction shown in Listing 14-4.

Listing 14-4.  Order Transaction in a Procedure

SQL> begin
  
 savepoint create_order;
  
 insert into orders
 (order_id, order_date, order_mode,
 order_status, customer_id, sales_rep_id)
 values
 (2459, sysdate, 'direct', 1, 141, 145) ;
  
 --- Add first ordered item and reduce inventory
  
 savepoint detail_item1;
  
 insert into order_items
 (order_id, line_item_id, product_id,
 unit_price, discount_price, quantity)
 values
 (2459, 1, 2255, 775, 658.75, 5) ;
  
 update inventories set quantity_on_hand = quantity_on_hand - 5
 where product_id = 2255 and warehouse_id = 1 ;
  
 --- Add second ordered item and reduce inventory
  
 savepoint detail_item2;
  
 insert into order_items
 (order_id, line_item_id, product_id,
 unit_price, discount_price, quantity)
 values
 (2459, 2, 2274, 161, 136.85, 5) ;
  
 update inventories set quantity_on_hand = quantity_on_hand - 5
 where product_id = 2274 and warehouse_id = 1 ;
 
 --- Add third ordered item and reduce inventory
  

Chapter 14 ■ Transaction Processing

408

 savepoint detail_item3;
 insert into order_items
 (order_id, line_item_id, product_id,
 unit_price, discount_price, quantity)
 values
 (2459, 3, 2537, 200, 170, 19) ;
  
 update inventories set quantity_on_hand = quantity_on_hand - 19
 where product_id = 2537 and warehouse_id = 1 ;
  
 --- Request credit authorization
  
 savepoint credit_auth;
  
 begin billing.credit_request(141,7208); end;
  
 savepoint order_total;
  
 --- Update order total
  
 savepoint order_total;
  
 update orders set order_total = 7208 where order_id = 2459;
  
 exception
 when others then RAISE;
 end;
 /
 
Customer ID = 141
Amount = 7208
Authorization = 3452
 
PL/SQL procedure successfully completed.
 

We see the output from the credit authorization and get a confirmation that our procedure completed. We have
not yet ended our transaction because we haven’t issued a commit or a rollback. First, query the data to confirm our
updates, including the update to reduce the on-hand inventory. The confirmation queries are shown in Listing 14-5.

Listing 14-5.  Confirm Transaction Updates

SQL> select order_id, customer, mobile, status, order_total, order_date
 from order_detail_header
 where order_id = 2459 ;
 
 ORDER_ID CUSTOMER MOBILE STATUS ORDER_TOTAL ORDER_DATE
---------- ----------------- --------------- ------- ------------ -----------
 2459 Maximilian Henner +1 319 123 4282 New 7,208.00 04 Jul 2010
 
1 row selected.
 

Chapter 14 ■ Transaction Processing

409

SQL> select line_item_id ITEM, product_name, unit_price,
 discount_price, quantity qty, line_item_total
 from order_detail_line_items
 where order_id = 2459
 order by line_item_id ;
 
 ITEM PRODUCT_NAME UNIT_PRICE DISCOUNT_PRICE QTY LINE_ITEM_TOTAL
----- ------------------------ ---------- -------------- --- ---------------
 1 HD 12GB @7200 /SE 775.00 658.75 5 3,293.75
 2 RAM - 32 MB 161.00 136.85 5 684.25
 3 Business Cards Box - 1000 200.00 170.00 19 3,230.00
 
3 rows selected.
 
SQL> select product_id, quantity_on_hand
 from inventories
 where product_id in (2255, 2274, 2537)
 order by product_id ;
 
PRODUCT_ID QUANTITY_ON_HAND
---------- ----------------
 2255 667
 2274 744
 2537 2740
 

All required operations within our transaction have been confirmed. The order is created, three products are added,
the inventory is reduced, and our order total is updated to reflect the sum of the individual line items. Our transaction is
complete, and we can commit the changes. Instead, however, we’re going to roll them back and use this transaction again.

Note■■  T he most important rule for transaction processing is to ensure the transaction is ACID compliant. The
transaction in Listing 14-4 has been wrapped in a procedure with an exception clause to illustrate the atomicity principal.
The remainder of the examples are shown as independently entered SQL statements and, in some cases, only a portion
of the transaction is shown to keep the examples to a reasonable length. If there is one message you take away from this
chapter, it is the importance of ensuring that the entire transaction succeeds as a whole or fails as a whole.

The Active Transaction
As soon as we issue the first SQL statement that alters data, the database recognizes an active transaction and creates
a transaction ID. The transaction ID remains the same whether we have one DML statement in our transaction or 20,
and the transaction ID exists only as long as our transaction is active and our changes are still pending. In the order
example from the previous section, the transaction ID is responsible for tracking only one transaction: the new order
for Mr. Henner. After we roll back the entire transaction, our transaction ends and the transaction ID is gone. We see
the same result if we commit our work.

The SCN, on the other hand, continues to increment regardless of where we are in our transaction process.
The SCN identifies a specific point in time for the database, and it can be used to return the database to a prior point
in time while still ensuring the data are consistent. Committed transactions remain committed (durability), and any
pending transactions are rolled back (atomicity).

Chapter 14 ■ Transaction Processing

410

If we check the transaction ID and SCN while executing the individual statements that comprised the order
procedure shown earlier, we see something like the results in Listing 14-6.

Listing 14-6.  Order Transaction with Transaction ID and SCN Shown

SQL> insert into orders
 (order_id, order_date, order_mode,
 order_status, customer_id, sales_rep_id)
 values
 (2459, sysdate, 'direct', 1, 141, 145) ;
 
1 row created.
 
SQL> select current_scn from v$database;
 
CURRENT_SCN

 83002007
 
SQL> select xid, status from v$transaction ;
 
XID STATUS
---------------- ----------------
0A001800CE8D0000 ACTIVE
.......
 
SQL> --- Update order total
 
SQL> update orders set order_total = 7208 where order_id = 2459;
1 row updated.
 
SQL> select order_id, customer, mobile, status, order_total, order_date
 from order_detail_header
 where order_id = 2459;
 ORDER_ID CUSTOMER MOBILE STATUS ORDER_TOTAL ORDER_DATE
---------- ------------------------- --------------- ------------ -------------- -----------
 2459 Maximilian Henner +1 319 123 4282 New 7,208.00 04 Jul 2010
 
SQL> select line_item_id, product_name, unit_price,
 discount_price, quantity, line_item_total
 from order_detail_line_items
 where order_id = 2459
 order by line_item_id ;
 
ITEM PRODUCT_NAME UNIT_PRICE DISCOUNT_PRICE QUANTITY LINE_ITEM_TOTAL
---- ---------------------------------- ---------- -------------- ---------- ---------------
 1 HD 12GB @7200 /SE 775.00 658.75 5 3,293.75
 2 RAM - 32 MB 161.00 136.85 5 684.25
 3 Business Cards Box - 1000 200.00 170.00 19 3,230.00
 
SQL> select current_scn from v$database;
 

Chapter 14 ■ Transaction Processing

411

CURRENT_SCN

 83002012
 
SQL> select xid, status from v$transaction ;
 
XID STATUS
---------------- ----------------
0A001800CE8D0000 ACTIVE
 
SQL> rollback;
 
Rollback complete.
 
SQL> select current_scn from v$database;
 
CURRENT_SCN

 83002015
 
SQL> select xid, status from v$transaction ;
 
no rows selected
 

If the database flashed back to SCN 83002012, none of the operations in our order exist. Because any changes
we made were pending at that point in time, the only way Oracle can guarantee data consistency is to roll back all
noncommitted work. Whether we committed the transaction or rolled it back is immaterial. The updates were not
committed at SCN 830020012, and pending changes are always reversed.

Using Savepoints
In the initial order transaction, we included savepoints but did not make use of them. Instead, we executed our
transaction, confirmed the order information with two queries, and then rolled back the entire transaction. In the
example shown in Listing 14-7, we roll back to savepoint item_detail1, which is recorded prior to adding any product
to the order. Let’s take a look at our data after returning to a savepoint.

Listing 14-7.  Returning to a Savepoint

SQL> savepoint create_order;
 
Savepoint created.
 
SQL> insert into orders
 (order_id, order_date, order_mode,
 order_status, customer_id, sales_rep_id)
 values
 (2459, sysdate, 'direct', 1, 141, 145) ;
 
1 row created.
 

Chapter 14 ■ Transaction Processing

412

SQL> --- Add first ordered item and reduce inventory
 
SQL> savepoint detail_item1;
 
Savepoint created.
 
SQL> insert into order_items
 (order_id, line_item_id, product_id,
 unit_price, discount_price, quantity)
 values
 (2459, 1, 2255, 775, 658.75, 5) ;
 
1 row created.
 
SQL> update inventories set quantity_on_hand = quantity_on_hand - 5
 where product_id = 2255 and warehouse_id = 1 ;
 
1 row updated.
 
SQL> --- Add second ordered item and reduce inventory
 
SQL> savepoint detail_item2;
 
Savepoint created.
 
SQL> insert into order_items
 (order_id, line_item_id, product_id,
 unit_price, discount_price, quantity)
 values
 (2459, 2, 2274, 161, 136.85, 5) ;
 
1 row created.
 
SQL> update inventories set quantity_on_hand = quantity_on_hand - 5
 where product_id = 2274 and warehouse_id = 1 ;
 
1 row updated.
 
SQL> --- Add third ordered item and reduce inventory
 
SQL> savepoint detail_item3;
 
Savepoint created.
  
SQL> insert into order_items
 (order_id, line_item_id, product_id,
 unit_price, discount_price, quantity)
 values
 (2459, 3, 2537, 200, 170, 19) ;
 
1 row created.
 

Chapter 14 ■ Transaction Processing

413

SQL> update inventories set quantity_on_hand = quantity_on_hand - 19
 where product_id = 2537 and warehouse_id = 1 ;
 
1 row updated.
 
SQL> --- Request credit authorization
 
SQL> savepoint credit_auth;
 
Savepoint created.
  
SQL> exec billing.credit_request(141,7208) ;
Customer ID = 141
Amount = 7208
Authorization = 1789
 
PL/SQL procedure successfully completed.
 
SQL> savepoint order_total;
 
Savepoint created.
 
SQL> --- Update order total
 
SQL> savepoint order_total;
 
Savepoint created.
 
SQL> update orders set order_total = 7208 where order_id = 2459;
 
1 row updated.
 
SQL> select order_id, customer, mobile, status, order_total, order_date
 from order_detail_header
 where order_id = 2459;
 
 ORDER_ID CUSTOMER MOBILE STATUS ORDER_TOTAL ORDER_DATE
---------- ------------------------- --------------- ------------ -------------- -----------
 2459 Maximilian Henner +1 319 123 4282 New 7,208.00 04 Jul 2010
 
SQL> select line_item_id, product_name, unit_price, discount_price,
 quantity, line_item_total
 from order_detail_line_items
 where order_id = 2459
 order by line_item_id ;
 
ITEM PRODUCT_NAME UNIT_PRICE DISCOUNT_PRICE QUANTITY LINE_ITEM_TOTAL
---- ------------------------- ---------- -------------- ---------- ---------------
 1 HD 12GB @7200 /SE 775.00 658.75 5 3,293.75
 2 RAM - 32 MB 161.00 136.85 5 684.25
 3 Business Cards Box - 1000 200.00 170.00 19 3,230.00
 
SQL> rollback to savepoint detail_item1;
 
Rollback complete.
 

Chapter 14 ■ Transaction Processing

414

When we reexecute the queries to check the order data, notice in Listing 14-8 that all changes occurring after the
savepoint are reversed, yet the order itself still exists. Our sales rep has the option of continuing with Mr. Henner’s
order by adding new line items or rolling it back completely to end the transaction.

Listing 14-8.  Verifying Data after Rollback to a Savepoint

SQL> select order_id, customer, mobile, status, order_total, order_date
 from order_detail_header
 where order_id = 2459;
 
 ORDER_ID CUSTOMER MOBILE STATUS ORDER_TOTAL ORDER_DATE
---------- ------------------------- --------------- ------------ -------------- -----------
 2459 Maximilian Henner +1 319 123 4282 New 04 Jun 2010
 
SQL> select line_item_id, product_name, unit_price, discount_price,
 quantity, line_item_total
 from order_detail_line_items
 where order_id = 2459
 order by line_item_id ;
 
no rows selected
 
SQL> select product_id, quantity_on_hand
 from inventories
 where product_id in (2255, 2274, 2537)
 order by product_id ;
 
PRODUCT_ID QUANTITY_ON_HAND
---------- ----------------
 2255 672
 2274 749
 2537 2759
 

Notice how in the first set of query selects both the order and the three products are added to the order_items
table. After we roll back to the item_detail1 savepoint, there are no products associated with the order, the inventory
has returned to its previous level, and—although the order header still exists—the order total field is now null.

Serializing Transactions
When a transaction is executed in serializable mode, Oracle’s multiversion read consistency model provides a view
of the data as they existed at the start of the transaction. No matter how many other transactions may be processing
updates at the same time, a serializable transaction only sees its own changes. This creates the illusion of a single-user
database because changes committed by other users after the start of the transaction remain invisible. Serializable
transactions are used when a transaction needs to update data and requires repeatable reads. Listings 14-9 and 14-10
demonstrate when a serialized transaction or repeatable read may be required.

Executing transactions in serializable mode does not mean that updates are processed sequentially. If a
serializable transaction attempts to update a record that has been changed since the transaction began, the update is
not permitted and Oracle returns error “ORA-08177: can’t serialize access for this transaction.”

Chapter 14 ■ Transaction Processing

415

At this point, the transaction could be rolled back and repeated. For a serializable transaction to be successful,
there needs to be a strong possibility that no one else will update the same data while the transaction executes. We can
increase the odds of success by completing any changes that may conflict with other updates early in our transaction,
and by keeping the serialized transaction as short and as fast as possible.

This makes the need for serializable updates somewhat contrary to their use. If the data are unlikely to be
updated by another user, then why do we need serializable isolation? Yet, if the data are changeable enough to require
serializable isolation, this may be difficult to achieve.

For the next example, we open two sessions. Session A initiates a serializable transaction and adds an additional
product to an existing order. After the item is added and before the order total is updated, we pause the transaction
to make a change to the same order in another session. In session B, we update the status of the order to Processing
and commit our changes. Then, we return to session A to update the order. This results in an ORA-08177 error,
as shown in Listing 14-9.

Listing 14-9.  Serialized Transaction and ORA-08177

Session A: Serialized transaction to add an additional item
 
SQL> set transaction isolation level serializable;
 
Transaction set.
 
SQL> variable o number
SQL> execute :o := &order_id
Enter value for order_id: 5006
 
PL/SQL procedure successfully completed.
 
SQL> variable d number
SQL> execute :d := &discount
Enter value for discount: .1
 
PL/SQL procedure successfully completed.
 
SQL> --- Add new ordered item and reduce on-hand inventory
 
SQL> variable i number
SQL> execute :i := &first_item
Enter value for first_item: 1791
 
PL/SQL procedure successfully completed.
 
SQL> variable q number
SQL> execute :q := &item_quantity
Enter value for item_quantity: 15
 
PL/SQL procedure successfully completed.
 
SQL> variable p number
SQL> execute :p := get_ListPrice(:i)
 
PL/SQL procedure successfully completed.
 

Chapter 14 ■ Transaction Processing

416

SQL> insert into order_items
 (order_id, line_item_id, product_id, unit_price, discount_price, quantity)
 values
 (:o, 1, :i, :p, :p-(:p*:d), :q) ;
 
1 row created.
SQL> update inventories set quantity_on_hand = quantity_on_hand - :q
 where product_id = :i and warehouse_id = 1 ;
 
1 row updated.
 
SQL> pause Pause ...
Pause ...
 
Session B: Order Status Update
 
SQL> variable o number
SQL> execute :o := &order_id
Enter value for order_id: 5006
 
PL/SQL procedure successfully completed.
 
SQL> variable s number
SQL> execute :s := &status
Enter value for status: 4
 
PL/SQL procedure successfully completed.
 
SQL> update orders
 set order_status = :s
 where order_id = :o ;
 
1 row updated.
 
SQL> select order_id, customer, mobile, status, order_total, order_date
 from order_detail_header
 where order_id = :o;
 
 ORDER_ID CUSTOMER MOBILE STATUS ORDER_TOTAL ORDER_DATE
---------- ------------------------- --------------- ------------ -------------- -----------
 5006 Harry Mean Taylor +1 416 012 4147 Processing 108.00 04 Jul 2010
 
SQL> select line_item_id, product_name, unit_price, discount_price,
 quantity, line_item_total
 from order_detail_line_item
 where order_id = :o
 order by line_item_id ;
 
ITEM PRODUCT_NAME UNIT_PRICE DISCOUNT_PRICE QUANTITY LINE_ITEM_TOTAL
---- ------------------------- ---------- -------------- ---------- ---------------
 1 Cable RS232 10/AM 6 5.40 20 108.00
 

Chapter 14 ■ Transaction Processing

417

SQL> commit;
Session A: Return to the serializable transaction
 
SQL> --- Get New Order Total
 
SQL> variable t number
SQL> execute :t := get_OrderTotal(:o)
 
PL/SQL procedure successfully completed.
  
SQL> --- Update order total
  
SQL> update orders set order_total = :t where order_id = :o ;
update orders set order_total = :t where order_id = :o
*
ERROR at line 1:
ORA-08177: can't serialize access for this transaction
 

Because session B already committed changes to order 5006, session A is not permitted to update the order total.
This is necessary to prevent a lost update. Session A cannot see the order status has changed; its serialized view of the
data still considers the order to be New. If session A replaced the record in the order table with its version of the data,
changes made by session B would be overwritten by the previous version of the data even though they were committed
changes. In this case, the order total would have to be updated earlier during session A’s transaction for this transaction
to be successful. However, because the order total is a sum of the individual line items, that number is unknown until
the new line item is added. This is also a case when serializable isolation might really be required. If two sessions are
attempting to add line items to the same order at the same time, the calculated order total might end up inaccurate.

Note■■  I switched from hard coded data values to user variables in the transactions, which makes it easier to execute
the order transactions repeatedly for testing and to view the results at each step. The code to process orders with
prompts, variables, and functions is available on the Apress web site.

Isolating Transactions
Using the same pair of transactions, let’s take a quick look at what can happen when we don’t isolate a transaction
properly. In this case, session A commits the additional items to order 5007 before pausing, which means the product
is added to the order and is made durable; but, the order total does not include the additional product. Listing 14-10
shows how permitting other sessions to see partial transactions can jeopardize data integrity.

Listing 14-10.  Inappropriate Commits and Transaction Isolation Levels

Session A: Serializable transaction to add an additional item
 
SQL> set transaction isolation level serializable;
Transaction set.
 
SQL> variable o number
SQL> execute :o := &order_id
Enter value for order_id: 5007
 

Chapter 14 ■ Transaction Processing

418

PL/SQL procedure successfully completed.
 
SQL> variable d number
SQL> execute :d := &discount
Enter value for discount: .2
 
PL/SQL procedure successfully completed.
 
SQL> --- Add new ordered item and reduce on-hand inventory
 
SQL> variable i number
SQL> execute :i := &first_item
Enter value for first_item: 3127
 
PL/SQL procedure successfully completed.
 
SQL> variable q number
SQL> execute :q := &item_quantity
Enter value for item_quantity: 5
 
PL/SQL procedure successfully completed.
 
SQL> variable p number
SQL> execute :p := get_ListPrice(:i)
 
PL/SQL procedure successfully completed.
 
SQL> insert into order_items
 (order_id, line_item_id, product_id,
 unit_price, discount_price, quantity)
 values
 (:o, 1, :i, :p, :p-(:p*:d), :q) ;
 
1 row created.
 
SQL> update inventories set quantity_on_hand = quantity_on_hand - :q
 where product_id = :i and warehouse_id = 1 ;
 
1 row updated.
 
SQL> commit;
 
Commit complete.
 
SQL> pause Pause ...
Pause ...
 
Session B: Order Status Update
 

Chapter 14 ■ Transaction Processing

419

SQL> variable o number
SQL> execute :o := &order_id
Enter value for order_id: 5007
 
PL/SQL procedure successfully completed.
 
SQL> variable s number
SQL> execute :s := &status
Enter value for status: 4
 
PL/SQL procedure successfully completed.
 
SQL> update orders
 set order_status = :s
 where order_id = :o ;
 
1 row updated.
 
SQL> select order_id, customer, mobile, status, order_total, order_date
 from order_detail_header
 where order_id = :o;
 
 ORDER_ID CUSTOMER MOBILE STATUS ORDER_TOTAL ORDER_DATE
---------- ------------------------- --------------- ------------ -------------- -----------
 5007 Alice Oates +41 4 012 3563 Processing 16,432.00 04 Jul 2010
 
SQL> select line_item_id, product_name, unit_price, discount_price,
 quantity, line_item_total
 from order_detail_line_item
 where order_id = :o
 order by line_item_id ;
 
ITEM PRODUCT_NAME UNIT_PRICE DISCOUNT_PRICE QUANTITY LINE_ITEM_TOTAL
---- ---------------------------------- ---------- -------------- ---------- ---------------
 1 Monitor 21/HR/M 889.00 711.20 5 3,556.00
 2 Laptop 128/12/56/v90/110 3,219.00 2,575.20 5 12,876.00
 3 LaserPro 600/6/BW 498.00 398.40 5 1,992.00
 
SQL> commit;
 

Notice in the previous output that the LaserPro 600 printer is added to the order, but the order total does not
reflect the additional $1992. The status update transaction is able to view changes made by the partial transaction.
Because session A issued a commit, its serializable transaction ends. Either session is now able to record its view of
the orders table, and the statement that is recorded last gets to determine the data in the order header. If session
A completes first, session B alters the order status to Processing, but the order total remains wrong. If session B
completes first, session A sets the correct order total, but the order is returned to an order status of New. Either option
results in a lost update, which demonstrates why it’s so critical to ensure that a transaction completes a single, logical
unit of work. Because of session A’s partial transaction, data consistency has been jeopardized.

What if session B is running a report instead of updating the order’s status? Session A eventually results in
a consistent update, but session B may end up reporting inaccurate data. This is a slightly less serious infraction
because the data in the database are accurate. However, end users make decisions based on reports, and the impact
of a poorly placed commit affects decisions to be made. The best solution to this issue is twofold. First, the code

Chapter 14 ■ Transaction Processing

420

executed in session A should be corrected to removed the ill-placed commit and to ensure the entire transaction
commits or fails as a single unit. Second, if data are changing quickly and the reports are not bound by date or time
ranges, setting the report transaction to ensure a repeatable read may also be advisable.

Autonomous Transactions
Within our main transaction, we have the option of calling an autonomous transaction, which is an independent
transaction that can be called from within another transaction. The autonomous transaction is able to commit or roll
back its changes without impacting the calling, or main, transaction. Autonomous transactions are very useful if you have
information you need to store, regardless of the final resolution of the main transaction. Error logging is possibly the best
example of a good use of autonomous transactions, and in some cases auditing is an appropriate use as well, although
overusing autonomous transactions is not a good idea. For most of us, there are better tools available in the database for
auditing, and any attempts to circumvent normal database or transaction behavior is likely to create problems eventually.

So when would you want to use an autonomous transaction? I can think of a few examples in our ordering
system, and—in both cases—the goal is to retain information to prevent lost sales opportunities. For example, we
might want to record the customer ID and a timestamp in an order_log table in case the order fails. If the transaction
is successful, the entry in order_log notes the order was created successfully. This allows us to provide our sales team
with a report on any attempted orders that were not completed.

If you’ve done much shopping online, you may have received one of those e-mail reminders that you have left
items in your shopping cart. Maybe you were shopping but something came up and you navigated away from the site,
or perhaps you decided you didn’t really need to purchase those items after all. Either way, the vendor knows you were
interested enough in the items to think about buying them, and they don’t want to miss an opportunity to sell products
to an interested customer. I’ve been browsing Amazon lately for diving equipment, in part because I’m still learning
about the gear and in part to do a little price comparison with my local dive shop. Within a day or two, Amazon sent me
an e-mail to let me know about a special sale on one of the products I was browsing. I find this a little disconcerting,
especially when I haven’t even logged in while browsing, but I have to admit it can be awfully tempting when you
receive the news that the shiny, expensive piece of equipment you really want now costs 20 percent less than before.

Another possibility for an autonomous transaction is to record customer information when new customers place
their first order. Creating a new customer can be considered a separate logical unit of work, so we aren’t breaking any
of the transaction design rules by committing the customer information outside the order. If the order is interrupted
for any reason, it is advantageous to retain the contact data so someone can follow up with the customer to make sure
the order is placed correctly.

In Listing 14-11, we create an order_log table with four fields: customer_id, order_id, order_date, and
order_status. Next, we create an autonomous transaction in a procedure. The record_new_order procedure logs
the customer ID, the order ID, and the current date, committing the information immediately. We add a call to the
procedure in the order transaction as soon as the order ID and customer ID are known.

Listing 14-11.  Creating the Autonomous Order Logging Transaction

SQL> @autonomous_transaction
SQL> create table order_log
 (
 customer_id number not null,
 order_id number not null,
 order_date date not null,
 order_outcome varchar2(10),
 constraint order_log_pk primary key (customer_id, order_id, order_date)
);
 
Table created.
 

Chapter 14 ■ Transaction Processing

421

SQL> create or replace procedure record_new_order (p_customer_id IN NUMBER,
 p_order_id IN NUMBER)
 as
 pragma autonomous_transaction;
 begin
 insert into order_log
 (customer_id, order_id, order_date)
 values
 (p_customer_id, p_order_id, sysdate);
  
 commit;
 end;
 /
Procedure created.
 

Listing 14-12 shows the execution of a new order transaction containing the autonomous transaction to log the
customer information. The main transaction is rolled back, yet when we query the order_log table, the customer
information is stored. This is because the write to the order_log table is an autonomous transaction and does not
depend on the successful completion of the calling transaction.

Listing 14-12.  Executing an Order Transaction with the Order Logging Autonomous Transaction

SQL> @order_transaction
  
SQL> WHENEVER SQLERROR EXIT SQL.SQLCODE ROLLBACK;
SQL> variable o number
SQL> execute :o := order_id.nextval
 
PL/SQL procedure successfully completed.
 
SQL> variable c number
SQL> execute :c := &customer_id
Enter value for customer_id: 264
 
PL/SQL procedure successfully completed.
 
SQL> execute oe.record_new_order(:c,:o);
 
PL/SQL procedure successfully completed.
 
SQL> variable s number
SQL> execute :s := &salesperson_id
Enter value for salesperson_id: 145
 
PL/SQL procedure successfully completed.
 
SQL> variable d number
SQL> execute :d := &discount
Enter value for discount: .1
 
PL/SQL procedure successfully completed.
 

Chapter 14 ■ Transaction Processing

422

SQL> savepoint create_order;
 
Savepoint created.
 
SQL> insert into orders
 (order_id, order_date, order_mode, order_status, customer_id, sales_rep_id)
 values
 (:o, sysdate, 'direct', 1, :c, :s) ;
 
1 row created.
 
SQL> --- Add first ordered item and reduce on-hand inventory
 
SQL> savepoint detail_item1;
Savepoint created.
 
SQL> variable i number
SQL> execute :i := &first_item
Enter value for first_item: 2335
 
PL/SQL procedure successfully completed.
 
SQL> variable q number
SQL> execute :q := &item_quantity
Enter value for item_quantity: 1
 
PL/SQL procedure successfully completed.
 
SQL> variable p number
SQL> execute :p := get_ListPrice(:i)
 
PL/SQL procedure successfully completed.
 
SQL> insert into order_items
 (order_id, line_item_id, product_id,
 unit_price, discount_price, quantity)
 values
 (:o, 1, :i, :p, :p-(:p*:d), :q) ;
 
1 row created.
 
SQL> update inventories set quantity_on_hand = quantity_on_hand - :q
 where product_id = :i and warehouse_id = 1 ;
 
1 row updated.
 
SQL> --- Get Order Total
 
SQL> variable t number
SQL> execute :t := get_OrderTotal(:o)
 

Chapter 14 ■ Transaction Processing

423

PL/SQL procedure successfully completed.
 
SQL> -- Request credit authorization
 
SQL> savepoint credit_auth;
Savepoint created.
SQL> execute billing.credit_request(:c,:t);
Customer ID = 264
Amount = 90
Authorization = 99
 
PL/SQL procedure successfully completed.
 
SQL> --- Update order total
 
SQL> savepoint order_total;
 
Savepoint created.
 
SQL> update orders set order_total = :t where order_id = :o ;
 
1 row updated.
 
SQL> select order_id, customer, mobile, status, order_total, order_date
 from order_detail_header
 where order_id = :o ;
 
 ORDER_ID CUSTOMER MOBILE STATUS ORDER_TOTAL ORDER_DATE
---------- ------------------------- --------------- ------------ -------------- -----------
 5020 George Adjani +1 215 123 4702 New 90.00 05 Jul 2010
 
SQL> select line_item_id ITEM, product_name, unit_price, discount_price, quantity, line_item_total
 from order_detail_line_items
 where order_id = :o
 order by line_item_id ;
 
 ITEM PRODUCT_NAME UNIT_PRICE DISCOUNT_PRICE QUANTITY LINE_ITEM_TOTAL
----- ------------------------ ---------- -------------- ---------- ---------------
 1 Mobile phone 100.00 90.00 1 90.00
 
SQL> rollback;
 
Rollback complete.
 
SQL> select * from order_log;
 
CUSTOMER_ID ORDER_ID ORDER_DATE ORDER_STATUS
----------- -------- ------------------- ------------
 264 5020 2010-07-05 00:45:56
 

Chapter 14 ■ Transaction Processing

424

The order log retains a committed record of the attempted order. As for the order status, there are several ways we
can handle this. We can create another procedure that sets the order status in the order_log table when the order is
committed by the application. If the order status is not populated in order_log, we then know the order has not been
committed. We could also schedule a process to compare the order_log table with the orders table. If no record is
found in the orders table, we then update the order_log table to note the order failed.

When using autonomous transactions, be certain that you are not dividing a transaction or circumvent normal
database behavior. Think carefully about the effect you create when you allow the autonomous transaction to commit
while rolling back the main transaction. The work in the autonomous transaction should clearly be its own logical unit
of work.

Summary
Transactions are the heart of a database. We create databases to store information and, if that information is going
to be useful, the data must be protected and they must remain consistent. If we jeopardize the integrity of the data,
we have devalued the system significantly. Data integrity is an all-or-nothing proposition; either we have it or we
don’t. Although I’ve heard people use percentage values to describe a database’s level of accuracy, this seems to be a
downward spiral into increasing uncertainty. When we know part of the data are wrong, how do we know any of the
data are accurate? And how do we know which part of the data we can trust?

If our data are to remain trustworthy, we need to ensure that each transaction complies with the ACID properties.
Transactions must be atomic, containing one logical unit of work that succeeds or fails as a whole. Transactions must
be consistent; they need to ensure the data are consistent when they begin, and that the data remain consistent when
the transaction ends. Transactions should occur in isolation; uncommitted changes should not be visible to users
or other transactions, and some transactions require higher levels of isolation than others. Transactions must be
durable; when the changes have been committed to the database and the database has responded that the changes
exist, users should be able to count on the fact that there is a record of their changes.

Fortunately, Oracle makes it fairly easy for us to build ACID-compliant transactions as long as we define the
boundaries of our transaction carefully and accurately. Oracle does not require us to specify that we are starting a new
transaction; instead, the database knows which kinds of statements begin a transaction, and it creates a transaction ID
to track the operations within it. Always commit or roll back your transactions specifically, because failing to do so can
make those transaction boundaries a little fuzzy. Relying on the default behavior of software tools is risky because the
behavior may change in a future release.

Building sound transactions requires both technical skills and functional knowledge, and having both of those is
a rare and valuable commodity in the information technology (IT) industry. This book provides a solid foundation for
the development of your technical skills—and you can develop these skills further by following up with the reference
material mentioned earlier—but, learning to apply these skills requires practice. Start by downloading the changes
I made to the OE schema and build a few transactions of your own. Deliberately introduce some bad choices just to
see what happens. (But don’t leave that code lying around; it can be dangerous!) Experimenting with isolation levels
can be particularly interesting. Practice building a few more complex transactions, and make sure the transaction
fails if any part of it fails. Then, add some custom exception handling and savepoints so that you don’t have to lose
the entire transaction if you need to revert part of it. When you’ve got something you’re proud of, wrap it up in a
procedure and be sure to share what you’ve learned with someone else.

425

Chapter 15

Testing and Quality Assurance

As you’ve worked through the chapters of this book, you may have written some code to test the examples. And
because you chose this particular book instead of a “Welcome to SQL”–style book, it’s likely you have written quite a
few SQL statements before you ever picked it up. As you’ve been reading this book, did some of the chapters remind
you of your prior work? If so, how do you feel about the code you’ve written in the past?

If you’re like most developers, there were times when you probably thought, “Hey, considering how little I knew
about this functionality back then, I did pretty well.” And there may have been a few times when you cringed a bit,
realizing that something you were very proud of at the time wasn’t such a great approach after all. Don’t worry; we
all have applications that we would write completely differently if we only knew then what we know now. Besides, it’s
always easier to write better code with hindsight or as an armchair code jockey.

If the code you write today is better than the code you wrote yesterday, you’re continuing to evolve and learn,
and that is commendable. Realizing our older work could have been done better is an inevitable part of the learning
process. As long as we learn from our mistakes and do a little better with the next application or the next bit of code,
we’re moving in the right direction.

It’s also true that we need to be able to measure the quality of our current code now, not five years from now
when we’ve grown even wiser. We want to find the problems in our code before they affect our users. Most of us want
to find all the errors or performance issues before anyone else even sees our work. However, although this kind of
attitude may indicate an admirable work ethic, it’s not an advisable or even an achievable goal. What we can achieve
is a clear definition of what a specific piece of code needs to accomplish and how we can prove the code meets the
defined requirements. Code should have measurable indicators of success that can prove or disprove the fact that we
met our goal.

So what are these measurable factors? Although the target measurement varies depending on the application,
there are several basic requirements for all application code. First and foremost, the code needs to return accurate
results and we need to know that the results will continue to be accurate throughout the system’s life cycle. If end
users cannot count on the data returned by a database application, that’s a pretty serious failure.

Performance is another measurable attribute of our code. The target runtimes are highly dependent on the
application in question. A database used by a home owner’s association to track who has paid their annual fees is
not required to perform at the same level as a database containing the current stock quotes, but the methods used
to compare execution plans and measure runtime can be the same. Code quality requires that we understand the
application requirements, the function being performed, and the strengths and weaknesses of the specific system.
Testing should focus on verifying functionality, pushing the weakest links to their breaking point, and recording all
measurements along the way.

Test Cases
For the examples in this chapter, we work with the same OE sample schema that we used for the transaction
processing examples in Chapter 14. We make more changes to our schema, adding new data and altering views and
reports. We begin by defining the changes to be made and the tests to use to verify the success of those changes.

Chapter 15 ■ Testing and Quality Assurance

426

So here is the backstory: One of our suppliers, identified only as Supplier 103089 in the database, is changing
its product numbers for the software we purchase from them to resell to our customers. The new identifiers are
appended with a hyphen and a two-character value to identify the software package language. For example, the
supplier’s product identifier for all English software packages ends in -EN. The supplier requires its product identifier
to be referenced for ordering, software updates, and warranty support. The new product identifiers have an effective
date of October 10, 2010. This change presents the following challenges:

The OE schema includes the supplier’s identifier in the •	 product_information table, but the
supplier product identifier is not stored in the sample schema database at all. We must alter
the OE schema to add this field and create a numeric value to serve as the current supplier
product ID. These changes are a prerequisite to the changes instituted by our supplier.

After we have added an initial supplier product identifier for all the products we sell, we need •	
to determine how we will add the modified product identifiers for this one supplier. We also
need to have a method of controlling the effective date of the new identifiers.

The purchasing department uses an inventory report to determine which products are •	
getting low on stock. This report needs to reflect the current supplier product identifier until
October 10, 2010. After that date, the report should print the new supplier product identifier so
purchasing agents can place and verify orders easily.

The OE system will continue to use our internal product identifier when orders are received •	
from our customers. Orders and invoices must show our product identifier and name, plus the
supplier product identifier.

We have inventory on hand that is packaged with the current supplier product identifier. We •	
can continue to sell those products as is, but our customer invoices must show the actual
supplier product ID found on the packaging. This means our inventory system must treat the
items labeled with the new numbering scheme as a distinct product.

As we make these changes, there are several basic tests and quality issues to consider. The points that follow are
not intended to be all inclusive, because every system has its own unique test requirements; however, there are some
quality checks that can be applied to all systems. Let’s use the following as a starting point:

All objects that were valid before our changes should be valid when our changes are complete. •	
Views, functions, procedures, and packages can be invalidated by a table change, depending
on how the code for those objects was written originally. We need to check for invalid schema
objects both before and after we make our changes. Objects that are invalidated as an indirect
result of our planned modifications should recompile successfully without further changes.

All data changes and results output must be accurate. Verifying data can be one of the more •	
tedious tasks when developing or altering a database application, and the more data in the
system, the more tedious the work. It’s also the most critical test our code must pass. If the
data are not accurate, it doesn’t matter if the other requirements have been met or how fast
the code executes. If the data being stored or returned cannot be trusted, our code is wrong
and we’ve failed this most basic requirement. The simplest approach is to break down data
verification into manageable components, beginning by verifying the core dataset, and then
expand the test gradually to the more unique use cases (the “edge cases”) until we are certain
all data are correct.

Query performance can be verified by comparing the before and after versions of the •	
execution plan. If the execution plan indicates the process has to work harder after our
modifications, we want to be sure that additional work is, in fact, required and is not the result
of a mistake. Use of execution plans was addressed in detail in Chapter 6, so we can refer
back to that chapter for more information on the topic plus tips on making the best use of the
information found in the execution plan.

Chapter 15 ■ Testing and Quality Assurance

427

Later in this chapter, I discuss code instrumentation and the Instrumentation Library for Oracle (ILO). ILO uses
Oracle’s dbms_application_info procedures. Although it is possible to use the dbms_application_info procedures
on their own, ILO makes it very easy and straightforward to add instrumentation to our code. I added some additional
functionality to the ILO package; the updates are available for download at Apress. After the code is instrumented,
these additional modules make it possible to build test systems that record processing times as iterative changes
are made to the code or system configuration. These performance data make it very clear when changes have had a
positive impact on processing times and when another approach should be considered.

Testing Methods
There are as many different approaches to software testing as there are software development—and there have quite
possibly been an equal number of battles fought over both topics. Although it may be slightly controversial in a
database environment, I advocate an approach known as test-driven development (TDD). TDD originated in the realm
of extreme programming, so we need to make some modifications to the process to make it effective for database
development, but it offers some very genuine benefits for both new development and modification efforts.

In TDD, developers begin by creating simple, repeatable tests that fail in the existing system but succeed after the
change is implemented correctly. This approach has the following benefits:

To write the test that fails, you have to understand thoroughly the requirements and the •	
current implementation before you even begin to write application code.

Building the unit test script first ensures that you start by working through the logic of •	
the necessary changes, thereby decreasing the odds that your code has bugs or needs a
major rewrite.

By creating small, reusable unit tests to verify the successful implementation of a change, •	
you build a library of test scripts that can be used both to test the initial implementation of the
change and to confirm that the feature is still operating as expected as other system changes
are made.

These small-unit test scripts can be combined to create larger integration testing scripts or can •	
become part of an automated test harness to simplify repetitive testing.

TDD assists in breaking changes or new development into smaller, logical units of work. The •	
subsets may be easier to understand and explain to other developers, which can be especially
important when project members are not colocated.

When test design is delayed until after development, testing frequently ends up being •	
shortchanged, with incomplete or poorly written tests as a result of schedule constraints.
Including test development efforts in the code development phases results in higher quality
tests that are more accurate.

As acknowledged earlier, TDD needs some adjustments in a database environment or we run the risk of building
yet another black box database application that is bound to fail performance and scalability testing. Whenever you
develop or modify an application that stores or retrieves information from a database, as you prepare those first unit
tests, you must consider the data model or work with the individuals responsible for that task. In my (sometimes)
humble opinion, the data model is the single most important indicator of a database application’s potential to perform.
The schema design is crucial to the application’s ability to scale for more users, more data, or both. This does not
mean that development cannot begin until there is a flawless entity–relationship model, but it does mean that the
core data elements must be understood and the application tables well designed for at least those core elements. And
if the database model is not fully developed, then build the application using code that does not result in extensive
changes as the data model is refactored.

So exactly what am I suggesting? To put it bluntly, if your application schema continues to be developed
progressively, use procedures and packages for your application code. This allows the database to be refactored as
data elements are moved or added, without requiring major front-end code rewrites.

Chapter 15 ■ Testing and Quality Assurance

428

Note■■  T his is far from being a complete explanation of TDD or database refactoring. I strongly recommend the
book Refactoring Databases: Evolutionary Database Design by Scott W. Ambler and Pramodkumar J. Sadalage
(Addison-Wesley 2006) for a look at database development using Agile methods.

But let’s get back to our application changes, shall we? In the case of the changing supplier product identifier,
let’s begin by asking some questions. How will this new data element be used by our company and employees?
How will this change impact our OE and inventory data? Will this change impact systems or processes beyond our
OE system? At a minimum, our purchasing agents need the supplier’s current product identifier to place an order for
new products. Depending on how well recognized the component is, the supplier’s product identifier could be used
more widely than we might expect; a specific product or component may even be a selling point with our customers.
A great example is CPUs. The make and the model of the processor in the laptop can be far more important than the
brand name on the case. If this is true for the products we are reselling, the supplier’s product ID may be represented
throughout multiple systems beyond the ordering system, so it is necessary to extend our evaluation to include
additional systems and processes.

Unit Tests
As noted in the previous section, our first goal is to write the unit tests we need to demonstrate that our application
modifications are successful. However, because this is a database application, we need to determine where this data
element belongs before we can even begin to write the first unit test. Although the Oracle–provided sample schemas
are far from perfect, we cannot refactor the entire schema in this chapter, so there are many data design compromises
in the examples. This can also be true in the real world; it is seldom possible to make all the corrections we know
should be made, which is why correcting problems in the schema design can be a long, iterative process that requires
very careful management.

Note■■  R emember, the focus of this chapter is testing methods. I keep the examples as short as possible to avoid
detracting from the core message. This means the examples do not represent production-ready code, nor do the sample
schemas represent production-ready data models.

Considering the primary OE functions that make use of the supplier product identifier, let’s store the supplier
product ID in the product_information table. This table contains other descriptive attributes about the product
and it is already used in the output reports that now need to include the newest data element. These are not the sole
considerations when deciding where and how to store data, but for our purposes in this chapter, they will do. In the real
world, the amount of data to be stored and accessed, the data values to be read most frequently, and how often specific
data values are to be updated should all be considered prior to making decisions about where the data belong.

After we’ve decided where to keep the data, we can begin preparing the necessary unit tests for our change.
So, what are the unit tests that fail before we add the supplier’s product ID to our schema? Here’s a list of the unit tests
I cover in this chapter:

Include the supplier’s product ID on individual orders and invoices.•	

Print the supplier’s product ID on the open order summary report.•	

Print a purchasing report that shows the current supplier’s product ID.•	

Chapter 15 ■ Testing and Quality Assurance

429

If we use a TDD process throughout development, then there are likely to be several generic unit tests that are
already written and may be appropriate to include in this round of tests. Typical verification tests may focus on the
following tasks:

Confirm that all objects are valid before and after changes are made.•	

Confirm that an insert fails if required constraints are not met.•	

Verify that default values are populated when new data records are added.•	

Execute a new order transaction with and without products from this specific supplier.•	

If we are thorough in our initial evaluation and unit test development work, we will know which tests are expected
to fail. Other operations, such as the new order transaction I covered in Chapter 14, we expect to succeed, because we
did not note that any changes are required for a new order. Should the existing unit tests for creating a new order fail
after our changes, this indicates we did not analyze the impact of this latest change as thoroughly as we should have.

Before we make any changes to the database objects, let’s confirm the state of the existing objects. Preferably,
all objects must be valid before we start making changes. This is important because it ensures we are aware of any
objects that were invalid prior to our changes, and it helps us to recognize when we are responsible for invalidating
the objects. Listing 15-1 shows a query to check for invalid objects and the result of the query.

Listing 15-1.  Checking for Invalid Objects before Altering Database Objects

SQL> select object_name, object_type, last_ddl_time, status
 from user_objects where status != 'VALID';
 
no rows selected
 

Listing 15-2 shows our three unit test scripts. Each of these scripts represents a report that must include the
correct supplier product identifier as related to our internal product number. The first test creates a report for a
single order, which is essentially the customer’s invoice. The second test is the purchasing report, which must print
the correct supplier product identifier plus the inventory on hand. The third unit test is a complete listing of all open
orders, and it is built using several views.

Listing 15-2.  Unit Test Scripts

--- order_report.sql
 
set linesize 115
column order_id new_value v_order noprint
column order_date new_value v_o_date noprint
column line_no format 99
column order_total format 999,999,999.99
 
BREAK ON order_id SKIP 2 PAGE
BTITLE OFF
 
compute sum of line_item_total on order_id
 
ttitle left 'Order ID: ' v_order -
 right 'Order Date: ' v_o_date -
 skip 2
 
spool logs/order_report.txt
 

Chapter 15 ■ Testing and Quality Assurance

430

select h.order_id ORDER_ID, h.order_date, li.line_item_id LINE_NO,
 li.supplier_product_id SUPP_PROD_ID, li.product_name, li.unit_price,
 li.discount_price, li.quantity, li.line_item_total
 from order_detail_header h, order_detail_line_items li
 where h.order_id = li.order_id
 and h.order_id = ‘&Order_Number’
 order by h.order_id, line_item_id ;
 
spool off
 
--- purchasing_report.sql
 
break on supplier skip 1
column target_price format 999,999.99
set termout off
 
spool logs/purchasing_report.txt
 
select p.supplier_id SUPPLIER, p.supplier_product_id SUPP_PROD_ID,
 p.product_name PRODUCT_NAME, i.quantity_on_hand QTY_ON_HAND,
 (p.min_price * .5) TARGET_PRICE
 from product_information p, inventories i
 where p.product_id = i.product_id
 and p.product_status = 'orderable'
 and i.quantity_on_hand < 1000
 order by p.supplier_id, p.supplier_product_id ;
 
spool off
 
set termout on
 
--- order_reports_all.sql
 
set linesize 115
column order_id new_value v_order noprint
column order_date new_value v_o_date noprint
column line_no format 99
column order_total format 999,999,999.99
 
BREAK ON order_id SKIP 2 PAGE
BTITLE OFF
 
compute sum of line_item_total on order_id
 
ttitle left 'Order ID: ' v_order -
 right 'Order Date: ' v_o_date -
 skip 2
 
select h.order_id ORDER_ID, h.order_date,
 li.line_item_id line_no, li.product_name, li.supplier_product_id ITEM_NO,
 li.unit_price, li.discount_price, li.quantity, li.line_item_total
 from order_detail_header h, order_detail_line_item li
 where h.order_id = li.order_id
order by h.order_id, li.line_item_id ;
 

Chapter 15 ■ Testing and Quality Assurance

431

Listing 15-3 shows the execution of our unit test scripts and the resulting (expected) failures.

Listing 15-3.  Initial Unit Test Results

SQL> @ order_report.sql
 li.supplier_product_id,
 *
ERROR at line 2:
ORA-00904: "LI"."SUPPLIER_PRODUCT_ID": invalid identifier
 
SQL> @purchasing_report.sql
 order by p.supplier_id, p.supplier_product_id
 *
ERROR at line 6:
ORA-00904: "P"."SUPPLIER_PRODUCT_ID": invalid identifier
 
SQL> @order_report_all.sql
 li.line_item_id line_no, li.product_name, li.supplier_product_id ITEM_NO,
 *
ERROR at line 2:
ORA-00904: "LI"."SUPPLIER_PRODUCT_ID": invalid identifier
 

Unit tests are typically created for and executed from the application interface, but it’s extremely helpful to create
database-only unit tests as well. Having a set of scripts that we can run independently of the application code outside
of the database allows us to check database functionality before we hand new code over to the test team. And if the
front-end application tests result in unexpected errors, we already have information about a successful database-level
execution, which helps both teams troubleshoot problems more efficiently.

Regression Tests
The goal of regression testing is to confirm that all prior functionality continues to work as expected. We must be
certain that we do not reintroduce old issues (bugs) into our code as we implement new functionality. Regression
tests are most likely to fail when there has not been adequate source code control, so someone inadvertently uses an
obsolete piece of code as a starting point.

If unit tests are written for the existing functionality as the first step when the functionality is developed, those
unit tests become the regression tests to confirm that each component of the system is still working as expected. In
our case, the tests used to verify the order transaction process can be used to verify that orders are still processed as
expected. Although I’m cheating a bit, I skip the reexecution of the OE transactions because I spent many pages on
this topic in Chapter 14.

Schema Changes
As a prerequisite to executing our examples, we need to make several changes to our schema to support storing a
supplier product number at all. Let’s add a new varchar2 column in the product_information table to store the
supplier_product_id field for each item we sell. We then populate the new column with a value to represent the
current supplier product IDs for all the products we sell, and we use the dbms_random package to generate these
numbers. When these data exist, our basic unit tests referencing the supplier product identifier should succeed.

However, to support the concept of effective product IDs, we must add new records to the product_information
table using our supplier’s new identification values—a new internal product number with the same product description
and pricing. Although we could update the existing records, this violates the requirement to reflect accurately the
supplier’s product identifier shown on the product packaging in our warehouse. It also results in changing historical data,

Chapter 15 ■ Testing and Quality Assurance

432

because we’ve already sold copies of this software to other customers. Although the software in the package is unchanged,
the fact that our supplier has relabeled it essentially creates a brand new product, which is why we need these new product
records. Let’s enter the new records with a product status of “planned,” because the effective date is in the future. On
October 10, 2010, the new parts will be marked as “orderable” and the current parts become “obsolete.”

To manage the effective dates for the changing internal product identifiers, let’s create a new table:
product_id_effectivity. Let’s also create a product_id sequence to generate our new internal identifiers, making
certain that our sequence begins at a higher value that any of our existing product records. Although I don’t cover it
in this chapter, this table could be used by a scheduled process that updates the product_status field in the
product_information table to reflect whether a product is planned, orderable, or obsolete. It is the change in product
status that triggers which supplier’s product ID is shown on the purchasing report, so purchasing agents can reference
the correct number when placing new orders. Listing 15-4 shows the schema changes as they are processed.

Listing 15-4.  Schema Changes and New Product Data

SQL> alter table product_information add supplier_product_id varchar2(15);
 
Table altered.
 
SQL> update product_information
 set supplier_product_id = round(dbms_random.value(100000, 80984),0) ;
 
288 rows updated.
 
SQL> commit;
 
Commit complete.
 
SQL> create sequence product_id start with 3525 ;
 
Sequence created.
 
SQL> create table product_id_effectivity (
 product_id number,
 new_product_id number,
 supplier_product_id varchar(15),
 effective_date date) ;
 
Table created.
 
SQL> insert into product_id_effectivity
 (select product_id, product_id.nextval,
 round(dbms_random.value(100000, 80984),0)||'-'||
 substr(product_name, instr(product_name,'/',-1,1)+1), '10-oct-10'
 from product_information, dual
 where supplier_id = 103089
 and product_name like '%/%') ;
9 rows created.

Chapter 15 ■ Testing and Quality Assurance

433

SQL> select * from product_id_effectivity ;
PRODUCT_ID NEW_PRODUCT_ID SUPPLIER_PRODUC EFFECTIVE_DATE
---------- -------------- --------------- -------------------
 3170 3525 93206-SP 0010-10-10 00:00:00
 3171 3526 84306-EN 0010-10-10 00:00:00
 3176 3527 89127-EN 0010-10-10 00:00:00
 3177 3528 81889-FR 0010-10-10 00:00:00
 3245 3529 96987-FR 0010-10-10 00:00:00
 3246 3530 96831-SP 0010-10-10 00:00:00
 3247 3531 85011-DE 0010-10-10 00:00:00
 3248 3532 88474-DE 0010-10-10 00:00:00
 3253 3533 82876-EN 0010-10-10 00:00:00
9 rows selected.
SQL> commit ;
Commit complete.
SQL> insert into product_information (
 product_id, product_name, product_description, category_id,
 weight_class, supplier_id, product_status, list_price, min_price,
 catalog_url, supplier_product_id)
 (select e.new_product_id,
 p.product_name,
 p.product_description,
 p.category_id,
 p.weight_class,
 p.supplier_id,
 'planned',
 p.list_price,
 p.min_price,
 p.catalog_url,
 e.supplier_product_id
 from product_information p, product_id_effectivity e
 where p.product_id = e.product_id
 and p.supplier_id = 103089) ;
9 rows created.
 
SQL> select product_id, product_name, product_status, supplier_product_id
 from product_information
 where supplier_id = 103089
 order by product_id ;
 
PRODUCT_ID PRODUCT_NAME PRODUCT_STATUS SUPPLIER_PRODUC
---------- --------------------------------- -------------------- ---------------
 3150 Card Holder - 25 orderable 3150
 3170 Smart Suite - V/SP orderable 3170
 3171 Smart Suite - S3.3/EN orderable 3171
 3175 Project Management - S4.0 orderable 3175
 3176 Smart Suite - V/EN orderable 3176
 3177 Smart Suite - V/FR orderable 3177
 3245 Smart Suite - S4.0/FR orderable 3245
 3246 Smart Suite - S4.0/SP orderable 3246
 3247 Smart Suite - V/DE orderable 3247
 3248 Smart Suite - S4.0/DE orderable 3248

Chapter 15 ■ Testing and Quality Assurance

434

 3253 Smart Suite - S4.0/EN orderable 3253
 3525 Smart Suite - V/SP planned 93206-SP
 3526 Smart Suite - S3.3/EN planned 84306-EN
 3527 Smart Suite - V/EN planned 89127-EN
 3528 Smart Suite - V/FR planned 81889-FR
 3529 Smart Suite - S4.0/FR planned 96987-FR
 3530 Smart Suite - S4.0/SP planned 96831-SP
 3531 Smart Suite - V/DE planned 85011-DE
 3532 Smart Suite - S4.0/DE planned 88474-DE
 3533 Smart Suite - S4.0/EN planned 82876-EN
 
20 rows selected.
 

After we’ve completed the necessary schema updates, our next step is to check for invalid objects again. All objects
were valid when we ran our initial check, but now we altered a table that is likely to be referenced by several other code
objects in our schema. If those objects are coded properly, we can recompile them as is and they become valid again.
If the code is sloppy (perhaps we used a select * from product_information clause to populate an object that does
not have the new field), then the recompile fails and we need to plan for more application modifications. The unit test
to look for invalid objects, plus the two recompiles that are required after our changes, are shown in Listing 15-5.

Listing 15-5.  Invalid Objects Unit Test and Object Recompile

SQL> select object_name, object_type, last_ddl_time, status
 from user_objects
 where status != 'VALID';
 
OBJECT_NAME OBJECT_TYPE LAST_DDL_ STATUS
----------------------------------- ------------------- --------- -------
GET_ORDER_TOTAL PROCEDURE 04-jul-10 INVALID
GET_LISTPRICE FUNCTION 04-jul-10 INVALID
 
SQL> alter function GET_LISTPRICE compile ;
 
Function altered.
 
SQL> alter procedure GET_ORDER_TOTAL compile ;
 
Procedure altered.
 
SQL> select object_name, object_type, last_ddl_time, status
 from user_objects
 where status != 'VALID';
 
no rows selected 

Repeating the Unit Tests
After we’ve confirmed that our planned schema changes have implemented successfully and all objects are valid, it’s
time to repeat the remaining unit tests. This time, each of the tests should execute and we should be able to verify that
the supplier’s product ID is represented accurately in the data results. Results from the second execution of the unit
test are shown in Listing 15-6. To minimize the number of trees required to print this book, output from the reports is
abbreviated.

Chapter 15 ■ Testing and Quality Assurance

435

Listing 15-6.  Second Execution of Unit Tests

SQL> @order_report
 
Order ID:5041 Order Date: 13 Jul 2010
 
 NO SUP_PROD_ID PRODUCT_NAME UNIT_PRICE DISC_PRICE QTY ITEM_TOTAL
--- ----------- ------------------------- ---------- ---------- ---- ----------
 1 98811 Smart Suite - S4.0/DE 222.00 199.80 5 999.00
 
SQL> @purchasing_report
 
 SUPPLIER S_PRODUCT PRODUCT_NAME QTY_ON_HAND TARGET_PRICE
---------- ------------ ----------------------- ----------- ------------
 103086 96102 IC Browser Doc - S 623 50.00
 
 103088 83069 OSI 1-4/IL 76 36.00
 
 103089 86151 Smart Suite - S4.0/EN 784 94.00
 89514 Smart Suite - V/DE 290 48.00
 92539 Smart Suite - V/EN 414 51.50
 93275 Smart Suite - V/FR 637 51.00
 95024 Smart Suite - S4.0/SP 271 96.50
 95857 Smart Suite - V/SP 621 66.00
 98796 Smart Suite - S3.3/EN 689 60.00
 98811 Smart Suite - S4.0/DE 114 96.50
 99603 Smart Suite - S4.0/FR 847 97.50
.......
 
SQL> @order_report_all.sql
 
Order ID: 2354 Order Date: 14 Jul 2002
ID PRODUCT_NAME ITEM_NO UNIT_PRICE DISCOUNT_PRICE QTY LINE_ITEM_TOTAL
--- ------------------------ -------- ---------- -------------- ----- ---------------
 1 KB 101/EN 94979 48.00 45.00 61 2,745.00
 1 KB 101/EN 98993 48.00 45.00 61 2,745.00
 1 KB 101/EN 85501 48.00 45.00 61 2,745.00
.......
 
Order ID: 5016 Order Date: 06 Jul 2010
 ID PRODUCT_NAME ITEM_NO UNIT_PRICE DISCOUNT_PRICE QTY LINE_ITEM_TOTAL
--- ------------------------ -------- ---------- -------------- ----- ---------------
 1 Inkvisible Pens 86030 6.00 5.40 1000 5,400.00
 
Order ID: 5017 Order Date: 06 Jul 2010
 ID PRODUCT_NAME ITEM_NO UNIT_PRICE DISCOUNT_PRICE QTY LINE_ITEM_TOTAL
--- ------------------------ -------- ---------- -------------- ----- ---------------
 1 Compact 400/DQ 87690 125.00 118.75 25 2,968.75
 
Order ID: 5041 Order Date: 13 Jul 2010
 ID PRODUCT_NAME ITEM_NO UNIT_PRICE DISCOUNT_PRICE QTY LINE_ITEM_TOTAL
--- ------------------------ -------- ---------- -------------- ----- ---------------
 1 Smart Suite - S4.0/DE 98811 222.00 199.80 5 999.00
 

Chapter 15 ■ Testing and Quality Assurance

436

Take note that in each case when the product name shows a product that will be affected by our supplier’s new
identifiers, our reports still show the current supplier identifier. This is because these reports were prior to the
October 10, 2010, effective date. What we have not yet addressed in our testing is a mechanism to set to “obsolete”
products referencing the old supplier product identifiers and to make our new products referencing the new supplier
product identifier “orderable.” After the effective date passes, we need the purchasing report in particular to reference
the new IDs. Order data should continue to represent the item ordered and shipped, which is not necessarily
determined by the effective date for the part number change. Instead, we want our sales team to sell the older product
first, so we only begin to see the new product identifiers on orders and invoices after the existing inventory is depleted.
This thought process should trigger the development of a few more unit tests, such as testing the process to alter
product status after a product change effective date had passed, and confirming that the OE system does not make
the new product identifiers available for purchase until the old stock has been depleted.

Execution Plan Comparison
One of the best tools available for evaluating the impact of the changes you make to database objects and code is the
execution plan. By recording the execution plan both before and after our changes, we have a detailed measurement
of exactly how much work the database needs to complete to process requests for the data in the past, and how much
work is required to process those same requests in the future. If the comparison of the before and after versions of the
execution plan indicates that a significant amount of additional work is required, it may be necessary to reevaluate
the code to determine whether it can be optimized. If the process is already as optimized as it can be, you can then
use the information to explain, nicely, to the users that their report may take longer to run in the future because of
the added functionality. When you express your findings in these terms, you will discover exactly how much the users
value that new functionality, and it is up to them to decide whether the changes are important enough to move to
production.

Comparing the execution plans can also make it very clear when there is something wrong with a query. If you
find that a process is working much harder to get the data, but the new changes don’t justify the additional work, there
is a strong possibility there is an error in the code somewhere.

For the next example, let’s review the execution plans of the complete order report from our unit testing. The
execution plan recorded before we made any changes to the database is shown in Listing 15-7. The scripts to gather
the execution plans are based on the approach demonstrated in Chapter 6.

Listing 15-7.  Order Report Execution Plan (Before)

alter session set statistics_level = 'ALL';
 
set linesize 105
column order_id new_value v_order noprint
column order_date new_value v_o_date noprint
column ID format 99
column order_total format 999,999,999.99
 
BREAK ON order_id SKIP 2 PAGE
BTITLE OFF
 
compute sum of line_item_total on order_id
 
ttitle left 'Order ID: ' v_order -
 right 'Order Date: ' v_o_date -
 skip 2
 

Chapter 15 ■ Testing and Quality Assurance

437

spool logs/order_report_all_pre.txt
select /* OrdersPreChange */ h.order_id ORDER_ID, order_date,
 li.line_item_id ID, li.product_name, li.product_id ITEM_NO,
 li.unit_price, li.discount_price, li.quantity, li.line_item_total
 from order_detail_header h, order_detail_line_items li
 where h.order_id = li.order_id
 order by h.order_id, li.line_item_id ;
 
spool off
 
set lines 150
spool logs/OrdersPreChange.txt
 
@pln.sql OrdersPreChange
 
PLAN_TABLE_OUTPUT
--
SQL_ID ayucrh1mf6v4s, child number 0

select /* OrdersPreChange */ h.order_id ORDER_ID, order_date,
li.line_item_id ID, li.product_name, li.product_id ITEM_NO,
li.unit_price, li.discount_price, li.quantity, li.line_item_total
from order_detail_header h, order_detail_line_items li where
h.order_id = li.order_id order by h.order_id, li.line_item_id
 
Plan hash value: 3662678147

| Id |Operation |Name |Starts |E-Rows |A-Rows |Buffers |

0	SELECT STATEMENT		1		417	29
1	SORT ORDER BY		1	474	417	29
* 2	HASH JOIN		1	474	417	29
3	TABLE ACCESS FULL	PRODUCT_INFORMATION	1	297	297	16
4	NESTED LOOPS		1	474	417	13
5	MERGE JOIN		1	474	417	9
* 6	TABLE ACCESS BY INDEX ROW	ORDERS	1	79	79	2
7	INDEX FULL SCAN	ORDER_PK	1	114	114	1
* 8	SORT JOIN		79	678	417	7
9	TABLE ACCESS FULL	ORDER_ITEMS	1	678	678	7
* 10	INDEX UNIQUE SCAN	ORDER_STATUS_PK	417	1	417	4

Predicate Information (identified by operation id):

 2 - access("OI"."PRODUCT_ID"="PI"."PRODUCT_ID")
 6 - filter("O"."SALES_REP_ID" IS NOT NULL)
 8 - access("O"."ORDER_ID"="OI"."ORDER_ID")
 filter("O"."ORDER_ID"="OI"."ORDER_ID")
 10 - access("O"."ORDER_STATUS"="OS"."ORDER_STATUS")
 
35 rows selected.
 

Chapter 15 ■ Testing and Quality Assurance

438

The order report is generated by joining two views: the order header information and the order line item details.
Let’s assume the report is currently running fast enough to meet user requirements and that there are no indicators
that the quantity of data in the underlying tables is expected to increase dramatically in the future. The report is
deemed as meeting requirements, and the execution plan is saved for future reference.

This order report was executed as one of our first unit tests to verify that our unit tests work as expected. After we
make the required database changes, we execute the order report again and confirm that it completes. The report also
seems to complete in about the same amount of time as it did in the past, but let’s take a look at the latest execution
plan to determine how the report is really performing. The postchange execution plan is shown in Listing 15-8.

Lising 15-8.  Order Report Execution Plan (After)

alter session set statistics_level = 'ALL';
 
set linesize 115
column order_id new_value v_order noprint
column order_date new_value v_o_date noprint
column ID format 99
column order_total format 999,999,999.99
 
BREAK ON order_id SKIP 2 PAGE
BTITLE OFF
 
compute sum of line_item_total on order_id
 
ttitle left 'Order ID: ' v_order -
 right 'Order Date: ' v_o_date -
 skip 2
 
spool logs/order_report_all_fail.txt
 
select /* OrdersChangeFail */ h.order_id ORDER_ID, order_date,
 li.line_item_id ID, li.product_name, p.supplier_product_id ITEM_NO,
 li.unit_price, li.discount_price, li.quantity, li.line_item_total
 from order_detail_header h, order_detail_line_items li,
 product_information p
 where h.order_id = li.order_id
 and li.product_id = p.product_id
 order by h.order_id, li.line_item_id ;
 
spool off
 
set lines 150
spool logs/OrdersChangeFail.log
 
@pln.sql OrdersChangeFail
 

Chapter 15 ■ Testing and Quality Assurance

439

PLAN_TABLE_OUTPUT

SQL_ID avhuxuj0d23kc, child number 0

select /* OrdersChangeFail */ h.order_id ORDER_ID, order_date,
li.line_item_id ID, li.product_name, p.supplier_product_id ITEM_NO,
 li.unit_price, li.discount_price, li.quantity, li.line_item_total
from order_detail_header h, order_detail_line_items li,
product_information p where h.order_id = li.order_id and
li.product_id = p.product_id order by h.order_id, li.line_item_id
 
Plan hash value: 1984333101

| Id |Operation |Name |Starts |E-Rows |A-Rows |Buffers |

0	SELECT STATEMENT		1		417	45
1	SORT ORDER BY		1	474	417	45
* 2	HASH JOIN		1	474	417	45
3	TABLE ACCESS FULL	PRODUCT_INFORMATION	1	297	297	16
* 4	HASH JOIN		1	474	417	29
5	TABLE ACCESS FULL	PRODUCT_INFORMATION	1	297	297	16
6	NESTED LOOPS		1	474	417	13
7	MERGE JOIN		1	474	417	9
* 8	TABLE ACCESS BY INDEX RO	ORDERS	1	79	79	2
9	INDEX FULL SCAN	ORDER_PK	1	114	114	1
* 10	SORT JOIN		79	678	417	7
11	TABLE ACCESS FULL	ORDER_ITEMS	1	678	678	7
* 12	INDEX UNIQUE SCAN	ORDER_STATUS_PK	417	1	417	4

Predicate Information (identified by operation id):

 2 - access("PI"."PRODUCT_ID"="P"."PRODUCT_ID")
 4 - access("OI"."PRODUCT_ID"="PI"."PRODUCT_ID")
 8 - filter("O"."SALES_REP_ID" IS NOT NULL)
 10 - access("O"."ORDER_ID"="OI"."ORDER_ID")
 filter("O"."ORDER_ID"="OI"."ORDER_ID")
 12 - access("O"."ORDER_STATUS"="OS"."ORDER_STATUS")
 
39 rows selected.
 

Looking at this latest plan, the database is doing much more work after our changes, even though the report is
not taking any appreciable amount of extra time to complete. There is no good reason for this to be so; we’ve only
added one additional column to a table that was already the central component of the query. Furthermore, the
table in question already required a full table scan, because most of the columns are needed for the report. But, the
execution plan shows that our report is now doing two full table scans of the product_information table. Why?

In this case, I made a common error deliberately to illustrate how an execution plan can help find quality problems
in changed code. Rather than simply add the new column to the existing order_detail_line_item view that is built on
the product_information table, the product_information table has been joined to the order_detail_line_item view,
resulting in a second full table scan of the central table.

Chapter 15 ■ Testing and Quality Assurance

440

This probably seems like a really foolish mistake to make, but it can be done easily. I’ve seen many developers
add a new column to a query by adding a new join to a table or view that was already part of the existing report. This
error has a clear and visible impact on an execution plan, especially if the query is complex (and it usually is when this
type of error is made). Listing 15-9 shows the execution plan for the same query after the additional join is removed
and the column is added to the existing order_detail_line_item view instead.

Listing 15-9.  Order Report Execution Plan (Corrected)

alter session set statistics_level = 'ALL';
 
set linesize 115
column order_id new_value v_order noprint
column order_date new_value v_o_date noprint
column ID format 99
column order_total format 999,999,999.99
 
BREAK ON order_id SKIP 2 PAGE
BTITLE OFF
 
compute sum of line_item_total on order_id
 
ttitle left 'Order ID: ' v_order -
 right 'Order Date: ' v_o_date -
 skip 2
 
spool logs/order_report_all_corrected.txt
 
select /* OrdersCorrected */ h.order_id ORDER_ID, order_date,
 li.line_item_id ID, li.product_name, li.supplier_product_id ITEM_NO,
 li.unit_price, li.discount_price, li.quantity, li.line_item_total
 from order_detail_header h, order_detail_line_items li
 where h.order_id = li.order_id
 order by h.order_id, li.line_item_id ;
 
spool off
 
set lines 150
spool logs/OrdersCorrected_plan.txt
 
@pln.sql OrdersCorrected
 
PLAN_TABLE_OUTPUT
--
SQL_ID 901nkw7f6fg4r, child number 0

select /* OrdersCorrected */ h.order_id ORDER_ID, order_date,
li.line_item_id ID, li.product_name, li.supplier_product_id ITEM_NO,
 li.unit_price, li.discount_price, li.quantity, li.line_item_total
from order_detail_header h, order_detail_line_items li where
h.order_id = li.order_id order by h.order_id, li.line_item_id
 
Plan hash value: 3662678147

Chapter 15 ■ Testing and Quality Assurance

441

| Id |Operation |Name |Starts |E-Rows |A-Rows |Buffers |

0	SELECT STATEMENT		1		417	29
1	SORT ORDER BY		1	474	417	29
* 2	HASH JOIN		1	474	417	29
3	TABLE ACCESS FULL	PRODUCT_INFORMATION	1	297	297	16
4	NESTED LOOPS		1	474	417	13
5	MERGE JOIN		1	474	417	9
* 6	TABLE ACCESS BY INDEX ROW	ORDERS	1	79	79	2
7	INDEX FULL SCAN	ORDER_PK	1	114	114	1
* 8	SORT JOIN		79	678	417	7
9	TABLE ACCESS FULL	ORDER_ITEMS	1	678	678	7
* 10	INDEX UNIQUE SCAN	ORDER_STATUS_PK	417	1	417	4

Predicate Information (identified by operation id):

 2 - access("OI"."PRODUCT_ID"="PI"."PRODUCT_ID")
 6 - filter("O"."SALES_REP_ID" IS NOT NULL)
 8 - access("O"."ORDER_ID"="OI"."ORDER_ID")
 filter("O"."ORDER_ID"="OI"."ORDER_ID")
 10 - access("O"."ORDER_STATUS"="OS"."ORDER_STATUS")
 
35 rows selected.
 

As you can see by this latest execution plan, our report now performs as expected, with no additional impact to
performance or use of system resources.

Instrumentation
One of my favorite Oracle features is instrumentation. The database itself is fully instrumented, which is why we can see
exactly when the database is waiting and what it is waiting for. Without this instrumentation, a database is something
like a black box, providing little information about where resources are spending, or not spending, their time.

Oracle also provides the dbms_application_info package, which we can use to instrument the code we write.
This package allows us to label the actions and modules within the code so that we can identify more easily which
processes in the application are active. We can also combine our instrumentation data with Oracle’s Active Session
History (ASH), Active Workload Repository (AWR), and other performance management tools to gain further insight
into our application’s performance while easily filtering out other unrelated processes.

The simplest method I know for adding instrumentation to application code is the ILO, which is available at
http://sourceforge.net/projects/ilo/. ILO is open-source software written and supported by my friends at
Method-R. Method-R also offers the option to purchase a license for ILO so that it can be used in commercial software
products. I’ve been using ILO to instrument code for several years, and I’ve added functionality to the 2.3 version.
The enhancements allow me to record the exact start and stop time of an instrumented process using the database’s
internal time references. These data can then be used to calculate statistical indicators on process execution times,
which helps to highlight potential performance issues before they become major problems. I’ve also added code
to enable extended SQL tracing (10046 event) for a specific process by setting an on/off switch in a table. So, if
I determine that I need trace data for a specific application process, I can set tracing to ON for that process by its
instrumented process name and it is traced every time it executes until tracing is set to OFF again. The configuration
module can also be used to set the elapsed time collection ON or OFF, but I usually prefer to leave elapsed time
recording on and purge older data when they are no longer useful.

http://sourceforge.net/projects/ilo/

Chapter 15 ■ Testing and Quality Assurance

442

If you’d like to test the ILO instrumentation software as you go through the next few sections, start by downloading
ILO 2.3 from SourceForge.net and install it per the instructions. You can then download the code to store elapsed
time and set the trace and timing configuration from the Apress download site. Instructions to add the updates are
included in the ZIP file.

Adding Instrumentation to Code
After you’ve installed the ILO schema, adding instrumentation to your application is done easily. There are several
ways to accomplish this. Of course, you need to determine the best method and the appropriate configuration based
on your environment and requirements, but here are a few general guidelines:

Within your own session, you can turn timing and tracing on or off at any time. You can also •	
instrument any of your SQL statements (1) by executing the ILO call to begin a task before you
execute your SQL statement and (2) by executing the call to end the task after the statement.
This approach is shown in Listing 15-10.

Listing 15-10.  ILO Execution in a Single Session

SQL> exec ilo_timer.set_mark_all_tasks_interesting(TRUE,TRUE);
 
PL/SQL procedure successfully completed.
 
SQL> exec ilo_task.begin_task('Month-end','Purchasing');
 
PL/SQL procedure successfully completed.
 
SQL> @purchasing_report
 
SQL> exec ilo_task.end_task;
 
PL/SQL procedure successfully completed.

 
 Selected from ILO_ELAPSED_TIME table:

 
 INSTANCE: TEST
 SPID: 21509
 ILO_MODULE: Month-end
 ILO_ACTION: Purchasing
 START_TIME: 22-SEP-13 06.08.19.000000 AM
 END_TIME: 22-SEP-13 06.09.06.072642 AM
 ELAPSED_TIME: 46.42
 ELAPSED_CPUTIME: .01
 ERROR_NUM: 0
 
You can encapsulate your code within a procedure and include the calls to ILO within the •	
procedure itself. This has the added advantage of ensuring that every call to the procedure
is instrumented and that the ILO action and module are labeled consistently. Consistent
labeling is very important if you want to aggregate your timing data in a meaningful way or
to track trends in performance. We look at the billing.credit_request procedure from
Chapter 14 with added calls to ILO in Listing 15-11.

http://SourceForge.net

Chapter 15 ■ Testing and Quality Assurance

443

Listing 15-11.  Incorporating ILO into a Procedure

create or replace procedure credit_request(p_customer_id IN NUMBER,
 p_amount IN NUMBER,
 p_authorization OUT NUMBER,
 p_status_code OUT NUMBER,
 p_status_message OUT VARCHAR2)
 IS
 
 /***
 status_code values
 status_code status_message
 =========== ===
 0 Success
 -20105 Customer ID must have a non-null value.
 -20110 Requested amount must have a non-null value.
 -20500 Credit Request Declined.
 ***/
 v_authorization NUMBER;
BEGIN
 ilo_task.begin_task('New Order', 'Credit Request');
 
 SAVEPOINT RequestCredit;
 
 IF ((p_customer_id) IS NULL) THEN
 RAISE_APPLICATION_ERROR(-20105, 'Customer ID must have a non-null value.', TRUE);
 END IF;
 
 IF ((p_amount) IS NULL) THEN
 RAISE_APPLICATION_ERROR(-20110, 'Requested amount must have a non-null value.', TRUE);
 END IF;
 
 v_authorization := round(dbms_random.value(p_customer_id, p_amount), 0);
 
 IF (v_authorization between 324 and 342) THEN
 RAISE_APPLICATION_ERROR(-20500, 'Credit Request Declined.', TRUE);
 END IF;
 
 p_authorization:= v_authorization;
 p_status_code:= 0;
 p_status_message:= NULL;
 
 ilo_task.end_task;
 
EXCEPTION
 WHEN OTHERS THEN
 p_status_code:= SQLCODE;
 p_status_message:= SQLERRM;
 

Chapter 15 ■ Testing and Quality Assurance

444

 BEGIN
 ROLLBACK TO SAVEPOINT RequestCredit;
 EXCEPTION WHEN OTHERS THEN NULL;
 END;
 
 ilo_task.end_task(error_num => p_status_code);
 
END credit_request;
/
 
Execution Script:
 
set serveroutput on
 
DECLARE
 P_CUSTOMER_ID NUMBER;
 P_AMOUNT NUMBER;
 P_AUTHORIZATION NUMBER;
 P_STATUS_CODE NUMBER;
 P_STATUS_MESSAGE VARCHAR2(200);
 
BEGIN
 P_CUSTOMER_ID := '&customer';
 P_AMOUNT := '&amount';
 
 billing.credit_request(
 P_CUSTOMER_ID => P_CUSTOMER_ID,
 P_AMOUNT => P_AMOUNT,
 P_AUTHORIZATION => P_AUTHORIZATION,
 P_STATUS_CODE => P_STATUS_CODE,
 P_STATUS_MESSAGE => P_STATUS_MESSAGE
);
commit;
 
 DBMS_OUTPUT.PUT_LINE('P_CUSTOMER_ID = ' || P_CUSTOMER_ID);
 DBMS_OUTPUT.PUT_LINE('P_AMOUNT = ' || P_AMOUNT);
 DBMS_OUTPUT.PUT_LINE('P_AUTHORIZATION = ' || P_AUTHORIZATION);
 DBMS_OUTPUT.PUT_LINE('P_STATUS_CODE = ' || P_STATUS_CODE);
 DBMS_OUTPUT.PUT_LINE('P_STATUS_MESSAGE = ' || P_STATUS_MESSAGE);
 
END;
/
 
Execution:
 
SQL> @exec_CreditRequest
Enter value for customer: 237
Enter value for amount: 10000
 

Chapter 15 ■ Testing and Quality Assurance

445

P_CUSTOMER_ID = 237
P_AMOUNT = 10000
P_AUTHORIZATION = 8302
P_STATUS_CODE = 0
P_STATUS_MESSAGE =
 
PL/SQL procedure successfully completed.
 
SQL> @exec_CreditRequest
Enter value for customer: 334
Enter value for amount: 500
 
P_CUSTOMER_ID = 237
P_AMOUNT = 500
P_AUTHORIZATION =
P_STATUS_CODE = -20500
P_STATUS_MESSAGE = ORA-20500: Credit Request Declined.
 
PL/SQL procedure successfully completed.
 
 Selected from ILO_ELAPSED_TIME table:
  
 INSTANCE: TEST
 SPID: 3896
 ILO_MODULE: New Order
 ILO_ACTION: Request Credit
 START_TIME: 22-SEP-13 01.43.41.000000 AM
 END_TIME: 22-SEP-13 01.43.41.587155 AM
 ELAPSED_TIME: .01
 ELAPSED_CPUTIME: 0
 ERROR_NUM: 0
 

You can create an application-specific wrapper to call the ILO procedures. One benefit of •	
using a wrapper is that you can make sure a failure in ILO does not result in a failure for the
application process. Although you do want good performance data, you don’t want to prevent
the application from running because ILO isn’t working. A simple wrapper is included with
the ILO update download at Apress.

The level of granularity you decide to implement with your instrumentation depends on your goals. For some tasks,
it is perfectly acceptable to include multiple processes in a single ILO module or action. For critical code, I recommend
that you instrument the individual processes with their own action and module values, which gives more visibility into
complex procedures. If you are supporting an application that is not instrumented and it seems like too big a task to go
back and instrument all the existing code, consider adding the instrumentation just to the key processes.

Again, how you decide to implement depends on your needs. Instrumentation is exceptionally useful for testing
code and configuration changes during development and performance testing. After the calls to ILO have been built
into the code, you can turn timing/tracing on or off in production to provide definitive performance data. Overhead is
exceedingly low, and being able to enable tracing easily helps you find the problems much more quickly.

Using the ilo_elapsed_time table to store performance data typically allows you to retain critical performance
data for longer periods of time. Although it is possible to set longer retention values for AWR data, some sites may
not have the resources available to keep as much data as they would like. Because the ILO data are not part of the
Oracle product itself, you have the option to customize the retention levels to your needs without endangering any
Oracle–delivered capabilities.

Chapter 15 ■ Testing and Quality Assurance

446

Note■■   Keep the ILO code in its own schema and allow other schemas to use the same code base. This keeps the
instrumentation code and data consistent, which allows you to roll up performance data to the server level or
across other multiple servers when appropriate.

Testing for Performance
When you add instrumentation to your code, you open the door to all kinds of potential uses for the instrumentation
and the data you collect. Earlier in this chapter I talked about building test harnesses by automating many small-unit
test scripts and then replaying those tasks to confirm that new and old functionalities are working as expected, and
that old bugs have not been reintroduced. If your code is instrumented, you can record the timing for each execution
of the test harness and you then have complete information on the exact amount of elapsed time and CPU time
required for each labeled module and action.

The ILO package includes an ilo_comment field in addition to the ILO_MODULE and ILO_ACTION labels. In some
cases, this field can be used to record some identifying piece of information about a specific process execution. For
example, if you add instrumentation to the order transaction from Chapter 14, you can record the order number in the
ilo_comment field. Then, if you find an exceptionally long execution in your ilo_elapsed_time table, you can connect
that execution time with an order number, which then connects you to a specific customer and a list of ordered items.
Combining this information with the very specific timestamp recorded in your table can help you troubleshoot the
problem, ensure the transaction did process correctly, and determine the cause of the unusually long execution time.

In other cases, you may want to use the comment field to label a specific set of test results for future reference.
When testing changes to an application or instance configuration, it’s always better to make one change and measure
the results before making additional adjustments. Otherwise, how will you know which change was responsible
for the results you obtained? This can be very difficult to do, unless you’ve created a test harness and measurement
tool that can be reexecuted easily and consistently multiple times. By making a single change, reexecuting the
complete test package while recording timing data, and labeling the result set of that test execution, you create a
series of datasets, each of which shows the impact of a specific change, test dataset, or stress factor. Over time, this
information can be used to evaluate the application’s ability to perform under a wide range of conditions.

A sample of data retained from one such test harness is shown in Table 15-1 (time is measured in seconds).

Table 15-1.  Repetitive Test Results

ILO ACTION COUNT MIN AVG MAX VAR CPU
MIN

CPU
AVG

CPU
MAX

CPU
VAR

process 1 46 0 .01 .09 0 0 .008 .03 0

process 2 2 .12 .125 .13 0 .12 .125 .13 0

process 3 2772526 0 .382 4.44 .078 0 .379 2.6 .074

child 3a 2545208 .01 .335 2.26 .058 .01 .332 1.77 .055

child 3b 2752208 0 .065 2.24 .011 0 .065 1.39 .01

child 3c 2153988 0 0 .21 0 0 0 .02 0

child 3d 2153988 0 0 .36 0 0 0 .07 0

child 3e 2153988 0 0 .16 0 0 0 .02 0

child 3f 2153988 0 0 .42 0 0 0 .02 0

(continued)

Chapter 15 ■ Testing and Quality Assurance

447

Although the numbers shown in the table aren’t particularly meaningful on their own, if you have this set of
numbers representing code executions prior to a change and you have another set of numbers from the same server
with the same dataset representing code execution after the code has been changed, you have definitive information
regarding the impact of your code changes on the database. Imagine being able to repeat this test quickly and
painlessly for subsequent code changes and configuration adjustments, and you just might begin to appreciate the
potential of code instrumentation combined with repeatable, automated test processes.

Testing to Destruction
Testing a system to its breaking point can be one of the more entertaining aspects of software testing, and meetings to
brainstorm all the possible ways to break the database are seldom dull. Early in my career, I developed and managed
an Oracle Database application built using client/server technology. (Yes, this was long ago and far away.) The
application itself was a problem tracking tool that allowed manufacturing workers to record issues they found and to
send those problems to Engineering for review and correction. The initial report landed in Quality Engineering, where
it was investigated and assigned to the appropriate Engineering group. As each Engineering department signed off on
its work, the request moved on to the next group. The application was reasonably successful, so it ended up on many
workstations throughout a very large facility.

If you ever want to see “testing to destruction” in action, try supporting a database application installed on the
workstations of hundreds of electrical, hydraulic, and structural engineers. In a fairly short period of time, I learned
that engineers do everything in their power to learn about the computers on their desks, and they considered breaking
those computers and the applications on them to be an educational experience. I can’t say that I disagree with them;
sometimes, taking something apart just so you can build it again really is the best way to understand the guts of the tool.

However, after several months of trying to support this very inquisitive group of people, I developed a new
approach to discourage excessive tampering. By keeping a library of ghosted drives containing the standard
workstation configuration with all the approved applications, I could replace the hard drive on a malfunctioning
computer in less than ten minutes, and the engineer and I could both get back to work. Because everyone was
expected to store their work on the server, no one could really object to my repair method. However, most engineers
did not like losing their customized desktops, so they soon quit trying quite so hard to break things.

Although I loved to grumble at those engineers, I really owe them a very big thank you, for now whenever I need to
think about how to test a server or application to destruction, all I need to do is think about those engineers and wonder
what they would do. And never discount even the craziest ideas; if you can think of it, someone is likely to try it. As you
work to identify your system’s weak links, consider everything on the following list, and then think of some more items:

•	 Data entry: What happens when a user or program interface sends the wrong kind of data or
too much data?

•	 Task sequences: What happens when a user skips a step or performs the tasks out of order?

•	 Repeating/simultaneous executions: Can the user run the same process simultaneously? Will
that action corrupt data or will it just slow down the process?

ILO ACTION COUNT MIN AVG MAX VAR CPU
MIN

CPU
AVG

CPU
MAX

CPU
VAR

process 4 1564247 0 .001 .18 0 0 .001 .02 0

process 5 2873236 0 .043 6.2 .013 0 .041 .49 .006

process 6 149589 0 .018 5.53 .002 0 .013 .11 0

process 7 2395999 0 .001 6 0 0 .001 .03 0

Table 15-1.  (continued)

Chapter 15 ■ Testing and Quality Assurance

448

•	 Unbounded data ranges: Can the user request an unreasonable amount of data? What
happens if the user enters an end range that is prior to the start range (such as requesting a
report on sales from July 1, 2010, to June 30, 2010)?

•	 Resource usage: Excessive use of CPU, memory, temporary storage, and undo space can
impact many users at the same time. Your DBA should limit usage with resource caps
appropriately, but you still need to identify all the potential ways users and processes can grab
more than their fair share.

I bet some of you could add some very interesting options for other ways to break systems. Can you also identify
the ways to prevent those problems? Although finding the best correction is a bit harder and not as entertaining, every
time you can make it difficult for a user to break your code, you create a more robust system—one that needs less
support and less maintenance over the long run.

Every system has its own weakest links. When you’ve identified those weaknesses, assemble your unit tests into a
test harness that pushes that resource beyond its limits so you can see how the system responds. In general, it seems
that memory and IO usage are the primary stressors for a database system. However, lately I’ve been working on an
Oracle 11g database with spatial functionality and, in this case, CPU processing is the system’s bottleneck. When we
designed the system capacity tests, we made certain that the spatial processes would be tested to the extreme, and
we measured internal database performance using the ILO data as shown in the last section. We also had external
measurements of the total application and system performance, but having the ILO elapsed time data provided some
unique advantages over other test projects in which I’ve participated.

First and foremost, the ILO data provide specific measurements of the time spent in the database. This makes it easier
to troubleshoot performance issue that do show up, because you can tell quickly when the process is slow in the database
and when it is not. A second advantage is that the recorded timestamps give a very specific indicator of exactly when a
problem occurred, what other processes were running at the same time, and the specific sequencing of the application
processes. With this information, you can easily identify the point when the system hits the knee in its performance curve.
And because the elapsed time module in ILO uses dbms_utility.get_time and dbms_utility.get_cpu_time, you can
record exactly how much time your process was active in the database and what portion of that time was spent on CPU.

These detailed performance data are also useful for troubleshooting, because the low-level timestamps assist
in narrowing down the time frame for the problem. When you know the specific time frame you need to research,
you can review a much smaller quantity of AWR or StatsPack data to determine what happened and find the answers
quickly. When the window is small enough, any problem is visible almost immediately. We look at a specific case in
the next section.

Troubleshooting through Instrumentation
Sometimes it can be difficult to identify the cause of small problems. When you don’t know the source of the problem,
you also don’t know the potential impact the problem can have on your application. In one such case, developers had
noticed timeouts from the database at random intervals, yet the process they suspected of causing the issue showed
no sign of the errors and the database appeared to be working well below its potential.

About a week after a new test server was installed, a review of the ilo_elapsed_time table showed that most
tasks were performing well, except there were two processes that had overrun the 30-second timeout clock on the
application. The error numbers recorded on the tasks showed the front-end application had ended the connection;
this message was consistent with a possible timeout, but it was not very helpful. The captured ILO data are shown in
Table 15-2.

Chapter 15 ■ Testing and Quality Assurance

449

Take a look at process 7. Note that the maximum completion time does exceed 30 seconds, and the variance in
processing times is relatively high when compared with other processes in the application. The process spends almost
no time on CPU, so this is a problem worth investigating. Where is this time going? It’s also interesting to note that
this was not a process that anyone would have expected to have a performance issue. Process 3 had been the target of
previous timeout investigations; it has to perform considerably more work than process 7.

Next, let’s take a look at Table 15-3, which contains the results of a query looking for all cases when process 7
exceeded 30 seconds.

Table 15-2.  Timeout Errors

ILO ACTION COUNT MIN AVG MAX VAR CPU
MIN

CPU
AVG

CPU
MAX

CPU
VAR

process 1 4 0.01 0.015 0.03 0 0 0.01 0.03 0

process 2 2 0 0 0 0 0 0 0 0

process 3 56 0.01 0.112 0.8 0.015 0.01 0.109 0.62 0.011

child 3a 36 0.04 0.078 0.15 0 0.03 0.078 0.15 0.001

child 3b 56 0 0.01 0.09 0 0 0.009 0.07 0

child 3c 36 0 0 0.01 0 0 0.001 0.01 0

child 3d 36 0 0.001 0.01 0 0 0 0.01 0

child 3e 36 0 0.001 0.01 0 0 0.001 0.01 0

child 3f 36 0 0.001 0.01 0 0 0.001 0.01 0

process 4 8 0 0.01 0.02 0 0 0.008 0.02 0

process 5 1 0.01 0.01 0.01 0 0.01 0.01 0.01 0

process 6 152 0 0.002 0.1 0 0 0.002 0.09 0

process 7 90 0 0.681 30.57 20.449 0 0.002 0.02 0

process 8 1 0 0 0 0 0.01 0.01 0.01 0

process 9 77 0 0.001 0.01 0 0 0.001 0.01 0

process 10 8 0 0.008 0.01 0 0 0.008 0.01 0

Table 15-3.  Processes Exceeding 30 Seconds

SPID ILO ACTION START TIME END TIME ELAPSED TIME ERROR

28959 process 7 22-JUL-10 05.40.00.000000 PM 22-JUL-10 09.40.31.234635 PM 30.45 –1013

29221 process 7 22-JUL-10 05.55.30.000000 PM 22-JUL-10 09.56.00.619850 PM 30.57 –1013

The start and stop times shown in Table 15-3 reflect the connection pool start and stop times, which is a much
wider window than you need to troubleshoot this problem. Internal database and CPU clock times are also recorded
in the ilo_elapsed_time table, and these are the values that are used to calculate the elapsed times as shown in
Table 15-4. Table 15-4 also shows the sequential execution of the processes. Notice that process 7 was executed
repeatedly within intervals of just a few seconds.

Chapter 15 ■ Testing and Quality Assurance

450

Table 15-4.  Sequential Listing of Processes with Internal Clock Times

SPID ILO ACTION GO TIME STOP TIME ELAPSED TIME CPU TIME ERROR

29221 process 7 498854690 498854690 0 0
0

28959 process 7 498856045 498859090 30.45 0 -1013

29047 process 7 498862109 498862109 0 0 0

29309 process 3 498862111 498862121 0.1 0.11 0

29309 child 3a 498862113 498862121 0.08 0.07 0

29309 child 3b 498862113 498862113 0 0 0

29309 child 3c 498862121 498862121 0 0 0

29309 child 3d 498862121 498862121 0 0 0

29309 child 3e 498862121 498862121 0 0 0

29309 child 3f 498862121 498862121 0 0 0

28959 process 7 498947571 498947571 0 0 0

29221 process 7 498948957 498952014 30.57 0 -1013

29047 process 7 498957717 498957717 0 0 0

29309 process 3 498957718 498957728 0.1 0.1 0

29309 assign_child1 498957720 498957728 0.08 0.07 0

29309 assign_child2 498957720 498957720 0 0 0

29309 assign_child3 498957728 498957728 0 0 0

29309 assign_child4 498957728 498957728 0 0.01 0

29309 assign_child5 498957728 498957728 0 0 0

29309 assign_child6 498957728 498957728 0 0 0

Looking at the two processes that exceeded 30 seconds, we can note a very small time frame when both errors
occurred. The next step is to check the AWR for that particular time frame. On review of the AWR data shown in
Listing 15-12, the problem is immediately clear.

Listing 15-12.  AWR Output for One-Hour Time Frame

Top 5 Timed Foreground Events
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                                                 Avg
                                                wait  % DB
Event                           Waits Time(s)   (ms)  time Wait Class
------------------------------ ------ ------- ------ ----- ----------
enq: TX - row lock contention       2      61  30511  78.6 Application
DB CPU                                     12         15.0
SQL*Net break/reset to client  21,382       5      0   6.6 Application
log file sync                      32       0      1    .1 Commit
SQL*Net message to client      10,836       0      0    .0 Network
 



Chapter 15 ■ Testing and Quality Assurance

451

Between the series of events shown in Table 15-2 and the AWR output shown in Listing 15-12, the cause of the 
timeouts becomes clear. Process 7 was called two or even three times, when only one execution was necessary.  
If those calls came in fast enough, the second process attempted to update the same row, creating a lock and preventing 
the first process from committing. When process 1 could not commit in 30 seconds, the process terminated and the 
second (or third) process could save its changes successfully. Because the application has a built-in timeout, this 
problem is a minor one, and a self-correcting one at that.

Tables 15-1 to 15-4 show data from a newly installed server with only a few executions. I selected this particular 
dataset because it is easy to use as an example, but it does make it appear as if it would have been possible to spot 
this problem with almost any other troubleshooting tool. However, consider this: When these same data are reviewed 
on more active test servers over longer periods of time, timeouts for this process may occur on one day in any given 
month, and there are likely to be no more the four to six processes that exceed 30 seconds on that day. This process 
may execute hundreds of thousands of times over two or three months on a busy test server. And then there are test 
results like those shown in Table 15-1. In that case, the process is executed millions of times without a single timeout. 
Trying to spot this problem from an AWR report and then identifying the process that caused the application lock 
would take a bit more time with that many executions. And although this problem is not significant right now, it has 
the potential to cause the application to miss required performance targets. As a result of the data recorded by the 
instrumentation, the problem can be monitored and addressed before this happens.

Although this is a simple example, identifying these kinds of problems can be difficult, especially during typical 
development test cycles. Early in unit testing, tests are not usually executed in rapid succession, so some problems 
may not appear until later. And when testing has moved on to load testing, an occasionally longer running process or 
two may not be noticed among millions of executions. Yet, by using the ILO execution times to abbreviate the amount 
of AWR performance data that must be reviewed, problems like this can be identified and diagnosed in just a few 
moments. And although access to AWR and ASH data may not be available to you in all development environments, 
the instrumentation data you create are available.

Summary
I covered a wide range of information in this chapter, including execution plans and instrumentation, performance 
and failures, testing theory and practical application. Each of these topics could have been a chapter or even an entire 
book in its own right, which is why there are already many, many books out there that address these topics.

What I hope you take away from this chapter is the recognition that each system has its own strengths and 
limitations, so any testing and measurement approach should be customized to some extent for specific system 
needs and performance requirements. No single testing method can be completely effective for all systems, but the 
basic approach is fairly straightforward. Break down the work into measurable test modules, then measure, adjust, 
and measure again. Whenever possible, minimize the changes between test iterations, but keep the test realistic. 
You can test the functionality of your code with unit tests on a subset of the data, but testing performance requires a 
comparable amount of data on a comparably configured system. Verifying that a report runs exceptionally fast on a 
development server with little data and no other users doesn’t prove anything if that report is to be run on a multiuser 
data warehouse. Understanding what you need to measure and confirm is crucial to preparing an appropriate 
test plan. Be sure to consider testing and performance early during the code development process. This does not 
necessarily mean that you need to write a perfectly optimized piece of code right out of the gate, but you should be 
aware of the limitations your code is likely to face in production, then write the code accordingly. It also doesn’t hurt 
to have a few alternatives in your back pocket so you are prepared to optimize the code and measure it once again.



453

Chapter 16

Plan Stability

One of the most frustrating things about Oracle’s Cost-Based Optimizer (CBO) is its tendency to change plans for 
statements at seemingly random intervals. Of course, these changes are not random at all. But, because the optimizer 
code is so complex, it’s often difficult to determine why a plan changes. Oracle recognized this issue years ago and 
has been working to improve the situation for at least a decade. It has provided many tools for identifying when plans 
change and why they change. Oracle has also provided numerous tools that allow you to exert varying degrees of 
control over the execution plans the optimizer chooses, but let’s save that discussion for the next chapter.

This chapter’s focus is plan instability, and it is concerned with issues that cause you not to experience the 
stability you expect. You’ll discover how to identify when and why plans changed, and how to locate plan changes that 
create a significant performance impact, and gain some insight into common causes of plan instability issues. I use a 
number of scripts in this chapter, but for readability purposes, in most cases, I do not show the source of these scripts 
in the listings. The scripts can be found in the example download for this book.

Plan Instability: Understanding the Problem
Oracle’s CBO is an extremely complex piece of software. Basically, its job is to work out the fastest way to retrieve a 
given set of data as specified by a SQL statement. Generally speaking, it must do this in an extremely short period of 
time using precalculated statistical information about the objects involved (tables, indexes, partitions, and so forth). 
The optimizer usually doesn’t have the time to verify any of the information. The tight time constraints are imposed 
because parsing is a serialized operation. Therefore, the database needs to retrieve the data as quickly as possible 
and as infrequently as possible; otherwise, parsing becomes a severe bottleneck to scalability. I should note here that 
my comments are aimed at what I would typically call an OLTP-type environment—an environment with many users 
executing lots of relatively quick SQL statements. Of course, in environments with relatively few but long-running 
statements, it’s much more important to get the correct plan than to get a decent plan quickly. These types of systems, 
though, don’t suffer from plan stability issues nearly as often (in part because they tend to use literals as opposed to 
bind variables, but I talk about that more later).

So why do plans change? Well there are three main inputs to the CBO:

	 1.	 Statistics: associated with the objects that are referenced by the SQL statement

	 2.	 Environment: optimizer-related parameter settings, for example

	 3.	 SQL: the statement itself (including bind variable usage)



Chapter 16 ■ Plan Stability

454

So, unless one of these three things changes, the plan should not change. Period. I believe frustration with plan 
instability arises primarily from the belief that “nothing has changed,” when in fact something has changed. I can’t 
even count the number of times I have heard that phrase. The story usually goes something like this:

Them:	 Everything was working fine and then, all of a sudden, the system just started crawling.

Me:	 When did this happen?

Them:	 12:00 noon on Thursday

Me:	 What changed around that time?

Them:	 Nothing changed!

Of course, they are not intentionally lying to me. What they really mean is, “Nothing has changed that I think 
could have anything to do with this particular issue.” But, regardless of whether someone thinks an event is relevant, 
or if he or she even knows about it, there was a change that precipitated the issue.

So, the first thing I want you to get out of this chapter is that performance doesn’t just magically get worse  
(or better). If a SQL statement gets a new plan, there is a reason. Something changed!

Let’s take a brief look at the possibilities for why a plan can change.

Changes to Statistics
Changes to statistics is a rather obvious place to look for changes that can cause new plans to be generated. Object-
level statistics are gathered frequently on most systems. By default, Oracle versions 10g and above have a job that 
runs on a nightly basis to calculate new statistics. If these jobs are running on your system, it means that, every day, 
you have an opportunity to get a new plan. Although a thorough discussion of statistics gathering is outside the scope 
of this chapter, be aware of the mechanisms in play in your environment. Also know that you can check quickly to 
determine when stats were last gathered on an object, and you can restore a previous version of an object’s statistics 
in a matter of seconds. Last, be aware that, by default, the standard stats-gathering jobs in 10g and above allow 
statements to stay in the shared pool for some period of time after new stats have been gathered. This feature is called 
rolling invalidation. By default, the dbms_stats procedures set the no_invalidate parameter to dbms_stats.auto_
invalidate. This means that cursors are not invalidated automatically when statistics are gathered. Existing cursors 
are invalidated at some random time during the next five hours. This is a feature designed to prevent parsing storms, 
which can occur if all statements referencing a specific object are invalidated at the same time. In general, this feature 
is a good thing, but be aware that a plan change can be the result of a statistics change, even though the statistics 
change occurred several hours before the new plan showed up. Listing 16-1 presents an example of checking the last 
statistics-gathering event for a table and for restoring a previous version (all scripts are in the example download for 
the book).

Listing 16-1.  Table Statistics Setting and Restoring

SQL> exec dbms_stats.set_table_stats( -
 ownname => user, tabname => 'SKEW', -
 numrows => 1234, numblks => 12, -
 avgrlen => 123, no_invalidate => false);
 
PL/SQL procedure successfully completed.
 
SQL> @set_col_stats
Enter value for owner: KRM
Enter value for table_name: SKEW
Enter value for col_name: PK_COL



Chapter 16 ■ Plan Stability

455

Enter value for ndv: 1234
Enter value for density: 1/1234
Enter value for nullcnt: 0
 
PL/SQL procedure successfully completed.
 
SQL> @dba_tables
Enter value for owner: KRM
Enter value for table_name: SKEW
 
OWNER      TABLE_NAME                STATUS   LAST_ANAL   NUM_ROWS     BLOCKS
---------- ------------------------- -------- --------- ---------- ----------
KRM        SKEW                      VALID    12-AUG-13       1234         12
 
SQL> @col_stats
Enter value for owner: KRM
Enter value for table_name: SKEW
Enter value for column_name:
 
COLUMN_NM  DATA_TYPE      DENSITY        NDV HISTOGRAM  BKTS LAST_ANAL
---------- ----------  ---------- ---------- ---------- ---- ---------
PK_COL     NUMBER      .000810373      1,234 NONE          1 12-AUG-13
COL1       NUMBER      .000002568    902,848 HEIGHT BAL   75 02-AUG-13
COL2       VARCHAR2    .500000000          2 NONE          1 03-AUG-13
COL3       DATE        .000002581  1,000,512 HEIGHT BAL   75 02-AUG-13
COL4       VARCHAR2    .000000016          3 FREQUENCY     2 02-AUG-13
 
SQL> @tab_stats_history
Enter value for owner: KRM
Enter value for table_name: SKEW
 
OWNER   TABLE_NAME   STATS_UPDATE_TIME
------- ------------ -----------------------------------
KRM     SKEW         31-JUL-13 09.06.42.785067 PM -05:00
KRM     SKEW         02-AUG-13 07.14.04.486871 PM -05:00
KRM     SKEW         02-AUG-13 09.29.48.761056 PM -05:00
KRM     SKEW         02-AUG-13 09.31.11.788522 PM -05:00
KRM     SKEW         02-AUG-13 09.38.00.524266 PM -05:00
KRM     SKEW         12-AUG-13 08.27.17.497396 PM -05:00
 
6 rows selected.
 
SQL> @restore_table_stats.sql
 
Note: No_Invalidate=false - means invalidate all cursors now (stupid triple negatives)
 
Enter value for owner: KRM
Enter value for table_name: SKEW
Enter value for as_of_date: 03-aug-13
Enter value for no_invalidate: false
 
PL/SQL procedure successfully completed.
 



Chapter 16 ■ Plan Stability

456

SQL> @dba_tables
Enter value for owner: KRM
Enter value for table_name: SKEW
 
OWNER      TABLE_NAME                STATUS   LAST_ANAL   NUM_ROWS     BLOCKS
---------- ------------------------- -------- --------- ---------- ----------
KRM        SKEW                      VALID    02-AUG-13   32000004     162294
 
SQL> @col_stats
Enter value for owner: KRM
Enter value for table_name: SKEW
Enter value for column_name:
 
COLUMN_NM  DATA_TYPE      DENSITY         NDV HISTOGRAM  BKTS LAST_ANAL
---------- ---------- ----------- ----------- ---------- ---- ---------
PK_COL     NUMBER      .000000032  32,000,004 HEIGHT BAL   75 02-AUG-13
COL1       NUMBER      .000002568     902,848 HEIGHT BAL   75 02-AUG-13
COL2       VARCHAR2    .000000016           2 FREQUENCY     1 02-AUG-13
COL3       DATE        .000002581   1,000,512 HEIGHT BAL   75 02-AUG-13
COL4       VARCHAR2    .000000016           3 FREQUENCY     2 02-AUG-13

Changes to the Environment
There are many parameters that affect the optimizer’s calculations. Some of the optimizer parameters have values that 
are calculated automatically based on the values of other parameters or the physical characteristics of the machine 
on which the database is running, such as the number of CPUs. If any of these environmental values change, the 
optimizer may come up with a new plan. This is also one of the reasons that it is sometimes difficult to get the plans in 
development and test environments to match the plans that are generated in production.

The settings in effect when a statement is parsed can be obtained by enabling a 10053 (CBO) trace. Oracle also 
keeps track of the settings for each of the optimizer-related parameters in an X$ table called X$KQLFSQCE. This is the 
structure that underlies the V$SQL_OPTIMZER_ENV view, which (much like V$PARAMETER) doesn’t display the hidden 
parameters (unless they have been altered). The optim_parms.sql script shows all the parameters, including the 
so-called hidden parameters that start with an underscore (this is the complete list of parameters that affect the 
optimizer’s calculations and the same ones that are dumped in a 10053 trace file). Listing 16-2 contains the optimizer 
parameter values for SQL statement 9du01uy8z1k04 in a 12.1.0.1 instance. Note that these are the values that were set 
when the statement was parsed.

Listing 16-2.  Optimizer Parameter Values

SQL> @optim_parms
Enter value for sql_id: 9du01uy8z1k04
Enter value for isdefault:
 
NAME                                     VALUE               DFLT?
---------------------------------------- ------------------- -----
...
cpu_count                                24                  YES
cursor_sharing                           exact               YES
db_file_multiblock_read_count            128                 YES
...
optimizer_adaptive_features              true                YES



Chapter 16 ■ Plan Stability

457

optimizer_adaptive_reporting_only        false               YES
optimizer_capture_sql_plan_baselines     false               YES
optimizer_dynamic_sampling               2                   YES
optimizer_features_enable                12.1.0.1            YES
optimizer_features_hinted                0.0.0               YES
optimizer_index_caching                  0                   YES
optimizer_index_cost_adj                 100                 YES
optimizer_mode                           all_rows            YES
optimizer_mode_hinted                    false               YES
optimizer_secure_view_merging            true                YES
optimizer_use_invisible_indexes          true                NO
optimizer_use_pending_statistics         false               YES
optimizer_use_sql_plan_baselines         true                YES
parallel_autodop                         0                   YES
...
parallel_degree_limit                    65535               YES
parallel_degree_policy                   manual              YES
parallel_dml_forced_dop                  0                   YES
...
sqlstat_enabled                          true                NO
star_transformation_enabled              false               YES
statistics_level                         all                 NO
total_cpu_count                          24                  YES
total_processor_group_count              1                   YES
transaction_isolation_level              read_commited       YES
workarea_size_policy                     auto                YES
...
_always_anti_join                        choose              YES
_always_semi_join                        choose              YES
_always_star_transformation              false               YES
...
_complex_view_merging                    true                YES
_connect_by_use_union_all                true                YES
_convert_set_to_join                     false               YES
_cost_equality_semi_join                 true                YES
_cpu_to_io                               0                   YES
...
_db_file_optimizer_read_count            8                   YES
_optim_adjust_for_part_skews             true                YES
_optim_enhance_nnull_detection           true                YES
_optimizer_adaptive_cursor_sharing       true                YES
_optimizer_adaptive_plans                true                YES
_optimizer_adjust_for_nulls              true                YES
...
_use_column_stats_for_function           true                YES
_use_hidden_partitions                   false               YES
_virtual_column_overload_allowed         true                YES
_with_subquery                           OPTIMIZER           YES
_zonemap_control                         0                   YES
_zonemap_use_enabled                     true                YES
 
415 rows selected.



Chapter 16 ■ Plan Stability

458

Changes to the SQL
Changes to the SQL may not make much sense at first glance. How can the SQL statement change? When I talk about 
plan instability, I am talking about the optimizer coming up with different plans for a single statement (in other words, 
the same SQL text and therefore the same sql_id). However, there are a few reasons that the text of a statement (and 
its sql_id or hash_value) remains fixed, but the actual SQL statement that the optimizer evaluates may change. These 
reasons are as follows:

If a statement references views and then an underlying view changes, the statement has •	
changed.

If a statement uses bind variables and then the values passed via the variables change, the •	
statement has changed.

If the optimizer uses statistics feedback (known as •	 cardinality feedback prior to 12c), the 
statement has changed.

The first situation is easy to understand and is rarely a point of confusion. The third situation is a way the 
optimizer attempts to adjust the plan automatically to improve it to produce a better performing plan. It is intended to 
work for good by supplementing missing or stale information with better, updated information. The second situation, 
though, can be confusing. We have been trained over the years to use variables in our SQL statements so that Oracle 
can reuse the statements without having to reparse them. So instead of writing a statement like this:
 
select avg(col1) from skew where col1 > 1;
 

We typically write it like this:
 
select avg(col1) from skew where col1 > :X;
 

In this way, we can pass any value we want to our program via variable X, and Oracle does not have to reparse the 
statement. This is a very good thing when it comes to scalability, particularly for systems in which many users execute 
many statements concurrently. However, unless the bind variables always contain the same data, the optimizer is 
basically evaluating a different SQL statement every time it undergoes a hard parse. This is because Oracle introduced 
a feature in 9i that allows the optimizer to “peek” at the values of bind variables during the part of the parsing process 
where the execution plan is determined. This is the infamous bind variable peeking that you’ve probably already 
heard about, and it is one of the major contributors to plan stability issues.

Bind Variable Peeking
When Oracle introduced histograms in 8i, they provided a mechanism for the optimizer to recognize that the values in 
a column were not distributed evenly. That is, in a table with 100 rows and ten distinct values, the default assumption 
the optimizer makes, in the absence of a histogram, is that no matter which value you pick, you always get 100 ÷ 10, 
or ten rows back. Histograms let the optimizer know whether this isn’t the case. A classic example is 100 records with 
two distinct values, where value Y occurs 99 times and value N occurs only once. Without a histogram, the optimizer 
always assumes that, regardless of whether you request records with a Y or an N, you get half the records back  
(100 ÷ 2 = 50). Therefore, always do a full table scan as opposed to using an index on the column. A histogram, 
assuming it is accurate (and I come back this topic later), lets the optimizer know the distribution is not normal—in 
other words, not spread out evenly (also commonly called skewed), and that a Y basically gets the whole table, 
whereas an N gets only 1 percent. This allows the optimizer to pick an appropriate plan regardless of which value is 
specified in the Where clause.

So let’s consider the implications of this. Would this improve the response time for the query when the value is Y? 
The answer is no. In this simple case, the default costing algorithm is close enough and produces the same plan that 
the histogram produces. The full table scan takes just as long regardless of whether the optimizer thinks it’s getting 50 



Chapter 16 ■ Plan Stability

459

rows or 99 rows. But, what about the case when you specify the value N? In this case, with a histogram, you pick up the 
index on that column and presumably get a much better response time than the plan with the full table scan. This is 
an important point. In general, it is only for the outliers—the exceptional cases, if you will—that the histogram really 
makes a difference.

So, at first glance, the histogram looks like a pretty good idea; but, there is a fly in the ointment. You have to use 
literals in your SQL statements for the optimizer to be able use the histograms. So you have to write your statements 
like this:
 
SELECT XYZ FROM TABLE1 WHERE COLUMN1 = 'Y';
SELECT XYZ FROM TABLE1 WHERE COLUMN1 = 'N';
 

This is not a problem in this simple example because there are only two possibilities. But, consider a statement 
with two or three skewed columns, each with a couple hundred distinct values. The possible combinations could grow 
quickly into the millions—not a good thing for the shared pool or scalability of your system.

Enter the star: bind variable peeking. This feature was introduced in 9i to allow the optimizer to peek at the value 
of bind variables and then use a histogram to pick an appropriate plan, just like it does with literals. The problem 
with this feature is that it only looks at the variables once, when the statement is parsed. So let’s make our simple 
example a little more realistic by assuming you have a table with 10 million rows in which 99 percent have a value of 
Y and 1 percent has a value of N. In this example, if the first time the statement is executed it passes a Y, the full table 
scan plan is locked in and used until the statement has to be reparsed, even if the value N is passed to it in subsequent 
executions.

Let’s consider the implication of this. When you get the full table scan plan (because you passed a Y the first 
time), it behaves the same way no matter which value you pass subsequently. Oracle always performs a full table scan, 
always does the same amount of work, and usually results in the same basic elapsed time. From a user standpoint, this  
seems reasonable. The performance is consistent. (This is the way it works without a histogram, by the way.) On the 
other hand, if the index plan gets picked because the first execution that caused the parse occurs with a value of N, 
the executions where the value is N are almost certainly faster than they were before (and maybe considerably faster), 
but the execution with a value of Y is incredibly slow. This is because using an index to read virtually every row in a 
table is incredibly slow, which is not at all what the users expect. They expect the response time to be about the same 
every time they execute a piece of code. And this is the problem with bind variable peeking. It’s basically just Russian 
roulette. It depends on which value you happen to pass the statement when it’s parsed (which could be any execution, 
by the way).

So is bind variable peeking a feature or a bug? Figure 16-1 illustrates how that can sometimes be a tricky question 
to answer.

Figure 16-1.  Feature or bug? (Figure by Noah Osborne)



Chapter 16 ■ Plan Stability

460

Well, technically, it’s not a bug because it works the way it’s designed to work. I just happen to believe that it is not 
a good decision to implement it in this way, but what other choices did the optimizer development group  
members have?

They could have evaluated the bind variables and reparsed for every execution of every •	
statement using bind variables. This would eliminate the advantage of having bind variables 
in the first place and would never work for high-transaction systems. So, this is not an option.

They could have just said no, and made us use literals to get the benefit of histograms. This is •	
probably not a bad option, in retrospect. The fact that they added _optim_peek_user_binds, 
which allows us to turn off bind variable peeking altogether, probably means they decided 
later to give us this option via setting this hidden parameter.

They could have implemented a system in which they could identify statements that might •	
benefit from different plans based on the values of bind variables, and then peek at those 
variables for every execution of those “bind-sensitive” statements (Sound familiar? This is 
what they finally did in 11g with Adaptive Cursor Sharing).

So why is this such a pervasive problem? (And I do believe it is a pervasive problem, with 10g in particular.)

	 1.	 We’ve been taught always to use bind variables. It’s a “best practice,” which allows SQL 
statements to be shared, thus eliminating a great deal of work/contention. Using bind 
variables is an absolute necessity when building scalable high-transaction rate systems. Of 
course, just because it’s a best practice doesn’t mean you have to follow it blindly. There 
are situations when literals work better.

	 2.	 In 10g, the default stats-gathering method was changed to gather histograms 
automatically. So in a typical 10g database, there are a huge number of histograms, many 
of them inappropriate (in other words, on columns that don’t have significantly skewed 
distributions) and many of them are created with very small sample sizes, which causes 
the histograms to be less than accurate. Note that 11g does a better job on both counts. 
That is to say, 11g seems to create fewer inappropriate histograms and appears to create 
many more accurate histograms, even with relatively small sample sizes. And in 12c, we 
now have two new types of histograms that help the accuracy of the histograms that do get 
created: top-frequency and hybrid histograms.

	 3.	 In my humble opinion, bind variable peeking is not that well understood. When I talk to 
people about it, they usually have heard of it and have a basic idea what the problem is, 
but their behavior (in terms of the code they write and how they manage their databases) 
indicates bind variable peeking is something they don’t really have a good handle on.

So, what’s the best way to deal with this issue? Well, recognizing that you have a problem is the first step to 
recovery. In other words, being able to identify that you have a problem with plan stability is an appropriate first step. 
Direct queries against the Statspack or AWR tables are probably the best way to identify the issue. You’re looking for 
statements that flip-flop back and forth between two or more plans. Note that there are other reasons for statements 
to change plans, but bind variable peeking is high on the list of usual suspects.

Adaptive Cursor Sharing
Adaptive cursor sharing was a new feature added in 11g that aimed to fix performance issues resulting from bind 
variable peeking. The basic idea is to try to recognize automatically when a statement might benefit from multiple 
plans. If a statement is found that the optimizer thinks is a candidate, it is marked as bind aware. Subsequent 
executions peek at the bind variables, and new cursors with new plans may result. The feature does work, although 
it has a few quirks. The two biggest drawbacks are that it must execute a statement badly before it notices that an 



Chapter 16 ■ Plan Stability

461

additional plan is needed, and that the information regarding bind sensitivity is not persistent (in other words, if the 
statement gets flushed from the shared pool, all information about bind sensitivity is lost). As a result, bind variable 
peeking issues continue in 11g.

The example in Listing 16-3 walks through how adaptive cursor sharing works.

Listing 16-3.  Adaptive Cursor Sharing

SQL>@desc bigemp
 Name      Null?    Type
 --------- -------- -------------
 EMPNO              NUMBER
 ENAME              VARCHAR2(20)
 PHONE              VARCHAR2(20)
 DEPTNO             NUMBER
 
SQL>select column_name, histogram from user_tab_cols
  2  where table_name = 'BIGEMP';
 
COLUMN_NAME                    HISTOGRAM
------------------------------ ---------------
EMPNO                          NONE
ENAME                          NONE
PHONE                          NONE
DEPTNO                         FREQUENCY
 
SQL>select deptno, count(*) ct from bigemp
  2  group by deptno ;
 
         DEPTNO              CT
--------------- ---------------
              1              10
              6              10
              2              10
              4              10
              5              10
              8              10
              3              10
              7              10
             10           99900
              9              10
              0              10
 

As you can see, the deptno column has skew such that when the value of deptno is 10, the query returns 99.9999 
percent of that table’s rows, and the execution plan choice that is likely the best is a full table scan. However, any other 
nonpopular value is best served by using an index scan. Listing 16-4 shows the execution plan choice for a query 
against a nonpopular value.



Chapter 16 ■ Plan Stability

462

Listing 16-4.  Execution Plan with a Nonpopular Value

SQL>variable v_dept number
SQL>exec :v_dept := 1
SQL>
SQL>select /* acs-ex-01 */ count(*), max(empno)
  2  from bigemp
  3  where deptno = :v_dept ;
 
       COUNT(*)      MAX(EMPNO)
--------------- ---------------
             10              91
 
SQL>@dcplan
Enter value for sql_id: 6xpk12dpa41ga
Enter value for child_no: 0
 
PLAN_TABLE_OUTPUT
-----------------------------------------------------
SQL_ID  6xpk12dpa41ga, child number 0
-------------------------------------
select /* acs-ex-01 */ count(*), max(empno)
from bigemp where deptno = :v_dept
 
Plan hash value: 2854685483
 
--------------------------------------------------
| Id  | Operation                    | Name      |
--------------------------------------------------
|   0 | SELECT STATEMENT             |           |
|   1 |  SORT AGGREGATE              |           |
|   2 |   TABLE ACCESS BY INDEX ROWID| BIGEMP    |
|   3 |    INDEX RANGE SCAN          | BIGEMP_I1 |
--------------------------------------------------
 

As expected, the index scan was chosen. Now take a look at the information associated with this query.
 
SQL>col is_bind_aware for a10 heading "BIND_AWARE"
SQL>col is_bind_sensitive for a15 heading "BIND_SENSITIVE"
SQL>
SQL>select executions, buffer_gets, is_bind_sensitive, is_bind_aware
  2  from v$sql
  3  where sql_id = '6xpk12dpa41ga' ;
 
     EXECUTIONS     BUFFER_GETS BIND_SENSITIVE  BIND_AWARE
--------------- --------------- --------------- ----------
              1              53 Y               N
 

Note that the statement is marked as bind sensitive. This is an indication that the optimizer thinks the best plan 
choice depends on the value of the bind variable, and it is marked this way because the deptno column has a histogram 
that is used to compute the predicate selectivity. Because a histogram is present, this means that the column contains 
skewed data and therefore different bind variable values may need to have different plans to execute optimally.



Chapter 16 ■ Plan Stability

463

Listing 16-5 shows what happens if we change the bind variable to 10 (our popular value).

Listing 16-5.  Execution Plan with a Popular Value

SQL>exec :v_dept := 10
SQL>
SQL>select /* acs-ex-01 */ count(*), max(empno)
  2  from bigemp
  3  where deptno = :v_dept ;
 
       COUNT(*)      MAX(EMPNO)
--------------- ---------------
          99900          100000
 
SQL>@dcplan
Enter value for sql_id: 6xpk12dpa41ga
Enter value for child_no: 0
 
PLAN_TABLE_OUTPUT
-----------------------------------------------------
SQL_ID  6xpk12dpa41ga, child number 0
-------------------------------------
select /* acs-ex-01 */ count(*), max(empno)
from bigemp where deptno = :v_dept
 
Plan hash value: 2854685483
 
--------------------------------------------------
| Id  | Operation                    | Name      |
--------------------------------------------------
|   0 | SELECT STATEMENT             |           |
|   1 |  SORT AGGREGATE              |           |
|   2 |   TABLE ACCESS BY INDEX ROWID| BIGEMP    |
|   3 |    INDEX RANGE SCAN          | BIGEMP_I1 |
--------------------------------------------------
 
SQL>select executions, buffer_gets, is_bind_sensitive, is_bind_aware
  2  from v$sql where sql_id = '6xpk12dpa41ga' ;
 
     EXECUTIONS     BUFFER_GETS BIND_SENSITIVE  BIND_AWARE
--------------- --------------- --------------- ----------
              2             957 Y               N
 

The plan still uses an index range scan, but (as you can see by the execution statistics) there is a big jump in the 
number of buffer gets, which increase from 53 to 957. Also note that the plan is still marked only as bind sensitive. 
Listing 16-6 shows what happens if we execute the query a third time and keep the bind variable value at 10.

Listing 16-6.  Execution Plan for Second Execution with a Popular Value

SQL>select /* acs-ex-01 */ count(*), max(empno)
  2  from bigemp
  3  where deptno = :v_dept ;
 



Chapter 16 ■ Plan Stability

464

       COUNT(*)      MAX(EMPNO)
--------------- ---------------
          99900          100000
 
SQL>select child_number, executions, buffer_gets, is_bind_sensitive, is_bind_aware
  2  from v$sql where sql_id = '6xpk12dpa41ga' ;
 
   CHILD_NUMBER      EXECUTIONS     BUFFER_GETS BIND_SENSITIVE  BIND_AWARE
--------------- --------------- --------------- --------------- ----------
              0               2             957 Y               N
              1               1             818 Y               Y
 
SQL>@dcplan
Enter value for sql_id: 6xpk12dpa41ga
Enter value for child_no: 1
 
PLAN_TABLE_OUTPUT
-----------------------------------------------------
SQL_ID  6xpk12dpa41ga, child number 1
-------------------------------------
select /* acs-ex-01 */ count(*), max(empno)
from bigemp where deptno = :v_dept
 
Plan hash value: 870989070
 
---------------------------------------------
| Id  | Operation                  | Name   |
---------------------------------------------
|   0 | SELECT STATEMENT           |        |
|   1 |  SORT AGGREGATE            |        |
|   2 |   TABLE ACCESS STORAGE FULL| BIGEMP |
---------------------------------------------
 

Finally, we have the proper plan—a full table scan—and a new child cursor has been created. So, we have two 
plans now: one for the nonpopular bind variable values and one for the popular values. Notice that our new cursor 
is marked as both bind sensitive and bind aware. From now on, the proper plan should be chosen based on the bind 
variable value. But, why doesn’t the first cursor show that it is bind aware? Let’s take a look at Listing 16-7.

Listing 16-7.  Bind Aware Cursor Identification

SQL>exec :v_dept := 3
SQL>
SQL>select /* acs-ex-01 */ count(*), max(empno)
  2  from bigemp
  3  where deptno = :v_dept ;
 
       COUNT(*)      MAX(EMPNO)
--------------- ---------------
             10              93
 
SQL>col is_shareable for a9 heading "SHAREABLE"
SQL>select child_number, executions, buffer_gets,



Chapter 16 ■ Plan Stability

465

  2  is_bind_sensitive, is_bind_aware, is_shareable
  3  from v$sql where sql_id = '6xpk12dpa41ga' ;
 
CHILD_NUMBER  EXECUTIONS  BUFFER_GETS BIND_SENSITIVE  BIND_AWARE SHAREABLE
------------ ----------- ------------ --------------- ---------- ---------
           0           2          957 Y               N          N
           1           1          818 Y               Y          Y
           2           1            3 Y               Y          Y
 
SQL>@dcplan
Enter value for sql_id: 6xpk12dpa41ga
Enter value for child_no: 2
 
PLAN_TABLE_OUTPUT
-----------------------------------------------------
SQL_ID  6xpk12dpa41ga, child number 2
-------------------------------------
select /* acs-ex-01 */ count(*), max(empno)
from bigemp where deptno = :v_dept
 
Plan hash value: 2854685483
 
--------------------------------------------------
| Id  | Operation                    | Name      |
--------------------------------------------------
|   0 | SELECT STATEMENT             |           |
|   1 |  SORT AGGREGATE              |           |
|   2 |   TABLE ACCESS BY INDEX ROWID| BIGEMP    |
|   3 |    INDEX RANGE SCAN          | BIGEMP_I1 |
--------------------------------------------------
 

Ah! Did you see what happened? A new child cursor was created (child_number 2). Note the additional column 
called is_shareable included in the query against v$sql. The first cursor (child_number 0), in which a nonpopular 
bind value is used, is marked as not shareable, but the new child cursor is shareable. What happened was that the 
original cursor was discarded when the cursor switched to bind aware. The original cursor is now basically marked to 
be aged out of the cursor cache because it is no longer shareable, and the two remaining cursors (1 and 2), which are 
shareable and bind aware, can be used for future executions of the statement.

Note that it is possible for additional cursors to get created. If the bind variable value’s selectivity matches one 
of the aware and shareable plans, it is used. But, if it doesn’t, then a new plan is created (just like we saw in this 
example) and the process repeats.

Statistics Feedback
Statistics feedback, known as cardinality feedback prior to Oracle 12c, is a mechanism used by the optimizer to 
improve automatically plans’ repeated query executions that have cardinality misestimates. The first time a SQL 
statement executes, the optimizer determines the execution plan and marks the plan to enable statistics feedback 
monitoring if.



Chapter 16 ■ Plan Stability

466

Any of the tables in the statement have missing statistics•	

There are •	 ANDed or ORed filter predicates on a table

Any predicates contain complex operators for which the optimizer cannot compute •	
cardinality estimates accurately

After a completed statement execution, the optimizer then compares the original cardinality estimates with 
the actual cardinalities. If there are any significant differences, it stores the correct estimates to use during the next 
execution of that statement to reoptimize (reparse) it. Prior to Oracle 12c, this is as far as things went. But, in 12c, the 
optimizer also stores a SQL plan directive. A SQL plan directive contains additional information and instructions 
the optimizer can use to generate a better plan the next time the statement is executed; but, it isn’t pertinent just to a 
single cursor. It is pertinent to any cursor that uses similar expressions.

About SQL Plan Directives
SQL plan directives are not tied to a specific SQL statement, but instead are defined on query expressions. By 
defining them on query expressions, the optimizer is able to use them on numerous SQL statements that use similar 
patterns. These directives are stored in the shared pool and are written periodically to the SYSAUX table space every  
15 minutes. This is what makes the Oracle 12c statistics feedback different (and better) than its predecessor, 
cardinality feedback.

The presence of SQL plan directives alerts the optimizer that there may be missing or inadequate statistics such 
as histograms or extended statistics. The is_reoptimizable column in v$sql is marked with a Y to indicate that a 
hard parse should be performed on the next execution. Because these bits of information are recorded, not only can 
the optimizer use them to reparse statements to achieve better plans, but also even subsequent statistics collections 
using DBMS_STATS are alerted to create the proper statistics as well. Listing 16-8 shows an example of how SQL plan 
directives are used.

Listing 16-8.  SQL Plan Directives

SQL>select /* sql-plan-dir */ * from sh.customers
  2 where cust_state_province = 'FL' and country_id = 52790 ;
 
2438 rows selected.
 
SQL>@dcplan
Enter value for sql_id: 94ykht2aac5xg
Enter value for child_no: 0
Enter value for format: ALLSTATS LAST
 
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------
SQL_ID  94ykht2aac5xg, child number 0
-------------------------------------
select /* sql-plan-dir */ * from sh.customers where cust_state_province
= 'FL' and country_id = 52790
 
Plan hash value: 2008213504
 



Chapter 16 ■ Plan Stability

467

----------------------------------------------------------------------------
| Id  | Operation         | Name      | Starts | E-Rows | A-Rows | Buffers |
----------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |           |      1 |        |   2438 |    1677 |
|*  1 |  TABLE ACCESS FULL| CUSTOMERS |      1 |    128 |   2438 |    1677 |
----------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   1 - filter(("CUST_STATE_PROVINCE"='FL' AND "COUNTRY_ID"=52790))
 
SQL>select is_reoptimizable
  2  from   v$sql
  3  where  sql_id = '94ykht2aac5xg' ;
 
IS_REOPTIMIZABLE
----------------
Y
 

The execution of the query reveals what appears to be a problem with the statistics. Note how the estimated 
rows estimate (E-Rows) of 128 is several orders of magnitude underestimated compared with the actual cardinality 
(A-Rows). The optimizer recognizes the issue and marks the cursor for reoptimization on the next execution. To see 
the SQL plan directives that are created, we can query the DBA_SQL_PLAN_DIRECTIVES view as shown in Listing 16-9.

Listing 16-9.  Using the DBA_SQL_PLAN_DIRECTIVES View

SQL>exec dbms_spd.flush_sql_plan_directive;
  
SQL>select o.subobject_name col_name,
  2        o.object_type, d.type, d.state, d.reason
  3  from  dba_sql_plan_directives d, dba_sql_plan_dir_objects o
  4  where d.directive_id=o.directive_id
  5  and   o.owner = 'SH'
  6  and   o.object_name = 'CUSTOMERS'
  7  order by 1,2,3,4,5;
 
COL_NAME   TYPE    DIRECTIVE TYPE   STATE  REASON
---------- ------- ---------------- ------ ------------------------
COUNTRY_ID COLUMN  DYNAMIC_SAMPLING NEW    SINGLE TABLE CARDINALITY
                                                MISESTIMATE
CUST_STATE COLUMN  DYNAMIC_SAMPLING NEW    SINGLE TABLE CARDINALITY
                                                MISESTIMATE
PROVINCE   TABLE   DYNAMIC_SAMPLING NEW    SINGLE TABLE CARDINALITY
                                                MISESTIMATE
 

Note there are three directives stored. The columns referenced are the two columns used in our example 
query predicate. The underestimation is noted and directives are now in place to make adjustments during the next 
execution of the query. As shown in Listing 16-10, we run the query again, check the plan, and see that it has changed 
(note that new child cursor number). Also note statistics feedback used for this statement, and the fact that 
the new child cursor is now marked as not reoptimizable, which indicates it will be used for all future executions of 
this cursor.



Chapter 16 ■ Plan Stability

468

Listing 16-10.  Statistics Feedback in Use

SQL>@dcplan
Enter value for sql_id: 94ykht2aac5xg
Enter value for child_no: 1
Enter value for format: ALLSTATS LAST
 
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------
SQL_ID  94ykht2aac5xg, child number 1
-------------------------------------
select /* sql-plan-dir */ * from sh.customers where cust_state_province
= 'FL' and country_id = 52790
 
Plan hash value: 2008213504
 
----------------------------------------------------------------------------
| Id  | Operation         | Name      | Starts | E-Rows | A-Rows | Buffers |
----------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |           |      1 |        |   2438 |    1677 |
|*  1 |  TABLE ACCESS FULL| CUSTOMERS |      1 |   2438 |   2438 |    1677 |
----------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   1 - filter(("CUST_STATE_PROVINCE"='FL' AND "COUNTRY_ID"=52790))
 
Note
-----
   - statistics feedback used for this statement
  
SQL>select child_number, is_reoptimizable
  2   from   v$sql
  3   where  sql_id = '94ykht2aac5xg' ;
 
CHILD_NUMBER IS_REOPTIMIZABLE
------------ ----------------
           0 Y
           1 N
 

We can now collect statistics to determine whether the SQL plan directives will be used to update the statistics to 
avoid this problem in the future as shown in Listing 16-11.

Listing 16-11.  SQL Plan Directives Utilized During Statistics Collection

SQL>exec dbms_stats.gather_table_stats('SH','CUSTOMERS')
 
SQL>select table_name, extension_name, extension
  2  from   dba_stat_extensions
  3  where  owner='SH'
  4  and    table_name='CUSTOMERS';
 



Chapter 16 ■ Plan Stability

469

TABLE_NM  EXTENSION_NAME                 EXTENSION
--------- ------------------------------ -----------------------------------
CUSTOMERS SYS_STS#S#WF25Z#QAHIHE#MOFFMM_ ("CUST_STATE_PROVINCE","COUNTRY_ID")
 

Yes! They were! We now have an extended statistic for the column group of cust_state_province and 
country_id. This means that the optimizer now has the correct information to produce the proper cardinality estimates 
for any query using this column group in the future. Let’s verify as shown in Listing 16-12.

Listing 16-12.  Verifying Cardinality Estimates after Creation of Extended Statistics

SQL>select /* sql-plan-dirs */ distinct cust_postal_code from sh.customers
  2  where cust_state_province = 'LA' and country_id = 52790 ;
 
SQL>@dcplan
Enter value for sql_id: 789cx77mh8ftm
Enter value for child_no: 0
Enter value for format: ALLSTATS LAST
 
PLAN_TABLE_OUTPUT
-----------------------------------------------------------------------------
SQL_ID  789cx77mh8ftm, child number 0
-------------------------------------
select /* sql-plan-dirs */ distinct cust_postal_code from sh.customers
where cust_state_province = 'LA' and country_id = 52790
 
Plan hash value: 2048334152
 
-----------------------------------------------------------------------------
| Id  | Operation          | Name      | Starts | E-Rows | A-Rows | Buffers |
-----------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |           |      1 |        |      2 |    1522 |
|   1 |  HASH UNIQUE       |           |      1 |     52 |      2 |    1522 |
|*  2 |   TABLE ACCESS FULL| CUSTOMERS |      1 |     54 |     54 |    1522 |
-----------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   2 - filter(("CUST_STATE_PROVINCE"='LA' AND "COUNTRY_ID"=52790))
 

As you can see, statistics feedback and SQL plan directives can accomplish some pretty great things. So, even 
though they may cause plans to change, it’s very likely they’ll change for the better. But, like any “automatic” feature, 
always be aware of what it might and might not do. Don’t get lazy and fail to identify issues and fix them on your own 
when possible.

Identifying Plan Instability
Sometimes it’s painfully obvious when a plan has changed for the worse. A quick look at Enterprise Manager or a 
query against gv$session can show dozens of sessions executing the same statement. Other times, the problem is not 
as obvious. One of the best ways to identify the problem is to look for statements with multiple plans that have very 
different performance characteristics depending on which plan they use. AWR is extremely handy for this because 



Chapter 16 ■ Plan Stability

470

it keeps copies of execution statistics as well as plans used for the most “important” statements. Note that not all 
statements are captured by AWR. Those that rank high in number of executions, logical IO, physical IO, elapsed time, 
CPU time, or parses are there, but if you have a statement that is very efficient that later becomes very inefficient, the 
very efficient version may not be captured by AWR. Regardless of the fact that AWR does not represent a complete 
record of every statement executed, it does provide data on most statements that are of interest.

Capturing Data on Currently Running Queries
One of my most used diagnostic scripts queries ¥ for all sessions that have a status of Active. This can be used to see 
what is actually running at any given point in time. It is not perfect, because really fast statements may not show 
up very often, even if they are dominating the workload. So, I often use Tanel Poder’s snapper script for this same 
purpose. His script has many advantages, but one of the most useful is that it runs many times in a tight loop and 
aggregates the data so that very fast statements still show up in the output. Listing 16-13 shows both scripts in action.

Listing 16-13.  Two Diagnostic Scripts: as.sql and Session Snapper

SQL> @as
 
SID PROG      SQL_ID        CHILD PLAN_HASH_VALUE EXECS AVG_ETIME
---- --------- ------------- ----- --------------- ----- ---------
  24 sqlplus@h gf5nnx0pyfqq2     0      4072605661    55     86.18
  42 sqlplus@h gf5nnx0pyfqq2     0      4072605661    55     86.18
 100 sqlplus@h gf5nnx0pyfqq2     0      4072605661    55     86.18
  83 sqlplus@h gf5nnx0pyfqq2     0      4072605661    55     86.18
  61 sqlplus@h gf5nnx0pyfqq2     0      4072605661    55     86.18
 
SQL> @snapper ash=sid+event+wait_class,ash1=sql_id 5 1 all
Sampling with interval 5 seconds, 1 times...
 
-- Session Snapper v3.11 by Tanel Poder @ E2SN ( http://tech.e2sn.com )
 
--------------------------------------------------------------
Active% |    SID | EVENT                     | WAIT_CLASS
--------------------------------------------------------------
   100% |     83 | ON CPU                    | ON CPU
    98% |     42 | ON CPU                    | ON CPU
    98% |     61 | ON CPU                    | ON CPU
    93% |     24 | ON CPU                    | ON CPU
    88% |    100 | ON CPU                    | ON CPU
    12% |    100 | direct path read temp     | User I/O
     7% |     24 | direct path read temp     | User I/O
     5% |    248 | control file parallel wri | System I/O
     2% |     42 | direct path read temp     | User I/O
     2% |     61 | direct path read temp     | User I/O
 
-------------------------
Active% | SQL_ID
-------------------------
   500% | gf5nnx0pyfqq2
     5% |
 
--  End of ASH snap 1, end=2013-08-12 22:23:17, seconds=5, samples_taken=42
 

http://tech.e2sn.com/


Chapter 16 ■ Plan Stability

471

The scripts have very different output formats. My as.sql script has one line per session and shows the sql_id 
being executed by the session, along with the average elapsed time for that statement. Keep in mind that this 
represents a single instant in time. So, you should run it several times in succession to get a feel for what is actually 
happening. Tanel’s snapper, on the other hand, doesn’t require repeated running. Just give it a length of time to run 
and it automatically samples repeatedly for that length of time. It is also considerably more flexible than my simple 
script. The format is quite different, too. The top section shows the activity percentage by session ID, or SID, and 
Event. Notice that the same SID may have multiple entries if it spends significant time on more than one thing during 
the sample period. The second section shows a breakdown of the work by SQL statement.

In the case shown, both snapper and my as.sql scripts show different views of the same situation. There are five 
sessions all running the same statement. Any time you are asked to look at a system and you see that many sessions 
are all running the same long-running SQL statement, you have a pretty good idea where to start your investigation 
into the plan stability problem.

Reviewing the History of a Statement’s Performance
When a problem is obvious (as in the previous example, in which several sessions were all running the same long-
running query), it is often instructive to view the performance of the statement of interest over time. This can be done 
easily by querying the AWR or Statspack tables directly. Listing 16-14 shows an example.

Listing 16-14.  The awr_plan_change.sql Script

SQL> @awr_plan_change
Enter value for sql_id: 3dhwvfmkjzwtv
 
SNAP_ID NODE BEGIN_INTERVAL_TIME PHV        EXECS AVG_ETIME      AVG_LIO
------- ---- ------------------- ---------- ----- --------- ------------
   1785    3 24-APR-13 05.00 PM  1093407144     6     1.102      2,872.7
   1786    2 24-APR-13 06.00 PM               158     0.024      2,873.0
   1786    3 24-APR-13 06.00 PM               223     0.023      2,873.0
   1787    2 24-APR-13 07.00 PM               749     0.020      2,873.0
   1787    3 24-APR-13 07.00 PM               873     0.019      2,873.0
   1788    2 24-APR-13 08.00 PM               726     0.020      2,873.9
   1788    3 24-APR-13 08.00 PM               871     0.020      2,873.9
   1789    2 24-APR-13 09.00 PM               373     0.016      2,874.0
   1789    3 24-APR-13 09.00 PM               566     0.016      2,874.0
   1892    2 29-APR-13 04.00 AM                 1     2.613      3,811.0
   1897    2 29-APR-13 09.00 AM                 2     8.179      8,529.0
   1918    3 30-APR-13 06.00 AM                 2     0.421        485.5
   1919    2 30-APR-13 07.00 AM                 1     1.152      1,242.0
   1920    2 30-APR-13 08.00 AM                 4     3.273      3,200.3
   1920    3 30-APR-13 08.00 AM                12     2.491      3,314.2
   1921    2 30-APR-13 09.00 AM                 5     3.947      3,333.4
   1921    3 30-APR-13 09.00 AM                 2     2.416      1,769.5
   1922    3 30-APR-13 10.00 AM  4076066623     2    54.237  2,291,432.5
   1923    2 30-APR-13 11.00 AM  1093407144     2     0.812        975.0
   1923    3 30-APR-13 11.00 AM  4076066623     3   134.031    933,124.3
   1924    3 30-APR-13 12.00 PM                 3   227.009  6,987,169.3
   1926    2 30-APR-13 02.00 PM  1093407144     8     0.818      1,574.5
   1926    3 30-APR-13 02.00 PM  4076066623     2   175.709  8,963,417.0
   1927    2 30-APR-13 03.00 PM  1093407144     4     1.344      1,068.8
   1927    3 30-APR-13 03.00 PM  4076066623     5   156.378 10,059,992.0



Chapter 16 ■ Plan Stability

472

   1928    2 30-APR-13 04.00 PM  1093407144     6     0.923      1,225.8
   1928    3 30-APR-13 04.00 PM  4076066623     1   180.488  2,150,190.0
   1930    3 30-APR-13 06.00 PM                 2   180.371  8,255,881.5
   1934    3 30-APR-13 10.00 PM                 1   180.491  3,002,577.0
   1939    2 01-MAY-13 03.00 AM  1093407144    21     0.825      1,041.8
   1939    3 01-MAY-13 03.00 AM                 4     0.575      1,211.8
   1944    3 01-MAY-13 08.00 AM                 6     1.328      1,788.3
   1946    2 01-MAY-13 10.00 AM                 1     1.170      2,411.0
   1946    3 01-MAY-13 10.00 AM                 4     2.041      2,414.3
   1947    3 01-MAY-13 11.00 AM                10     1.725      2,937.1
   1948    3 01-MAY-13 12.00 PM                 3     2.232      3,415.7
   1987    2 03-MAY-13 03.00 AM                 7     1.029        901.0
   1990    3 03-MAY-13 06.00 AM                 3     1.225      1,465.7
   1991    3 03-MAY-13 07.00 AM                26     0.370        710.5
   1992    2 03-MAY-13 08.00 AM                 6     0.213        685.7
   1992    3 03-MAY-13 08.00 AM                 3     0.658        883.0
   1993    2 03-MAY-13 09.00 AM                 8     0.769        950.9
   1996    2 03-MAY-13 12.00 PM                 2     0.101        861.5
   2015    3 04-MAY-13 07.00 AM                 4     0.376        854.5
   2016    3 04-MAY-13 08.00 AM                 6     0.143        571.0
   2019    2 04-MAY-13 11.00 AM                12     0.937      1,352.1
   2019    3 04-MAY-13 11.00 AM                10     1.612      1,341.9
   2019    3 04-MAY-13 11.00 AM  4076066623     1    41.592  3,942,672.0
   2020    2 04-MAY-13 12.00 PM  1093407144    15     1.037      1,734.6
   2020    3 04-MAY-13 12.00 PM  4076066623     1   181.044  1,764,007.0
   2022    2 04-MAY-13 02.00 PM  1093407144     2     2.214      2,780.5
 

The awr_plan_change.sql script simply queries DBA_HIST_SQLSTAT for a list of snapshots that contains 
information about the statement in question (based on its sql_id), and then prints out the relevant statistical 
information. In this output, I show the plan_hash_value, the average logical IO, and the average elapsed time. (This 
sort of a report can also be generated from data collected by Statspack, by the way.) One of the most interesting 
features of this kind of a historical view of a statement is the history of the plan or plans being used. The output in 
the example shows a classic case of plan instability. As you can see, the plan changes fairly often (note that the script 
uses the SQL*Plus break feature on the plan_hash_value column, so if the value does not change from row to row, 
the value is not printed). This is not a situation in which something changed in the environment that caused a plan to 
change; rather, the plans are in a constant state of flux. This is classic plan instability. If you note a single plan being 
used for many days and then an abrupt change to another plan, you should look for a change to statistics or some 
other environmental change, such as an optimizer setting.

You can also see clearly that the performance characteristics are wildly different between the two plans. In 
the sample output, you can see that plan 1093407144 does only a couple of thousand logical IOs, whereas plan 
4076066623 does a few million. Consequently, the average elapsed time is several minutes for the “bad” plan and a 
couple of seconds for the “good” plan. This is another characteristic of classic plan instability. There is often a single 
plan that, although not the absolute best performance you can get for any combination of bind variables, is good 
enough to be acceptable and provides the desired stability.

Aggregating Statistics by Plan
In general, we don’t care much about the optimizer changing its mind and picking a different plan unless the 
execution times vary widely from one plan to the other. When there are a lot of snapshots or a lot of plans, it’s often 
helpful to aggregate the statistics by plan. The awr_plan_stats.sql script shown in Listing 16-15 does just that  



Chapter 16 ■ Plan Stability

473

(note that I’ve cut some of the rows from the previous output so the averages don’t match exactly, but they are close 
enough to get the point across):

Listing 16-15.  The awr_plan_stats.sql Script

SQL> @awr_plan_stats
Enter value for sql_id: 3dhwvfmkjzwtv
 
SQL_ID        PHV        EXECS   ETIME AVG_ETIME     AVG_LIO
------------- ---------- ----- ------- --------- -----------
3dhwvfmkjzwtv 1093407144   207   100.0      .935     2,512.5
3dhwvfmkjzwtv 4076066623    22 1,236.5   154.559 4,072,416.3
 

The output from the awr_plan_stats.sql script clearly shows that, in this example, there are two plans with very 
different performance characteristics. This is a fairly normal situation (although there are often more than two plans). 
However, it is, nevertheless, a common occurrence that one plan is often consistent with a reasonable amount of work 
and a reasonable average elapsed time, but be aware that averages can hide a lot of important details (such as a few 
very fast executions with the plan that has the horrible averages). But again, the goal is to get stability at a reasonable 
performance level. So, finding a plan that you can stick with is often all you’re after. (I talk about how you get the 
optimizer to stick with a single plan in a bit.)

Note■■  T he default retention period for both AWR and Statspack is woefully inadequate for this type of diagnosis. The 
default is seven days for AWR. I’ve been involved in many cases when the necessary data have scrolled out of the reten-
tion window and been purged before a proper diagnosis was done. AWR (and Statspack) data do not take up that much 
space, so I routinely set the retention to several months (and I know of sites that retain multiple years of AWR data). There 
is even a supplied script that allows you to estimate the storage requirements for AWR based on the workload in your 
system: $ORACLE_HOME/rdbms/admin/utlsyxsz.sql.

Looking for Statistical Variance by Plan
When a problem is not obvious, but you suspect plan instability is an issue, it’s often helpful to look for statements that 
have run with more than one plan that have a large statistical variance in their execution times or the amount of work 
they do (logical IOs, for example). Listing 16-16 shows the execution of a script (unstable_plans.sql) that can help 
identify statements that are suffering from plan instability.

Listing 16-16.  The unstable_plans.sql Script

SQL> @unstable_plans
Enter value for min_stddev:
Enter value for min_etime:
 
SQL_ID        SUM(EXECS)   MIN_ETIME   MAX_ETIME   NORM_STDDEV
------------- ---------- ----------- ----------- -------------
4fc7tprp1x3uj      43212         .18         .84        2.0222
47s01ypztkmn6          6       54.46      210.28        2.0230
3rx5cnvua3myj       8126         .03         .12        2.0728
80tb4vmrsag5j      29544         .78        3.16        2.1433
cahnk07yj55st         17       26.35      113.09        2.3272



Chapter 16 ■ Plan Stability

474

2azfw6wnqn01s        388        1.39        6.20        2.4522
a31u2rn7zup46          4       30.38      183.82        2.5271
607twnwf0ym10         30      146.50      728.15        2.8075
7y3w2mnqnp8jn         65         .56        3.05        3.1227
82rq0xvp6u1t2         34       12.34      119.20        3.4625
9cp3tujh0z4mt      42455         .02         .15        3.5998
6ykn5wq4jmu91      58584         .01         .21        3.7001
cvfj7g4fub5kn        116         .43        3.76        5.4863
26nrsfgurpgpm     427450         .07        1.08        5.5286
brntkgfqa9u1u          2      261.26    2,376.86        5.7258
d9ddsn04krw9d         99         .43        5.66        5.9018
fnwxd5kmnp6x9       2227         .47        4.46        6.0031
96567x1dqvzw1         23       27.02      311.04        7.4330
5wwnfumndntbq         10       98.58    1,481.40        7.7765
dm4hyyyxyay5t       1368         .03         .36        7.8945
5ub7xd1pn57by    1118281         .04        1.23       10.8031
870uasttnradg     441864         .12        2.07       11.3099
2p86vc476bvht         34       14.66      297.76       13.6548
2gz0c5c3vw59b         30       53.45    1,197.24       15.1320
4g22whjx1ycnu        818         .55       22.02       15.3194
48k8mu4mt68pw       1578       13.58    2,002.27       81.6759
1ct9u20mx6nnf      25782         .00         .93      287.5165
 
27 rows selected.
 

The output in Listing 16-16 shows there are several SQL statements in this system that are most likely suffering 
from plan instability issues. The script pulls the information from the AWR tables and displays the total executions, the 
average elapsed time for the fastest plan, the average elapsed time for the slowest plan, and a calculated normalized 
standard deviation. As you can see, statement 1ct9u20mx6nnf is the worst offender. However, it may not be all that 
noticeable to the users because the delta between the slowest plan and the fastest plan is still less than a second. If it 
is executed many times in succession, the users almost certainly suffer; otherwise, they may not notice. On the other 
hand, sql_id 48k8mu4mt68pw varies from 14 seconds to more than 30 minutes. Anyone that runs this statement will 
certainly notice the difference. And seeing that the statement is executed more than 1500 times makes this one appear 
to be a significant contributor to perceived inconsistency.

Last, after identifying the suspects, use awr_plan_stats.sql and awr_plan_change.sql to get a better idea of 
what’s going with specific statements.

Checking for Variations around a Point in Time
The other thing I do occasionally to check for plan instability is to look for variations around a point in time. The 
whats_changed.sql script computes a normalized variance for elapsed time around a specific point in time. In fact, 
it computes the average elapsed time before a reference time and the average elapsed time after the reference time 
for every statement in the AWR tables. It then displays all statements with average elapsed times that are significantly 
different (two times, by default). It’s similar to the unstable_plans.sql script, but it looks for variance around a point 
in time as opposed to variance among plans. It is most useful when new code is rolled out or a new index is created or, 
basically, whenever you want to see which statements have been affected either for better or for worse. Listing 16-17 
shows an example of its use.



Chapter 16 ■ Plan Stability

475

Listing 16-17.  The whats_changed.sql Script

SQL> @whats_changed
Enter Days ago: 30
Enter value for min_stddev:
Enter value for min_etime:
Enter value for faster_slower:
 
SQL_ID            EXECS AVG_ETIME_BEFORE AVG_ETIME_AFTER NORM_STDDEV RESULT
------------- --------- ---------------- --------------- ----------- ------
5ub7xd1pn57by 1,118,281             0.18            0.05      2.0827 Faster
03rhvyrhjxgg9     3,838             0.10            0.38      2.0925 Slower
cahnk07yj55st        17           113.09           26.35      2.3272 Faster
4bf2kzg2h1sd0       148             0.60            0.13      2.6403 Faster
9cp3tujh0z4mt    42,455             0.12            0.02      2.7272 Faster
fnwxd5kmnp6x9     2,227             0.92            4.47      2.7283 Slower
607twnwf0ym10        30           146.50          728.15      2.8075 Slower
akm80a52q4qs9       649             6.16            1.21      2.9014 Faster
4g22whjx1ycnu       818             0.48            2.44      2.9272 Slower
14mxyzzjzjvpq     1,537            33.08          191.20      3.3800 Slower
6zncujjc43gsm     1,554            22.53          168.79      4.5894 Slower
6zt6cu6upnm8y     3,340             0.62            0.08      4.8153 Faster
870uasttnradg   441,864             0.98            0.12      4.9936 Faster
d9ddsn04krw9d        99             5.66            0.68      5.1708 Faster
cvfj7g4fub5kn       116             3.76            0.43      5.4863 Faster
2p86vc476bvht        34            14.66          297.76     13.6548 Slower
2gz0c5c3vw59b        30            53.45        1,197.24     15.1320 Slower
 
17 rows selected.

Summary
There are several things that contribute to plan instability. If you get one thing out of this chapter, I hope it is that you 
realize that plans do not change without a reason. Plans remain static unless something else changes in the system. 
Bind variable peeking and changes in statistics are the most likely causes of plan instability. Oddly enough, failure 
of statistics to keep up with changing data is another common cause of instability. Of these three issues, though, 
bind variable peeking is probably the most prevalent and the most frustrating to deal with. Although most shops are 
understandably reluctant to turn off the bind variable peeking “feature,” turning it off altogether is a viable option. 
There are many production systems that have taken this approach. Part of the standard configuration of SAP, for 
example, is to set the _optim_peek_user_binds parameter to FALSE. This can prevent the optimizer from choosing 
the absolute best plan available for a certain set of queries, but the tradeoff is a more consistent environment. Short 
of turning off bind variable peeking altogether, using literals appropriately with columns that need histograms to deal 
with skewed data distributions is really the only effective way to deal with the issue while still providing the optimizer 
the ability to choose the absolute best execution plans. However, if circumstances prevent this approach, there are 
other techniques that can be applied. In the next chapter, we look at how to improve the situation.



477

Chapter 17

Plan Control

As discussed in Chapter 16 on plan stability, Oracle’s CBO can seem to change plans at random intervals, causing 
a great deal of frustration. However, these changes are not random at all, and we reviewed the reasons behind plan 
changes and examined how you can identify when plans change and why they change. This chapter’s focus, as you 
can probably guess, covers various techniques for controlling execution plans. I probably should say “influencing” 
instead of “controlling,” because there is really no foolproof method of locking in an execution plan. The tools we  
have at our disposal to help provide plan stability have evolved quite significantly in the more recent versions of 
Oracle. In this chapter, we take a walk through time and look at when plan control started and where it stands today  
in Oracle 12c.

Plan Control: Solving the Problem
When you have access to the code (and the change control requirements are not too stringent), you can make changes 
to get the plan you want. Mechanisms such as hints, changing the structure of the query itself, or using literals in key 
locations to avoid bind variable peeking issues are all viable options.

Note■■   See a later section in this chapter, “Plan Control: Without Access to the Code,” for help in exerting control over 
execution plans when you do not have the luxury of being able to modify the code that is being executed.

Discussions about controlling execution plans can turn into a religious debate. Questions concerning the degree  
and mechanism of control can all degenerate from spirited debate to questioning our rival’s ancestry. There is a 
strong argument for letting the optimizer do what it was written to do. After all, it’s one of the most complex pieces of 
software in existence, with countless man-hours invested in its programming. In many (I dare say, most) situations, 
the optimizer is capable of coming up with very serviceable execution plans. However, this assumes that the database 
is configured correctly, that the statistics are accurate, that the data model is reasonable, that the SQL is written 
correctly, and so on. This is a lot of assumptions, and rarely are they all true.

So, one camp says fix the configuration, the stats, the data model, or whatever else is leading the optimizer astray. 
On the surface, this seems like a perfectly reasonable position that is hard to argue. If the statistics are not accurate, 
there most likely will be numerous issues, even if they aren’t readily apparent. So, fixing inaccurate statistics can 
improve things in many areas at the same time.

The flip side is that fixing some things is almost an insurmountable task. Changing the data model, for example, 
presents a substantial challenge even in a small application, and it is certainly not something that can be done with 
any degree of expediency. Likewise, changing configuration parameters can have sweeping effects that often require 
other adjustments. Because of these issues, there is a group that says, “Let’s just focus on fixing the slow-running 
process.” People in this camp tend to want to zero in on a SQL statement and fix it. This argument is also hard to argue 
with because we are often under the gun to provide relief to the users of the system.



Chapter 17 ■ Plan Control

478

The key, in my mind, is to weigh the costs—time to implement and risk—against the potential benefits. I tend 
to be a pragmatist and therefore rarely get into debates about which approach is “right.” I am quite comfortable with 
making a decision to implement a solution that provides quick relief, even if there is a long-term solution that needs 
to be implemented at some point in the future. I consider myself akin to an emergency room doctor. When a patient’s 
heart stops, I expect the doctor to break out the defibrillator and get the patient stabilized, not lecture him on proper 
lifestyle and put him on a diet and new exercise regime. There’s plenty of time for that later. On the other hand, after 
the guy has had a triple bypass, it would be foolish for his cardiologist to tell him that he should keep doing what  
he’s always been doing, just because the technology exists to give him another chance at life.

The bottom line is that, even when we have a system that is configured well with accurate statistics, we still 
occasionally run across plan stability issues. So, let’s put the philosophical issues aside and talk about the basic tools 
we have at our disposal for controlling execution plans.

Modifying Query Structure
Prior to version 8, changing the structure of a query was basically the only tool available for influencing execution 
plans (other than making physical changes to the database objects, such as adding or dropping indexes). Modifying 
SQL structure is still a valid technique, but because the optimizer has become so adept at transforming queries, it 
is not nearly as useful as it once was. Nevertheless, being aware of alternative forms that return the same set of rows 
gives us an advantage when we are trying to get the optimizer to pick a certain plan. Alternative forms can open up or 
close off options from which the optimizer has to choose.

Making Appropriate Use of Literals
Although it’s been drummed into our head for years that we should use bind variables, they are not appropriate in 
every situation. In fact, anywhere we have skewed data distributions and need histograms to get the best plans,  
we should use literals as opposed to bind variables, at least for the special cases (such as the values you want to make 
sure the optimizer is aware of). It is not necessary to choose one approach or the other for each statement, either. It is 
perfectly reasonable to code conditional logic that branches to a SQL construct that uses literals when the values are 
highly selective (or highly unselective). All the other values can be covered by a single version of the statement that 
uses a bind variable. Of course, if the number of very popular (or very nonpopular) values is high, we have to weigh 
the cost of the coding effort, the impact on the shared pool, and the additional impediment to scalability caused by 
the additional parsing for all these unique SQL statements. As my granddad used to say, “There’s no such thing as  
a free puppy.”

Giving the Optimizer Some Hints
One of the oldest and most basic methods of controlling execution plans is embedding optimizer instructions directly 
into the statement. Unfortunately, the name of this feature, Hint, is somewhat misleading. The word hint makes it 
sound like it is a mild suggestion that the optimizer can consider or ignore as it pleases. Nothing is further from the 
truth. Hints are actually directives to the optimizer. As long as the hint is valid, the optimizer obeys it. In general, hints 
are not well understood. One reason is that they are not particularly well documented. Worse than this, however, is 
that they return no error or warning message when an invalid hint is specified. In cases when there is a syntax error or 
object names are mistyped or the combination of hints cannot be applied together, they are simply silently ignored. 
So, it is difficult to know if a hint is even recognized as valid, much less whether it is doing what it is supposed to do. 
This lack of error or warning messages is probably the biggest reason for confusion about what they do.



Chapter 17 ■ Plan Control

479

There is a way to determine whether an error has occurred that prevents a hint from being used. By generating  
an optimizer trace (event 10053), you can review a section, labeled Dumping Hints, of the trace file that is emitted.  
To capture an optimizer trace, set event 10053 as follows:

alter session set events '10053 trace name context forever, level 1':

After the event is set, you simply execute the statement with the hint in it you wish to evaluate. However, even 
the collection information doesn’t provide much help regarding why the hint is invalid. Listing 17-1 shows an excerpt 
from an optimizer trace file for a query that is attempting to apply FULL hints to the dept and emp tables.

Listing 17-1.  Optimizer Trace (10053) File Excerpt

...
Dumping Hints
-------------------------------------------------------------
atom_hint=(@=0x31211124 err=0 resol=1 used=0 token=448 org=1 lvl=3 txt=FULL ("DEPT") )
atom_hint=(@=0x3120e100 err=0 resol=1 used=1 token=448 org=1 lvl=3 txt=FULL ("EMP") )
...
 

The err value shows a 1 if an error is noted in the hint or, as in this example, a 0 if no error is present. The other 
bit of information that can be useful is the used indicator. Using the same 0/1 indicator, a value of 1 indicates that 
the hint is used during the evaluation of the plan. However, just because the optimizer uses the hint during plan 
evaluation doesn’t mean the chosen plan operations include one specified by the hint. So, there’s no real way to know 
why a hint is or isn’t used.

Hints can be used to tell Oracle to do a full table scan instead of using an index, or to do a nested loops join, or 
to use a specific index, or all the above. Each of these access path-oriented hints effectively reduces the universe of 
possible options the optimizer can consider when coming up with an execution plan for a statement. Hints can also 
be used to alter optimizer settings, object statistics, and even internal optimizer calculations. These kinds of hints 
alter the way the optimizer does its work or the calculations that it makes, but they do not limit directly the choices the 
optimizer has in terms of access paths. By the way, you can get a list of valid hints along with the version in which they 
were introduced via the V$SQL_HINT view. Listing 17-2 shows the valid_hints.sql script.

Listing 17-2.  The valid_hints.sql Script

SQL> @valid_hints
Enter value for hint: pq
Enter value for version:
NAME                                                 VERSION
---------------------------------------------------- --------
PQ_DISTRIBUTE                                        8.1.5
PQ_MAP                                               9.0.0
PQ_NOMAP                                             9.0.0
PQ_CONCURRENT_UNION                                  12.1.0.1
NO_PQ_CONCURRENT_UNION                               12.1.0.1
PQ_REPLICATE                                         12.1.0.1
NO_PQ_REPLICATE                                      12.1.0.1
PQ_FILTER                                            12.1.0.1
PQ_SKEW                                              12.1.0.1
NO_PQ_SKEW                                           12.1.0.1
PQ_DISTRIBUTE_WINDOW                                 12.1.0.1
 
11 rows selected.
 



Chapter 17 ■ Plan Control

480

Hints can be applied to individual statements by embedding them inside comments that begin with a plus sign 
(+) Any comment immediately following a SELECT, UPDATE, INSERT, or DELETE keyword that begins with + is evaluated 
by the optimizer. The comment can contain multiple hints (separated by spaces). The documentation also states that 
comment text can be interspersed with hints. I don’t recommend this technique, however, because not all hints are 
documented and you may inadvertently put in a word that that has significance to the optimizer. There can only be 
one hint–comment per query block. Subsequent comments that start with + are not evaluated by the optimizer. If you 
use an alias for an object name in your SQL statement, all hints must refer to the object by its alias. Also note that if 
you specify an owner name in your statement, the hint should not include the owner name (use an alias; it makes it 
easier). Listing 17-3 shows a couple examples.

Listing 17-3.  Examples of Hints

--Valid:
select /* real comment */ /*+ gather_plan_statistics full (a) */ avg(sal)
from emp a where deptno = 10;
select /*+ gather_plan_statistics full (a) */ /* real comment */ avg(sal)
from emp a where deptno = 10;
select /*+ gather_plan_statistics full (emp) */ /* real comment */ avg(sal)
from emp where deptno = 10;
 
--Invalid
-- don't use owner in hint
select /*+ gather_plan_statistics full (scott.emp) */ /* real comment */ avg(sal)
from scott.emp where deptno = 10;
-- if you use a table alias it must be used in the hint
select /*+ gather_plan_statistics full (emp) */ /* real comment */ avg(sal)
from emp a where deptno = 10;
-- apparently the word comment has a special meaning – disabling the hints
select /*+ real comment gather_plan_statistics more comment full (a) */ avg(sal)
from emp a where deptno = 10;
-- the 2nd hint will not be evaluated as a hint
select /*+ gather_plan_statistics */ /*+ full (a) */ /* real comment */ avg(sal) from emp a where 
deptno = 10;
 

The format of hints is actually more complicated than the abbreviated version we usually see. The simplified 
format we normally see is used to specify tables in which the hints are embedded directly in the query blocks where 
the table occurs. This is not always desirable or even possible, so Oracle has a way of declaring hints that specify where 
the table is located in the SQL structure. This becomes important when specifying hints that affect objects inside of 
views, for example, and, as we see later on, for the hint-based mechanisms that Oracle uses to try to improve plan 
stability. The documentation refers to a “global hint format,” which basically means the query block in which an object 
resides is specified within the hint. Any hint that applies to one or more tables can make use of this global format. The 
query block names can be specified manually with a hint (QB_NAME) or can be assigned automatically by the system. 
The system-generated names are not always intuitive. In simple statements, they often take the form of SEL$1, SEL$2, 
and so forth (or UPD$1 or DEL$1 for update and delete statements, respectively). Listing 17-4 shows some examples of 
query block naming using the FULL hint.



Chapter 17 ■ Plan Control

481

Listing 17-4.  Examples of Hints Using Query Block Naming

select /*+ full (a) */ avg(sal)
from emp a where deptno = 10;
 
select /*+ full (@SEL$1 a@SEL$1) */ avg(sal)
from emp a where deptno = 10;
 
select /*+ full (a@SEL$1) */ avg(sal)
from emp a where deptno = 10;
 
select /*+ full (@SEL$1 a) */ avg(sal)
from emp a where deptno = 10;
 
select /*+ qb_name (MYQB) full (a@MYQB) */ avg(sal)
from emp a where deptno = 10;
 

All five of the previous statements are equivalent. The first @SEL$1 is the query block where the hint should be 
applied. The term @SEL$1 is the fully qualified table alias. In this case, the whole query block name is redundant.  
There is only one table and one query block. In general, even when there are multiple query blocks, specifying the 
query block and then fully qualifying the alias is not necessary. There are situations, though, when you may need both.

There are a couple of ways to determine the correct query block name when system-assigned query block names 
are in play. One is to use DBMS_XPLAN with the ALIAS parameter. The other is to look at the data in the other_xml 
column of v$sql that contains all the hints Oracle thinks are necessary to recreate the plan. These hints are fully 
qualified. Listing 17-5 shows examples of both techniques.

Listing 17-5.  Examples of Determining the Correct Query Block Name

SQL> @sql_hints
SQL> select
  2  extractvalue(value(d), '/hint') as outline_hints
  3  from
  4  xmltable('/*/outline_data/hint'
  5  passing (
  6  select
  7  xmltype(other_xml) as xmlval
  8  from
  9  v$sql_plan
 10  where
 11  sql_id like nvl('&sql_id',sql_id)
 12  and child_number = &child_no
 13  and other_xml is not null
 14  )
 15  ) d;
Enter value for sql_id: f30tq1uck3171
Enter value for child_no: 0
 
OUTLINE_HINTS
-------------------------------------------------------------
IGNORE_OPTIM_EMBEDDED_HINTS
OPTIMIZER_FEATURES_ENABLE('12.1.0.1')
DB_VERSION('12.1.0.1')
ALL_ROWS



Chapter 17 ■ Plan Control

482

OUTLINE_LEAF(@"SEL$5DA710D3")
UNNEST(@"SEL$2")
OUTLINE(@"SEL$1")
OUTLINE(@"SEL$2")
INDEX(@"SEL$5DA710D3" "DEPARTMENTS"@"SEL$1" ("DEPARTMENTS"."DEPARTMENT_ID"))
BATCH_TABLE_ACCESS_BY_ROWID(@"SEL$5DA710D3" "DEPARTMENTS"@"SEL$1")
INDEX(@"SEL$5DA710D3" "EMPLOYEES"@"SEL$2" ("EMPLOYEES"."DEPARTMENT_ID" "EMPLOYEES"."JOB_ID"))
LEADING(@"SEL$5DA710D3" "DEPARTMENTS"@"SEL$1" "EMPLOYEES"@"SEL$2")
USE_MERGE(@"SEL$5DA710D3" "EMPLOYEES"@"SEL$2")
13 rows selected.
SQL>@dcplan
Enter value for sql_id: f30tq1uck3171
Enter value for child_no: 0
Enter value for format: TYPICAL -BYTES +ALIAS
 
PLAN_TABLE_OUTPUT
-------------------------------------------------------------
SQL_ID  f30tq1uck3171, child number 0
-------------------------------------------------------------
select /* not-in */ department_name from hr.departments where
department_id not in (select department_id from hr.employees)
Plan hash value: 3403053048
 
-------------------------------------------------------------
| Id  | Operation                | Name            | Rows  | Cost (%CPU)|
-------------------------------------------------------------
|   0 | SELECT STATEMENT         |                 |       |     1 (100)|
|   1 |  MERGE JOIN ANTI NA      |                 |    17 |     1   (0)|
|   2 |   SORT JOIN              |                 |    27 |     0   (0)|
|   3 |    TABLE ACCESS BY INDEX | DEPARTMENTS     |    27 |     0   (0)|
|     |      ROWID BATCHED       |                 |       |            |
|   4 |     INDEX FULL SCAN      | DEPT_ID_PK      |    27 |     0   (0)|
|*  5 |   SORT UNIQUE            |                 |   107 |     1   (0)|
|   6 |    INDEX FULL SCAN       | EMP_JOB_DEPT_IX |   107 |     1   (0)|
-------------------------------------------------------------------------
 
Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------
 
   1 - SEL$5DA710D3
   3 - SEL$5DA710D3 / DEPARTMENTS@SEL$1
   4 - SEL$5DA710D3 / DEPARTMENTS@SEL$1
   6 - SEL$5DA710D3 / EMPLOYEES@SEL$2
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   5 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
       filter("DEPARTMENT_ID"="DEPARTMENT_ID")
 



Chapter 17 ■ Plan Control

483

Notice that the query block names in this example are more complex than the simple SEL$1, although the aliases 
still use the SEL$1 format to reference their original position in the statement. The complex query block names are the 
result of transformations done by the optimizer. Listing 17-6 shows what happens when you run the same query with 
query transformation turned off.

Listing 17-6.  The Same Query with Query Transformation Turned Off

SQL>@dcplan
Enter value for sql_id: 79ps58yga4hfr
Enter value for child_no: 0
Enter value for format: TYPICAL -BYTES +ALIAS
 
PLAN_TABLE_OUTPUT
-------------------------------------------------------------
SQL_ID  79ps58yga4hfr, child number 0
-------------------------------------------------------------
select /* not-in */ /*+ no_query_transformation */ department_name from
hr.departments where department_id not in (select department_id from
hr.employees)
Plan hash value: 89172749
 
-------------------------------------------------------------------
| Id  | Operation          | Name            | Rows  | Cost (%CPU)|
-------------------------------------------------------------------
|   0 | SELECT STATEMENT   |                 |       |    17 (100)|
|*  1 |  FILTER            |                 |       |            |
|   2 |   TABLE ACCESS FULL| DEPARTMENTS     |    27 |     3   (0)|
|*  3 |   INDEX FULL SCAN  | EMP_JOB_DEPT_IX |     2 |     1   (0)|
-------------------------------------------------------------------
 
Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------
 
   1 - SEL$1
   2 - SEL$1 / DEPARTMENTS@SEL$1
   3 - SEL$2 / EMPLOYEES@SEL$2
 
Predicate Information (identified by operation id):
-------------------------------------------------------------
 
   1 - filter( IS NULL)
   3 - filter(LNNVL("DEPARTMENT_ID"<>:B1))
 

Notice that the more complicated query block names have disappeared. Furthermore, when you specify your 
own query block names, you still get a generated name if a transformation takes place. This makes sense if you think 
about it. Transformations can completely change the structure of the query, turning a statement with a subquery 
(such as this example) into a join, for example. This combines two query blocks into a single new block. It is for this 
reason that I prefer to use the fully qualified alias rather than the hint format that includes a query block name as the 
first element of the hint. For comparison, Listing 17-7 shows another plan dump in which transformations are allowed 
and the query blocks are named explicitly.



Chapter 17 ■ Plan Control

484

Listing 17-7.  Explicitly Named Query Blocks

SQL>@dcplan
Enter value for sql_id: g0pu554n4z3cq
Enter value for child_no: 0
Enter value for format: TYPICAL -BYTES +ALIAS
 
PLAN_TABLE_OUTPUT
-------------------------------------------------------------
SQL_ID  g0pu554n4z3cq, child number 0
-------------------------------------------------------------
select /* not-in2 */ /*+ qb_name(outer) */ department_name from
hr.departments dept where department_id not in (select /*+
qb_name(inner) */ department_id from hr.employees emp)
Plan hash value: 3403053048
 
-------------------------------------------------------------------------
| Id  | Operation                | Name            | Rows  | Cost (%CPU)|
-------------------------------------------------------------------------
|   0 | SELECT STATEMENT         |                 |       |     1 (100)|
|   1 |  MERGE JOIN ANTI NA      |                 |    17 |     1   (0)|
|   2 |   SORT JOIN              |                 |    27 |     0   (0)|
|   3 |    TABLE ACCESS BY INDEX | DEPARTMENTS     |    27 |     0   (0)|
|     |      ROWID BATCHED       |                 |       |            |
|   4 |     INDEX FULL SCAN      | DEPT_ID_PK      |    27 |     0   (0)|
|*  5 |   SORT UNIQUE            |                 |   107 |     1   (0)|
|   6 |    INDEX FULL SCAN       | EMP_JOB_DEPT_IX |   107 |     1   (0)|
-------------------------------------------------------------------------
 
Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------
 
   1 - SEL$F38A2936
   3 - SEL$F38A2936 / DEPT@OUTER   == The alias remains intact even though
   4 - SEL$F38A2936 / DEPT@OUTER        a query block name has been generated
   6 - SEL$F38A2936 / EMP@INNER         due to transformation.
 
Predicate Information (identified by operation id):
-------------------------------------------------------------
 
   5 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
       filter("DEPARTMENT_ID"="DEPARTMENT_ID")
 

Notice that the aliases retained their original names even though the query block was renamed as result of the 
transformation. The transformation can be verified by a 10053 trace, which details the decision-making process that 
the optimizer goes through when determining an execution plan. Listing 17-8 shows an excerpt from the trace file for 
the previous statement.



Chapter 17 ■ Plan Control

485

Listing 17-8.  An Excerpt from the Trace File

Registered qb: OUTER 0xf64c3e34 (HINT OUTER)
QUERY BLOCK SIGNATURE
  signature (): qb_name=OUTER nbfros=1 flg=0
    fro(0): flg=4 objn=73928 hint_alias="DEPT"@"OUTER"
 
Registered qb: INNER 0xf64c1df0 (HINT INNER)
QUERY BLOCK SIGNATURE
  signature (): qb_name=INNER nbfros=1 flg=0
    fro(0): flg=4 objn=73933 hint_alias="EMP"@"INNER"
 
. . .
 
JPPD: Applying transformation directives
query block OUTER transformed to SEL$F38A2936 (#1)
 
. . .
 
Final query after transformations:******* UNPARSED QUERY IS *******
SELECT /*+ QB_NAME ("OUTER") */ "DEPT"."DEPARTMENT_NAME" "DEPARTMENT_NAME" FROM  
"HR"."EMPLOYEES" "EMP","HR"."DEPARTMENTS" "DEPT" WHERE  
"DEPT"."DEPARTMENT_ID"="EMP"."DEPARTMENT_ID" AND  NOT EXISTS (SELECT /*+ QB_NAME ("INNER") */  
0 FROM "HR"."EMPLOYEES" "EMP" WHERE "EMP"."DEPARTMENT_ID" IS NULL)
 
. . .
 
Dumping Hints
-------------------------------------------------------------
atom_hint=(@=0xf6473d1c err=0 resol=1 used=1 token=1003 org=1 lvl=2 txt=QB_NAME ("OUTER") )
====================== END SQL Statement Dump ======================
 

The trace file shows the original query blocks along with the objects in them. It shows that the first query block 
(named OUTER) was transformed into SEL$F38A2936. And it shows the final version of the statement that was executed. 
Notice that, in the final version, the original subquery is gone. It has been merged (unnested) into the OUTER query 
as a join, and a new subquery has been introduced that checks to see if department_id is null. Finally, there is the 
Dumping Hints section (as shown in Listing 17-1) that shows hints that have been evaluated.

Plan Control: Without Access to the Code
One of the most frustrating problems we face is not being able to fix bad code. Our inability to change the code occurs 
for many reasons. In some cases, we are dealing with packaged applications in which the code is just not available. 
In other cases, the politics of an organization can dictate lengthy delays in making changes to code. Regardless of 
the reasons, Oracle specialists often find themselves in the unenviable position of being asked to make things better 
without touching the code. Fortunately, Oracle provides many options for doing just that.

Both changing statistics and modifying database parameters come to mind as effective techniques for effecting 
execution plan changes. These techniques can cause sweeping changes that affect many SQL statements. Obviously, 
the statistics need to be as accurate as possible. It is very difficult to get reasonable performance if the statistics are not 
correct. The database also needs to be configured correctly, although from a stability standpoint, it is not imperative 
that every parameter be set to an “optimal” value. In fact, there are often tradeoffs that must be made. But, the good 
news is that stability can usually be accomplished regardless of the configuration, as long as it stays consistent.



Chapter 17 ■ Plan Control

486

Changing access paths (in other words, adding or removing indexes) can also be an effective tool. Of course, this 
is also a sweeping change that can affect many SQL statements (maybe for the better, maybe not). Certainly, adding 
an index imposes additional overhead to DML operations. This approach generally requires a fair amount of testing to 
ensure that statements other than the one you are attempting to fix are not impacted negatively.

Among the most effective approaches, though, are techniques that focus on modifying execution plans of 
individual statements. Oracle has provided various mechanisms for accomplishing this throughout the years, such 
as Stored Outlines, SQL Profiles, SQL Plan Baselines, SQL Patches, and, now with Oracle 12c, automatic generation 
of SQL Plan Directives (discussed in Chapter 16). These techniques provide laserlike specificity by limiting their 
effect to a single statement (or in some cases, a set of statements). Although these constructs are extremely powerful, 
they are not particularly well understood. They also suffer from some quirkiness. For example, despite what the 
documentation implies regarding Outlines locking execution plans, there are situations when creating an Outline on 
an existing statement, instead of locking in the current plan, actually causes the plan to change.

This quirk is not limited to the older Outline construct. It has been carried forward to the newer SQL Profiles and 
SQL Baselines as well. And if you think about it, the basic mechanism of these constructs (applying hints) is somewhat 
suspect. The more complicated a SQL statement is, the more options the optimizer has and the more difficult it becomes 
too narrow down the choices to a single plan. Nevertheless, it is a widely used technique and probably the best tool at 
our disposal for controlling the plan of a single statement. So let’s discuss each of these options in a little more detail.

Option 1: Change the Statistics
If statistics are inaccurate, they should be fixed. For the optimizer to do its job, we must give it the information it needs 
to make good decisions. In terms of plan stability, just changing the stats is not sufficient. In general, it’s the method of 
gathering them that needs to be addressed. Although a complete discussion of statistics gathering is out of the scope 
of this chapter, there are a few things that are important to know now:

The default stats-gathering job in 10g generates histograms on most columns. This is usually •	
not a good thing. Versions 11g and 12c do a much better job of gathering histograms where 
they are appropriate.

Histograms generated in 10g with small sample sizes are often not very accurate  •	
(DBMS_STATS.AUTO_SAMPLE_SIZE often chooses very small sample sizes that result in 
inaccurate histograms). However, in 11g and above, using DBMS_STATS.AUTO_SAMPLE_SIZE is 
improved so that we can achieve a near-100 percent sample size quality estimate while taking 
only as much time as a 10 percent or less sample would take to complete.

Histograms are most useful for columns in which the values are not distributed evenly.•	

Bind variables and histograms do not work well together if the data distribution is uneven.•	

Extended statistics, also known as •	 column-group statistics, should be created as needed to let 
the optimizer know how to characterize related columns properly that are used frequently 
in query predicates together. In 12c, Oracle has automated the creation of column-group 
statistics but you still need to create your own in prior versions.

Statistics should be gathered (or set) often enough to make sure that column max and min •	
values are close to reality. This is especially important with large tables for which it takes a 
while for the default stats job to determine it’s time to regather (more than 10 percent of the 
rows have been modified). Plans can change radically (and unexpectedly) when the values 
specified in WHERE clauses are above or below the range the optimizer thinks is there.

Partitions should be prepopulated with representative stats if they are to be queried before the •	
normal statistics-gathering job has had a chance to run; otherwise, you may get the dreaded 
“Why do my jobs always run slow on Mondays?” syndrome.

Most important, be intimately familiar with how statistics are generated on your systems.•	



Chapter 17 ■ Plan Control

487

The bottom line is that object statistics need to be accurate. If they are way out of whack, there may be little 
choice but to address the issue before attempting any other measures. Of course, as in all triage situations, we may 
have to take some expedient actions to save the patient.

One last thing on stats: Oracle provides the ability to set the values manually for the object statistics that the 
optimizer uses. Setting statistics manually for an object is a perfectly valid technique in some situations. For example, 
setting a maximum value manually for a frequently queried column that is increasing constantly and running ahead 
of standard statistics gathering might be a perfectly reasonable thing to do. Building your own histogram with the 
values that are important to your application is also possible and may be a reasonable approach if you can’t get  
the normal stats-gathering procedures to do what you want. Listing 17-9 shows a couple scripts that set column 
statistics manually.

Listing 17-9.  Scripts That Set Column Statistics Manually

SQL> @col_stats
Enter value for owner: KRM
Enter value for table_name: LITTLE_SKEW
Enter value for column_name:
COLUMN_NM DATA_TYPE  AVGLEN    NDV ... LAST_ANAL LOW_VALUE   HIGH_VALUE
--------- ---------- ------ ------ ... --------- ----------- -----------
PK_COL    NUMBER          5 99,999 ... 03-AUG-13 1           1000002
COL1      NUMBER          4      2 ... 03-AUG-13 1           999999
COL2      VARCHAR2        8      1 ... 03-AUG-13 TESTING     TESTING
COL3      DATE            8      1 ... 03-AUG-13 08-nov-2008 08-nov-2008
COL4      VARCHAR2        2      2 ... 03-AUG-13 N           Y
 
SQL> @set_col_stats_max
Enter value for owner: KRM
Enter value for table_name: LITTLE_SKEW
Enter value for column_name: COL2
Enter value for minimum:
Enter value for maximum: XXXXXXX
PL/SQL procedure successfully completed.
SQL> @col_stats
Enter value for owner: KRM
Enter value for table_name: LITTLE_SKEW
Enter value for column_name:
COLUMN_NM DATA_TYPE AVGLEN      NDV ... LAST_ANAL LOW_VALUE    HIGH_VALUE
--------- --------- ------ -------- ... --------- ------------ -----------
PK_COL    NUMBER         5   99,999 ... 03-AUG-13 1            1000002
COL1      NUMBER         4        2 ... 03-AUG-13 1            999999
COL2      VARCHAR2       8        1 ... 13-AUG-13 TESTING      XXXXXXX
COL3      DATE           8        1 ... 03-AUG-13 08-nov-2008  08-nov-2008
COL4      VARCHAR2       2        2 ... 03-AUG-13 N            Y
 
SQL> @set_col_stats
Enter value for owner: KRM
Enter value for table_name: LITTLE_SKEW
Enter value for col_name: COL1
Enter value for ndv: 10
Enter value for density: 1/10
Enter value for nullcnt: 0
 



Chapter 17 ■ Plan Control

488

PL/SQL procedure successfully completed.
SQL> @col_stats
Enter value for owner: KRM
Enter value for table_name: LITTLE_SKEW
Enter value for column_name:
COLUMN_NM DATA_TYPE AVGLEN DENSITY    NDV...LAST_ANAL LOW_VALUE   HIGH_VALUE
--------- --------- ------ ------- ------...--------- ----------- -----------
PK_COL    NUMBER         5 .000010 99,999...03-AUG-13 1           1000002
COL1      NUMBER         4 .100000     10...13-AUG-13 1           999999
COL2      VARCHAR2       8 .000005      1...13-AUG-13 TESTING     XXXXXXX
COL3      DATE           8 .000005      1...03-AUG-13 08-nov-2008 08-nov-2008
COL4      VARCHAR2       2 .000005      2...03-AUG-13 N           Y
 

These scripts make use of the DBMS_STATS.SET_COLUMN_STATS procedure to set the column-level statistics 
manually . The set_col_stats_max.sql script is probably the more useful of the two. Notice, also, that the call to the 
procedure modifies the last_analyzed field.

Don’t be afraid of this technique. Remember, you know your data and how your applications use it (often better 
than Oracle does). Oracle provides you the tools to set the statistics as you see fit. Keep in mind, though, that if you 
do decide to make manual changes to statistics, you have to decide how to integrate those changes into the normal 
statistics-gathering routine in place on your systems. Don’t make the mistake of fixing some statistics issue manually 
and then have the standard stats-gathering job come along and wipe out your work a week later.

Option 2: Change Database Parameters
This is a SQL book, so I won’t discuss this technique in depth. In general, I am very hesitant to attempt to modify 
plans by manipulating database parameters at the system level except in situations when something is completely 
misconfigured and I have a reasonable amount of time to test. There are a few parameters that show up on the frequent 
offenders list such as optimizer_index_cost_adj, optimizer_index_caching, optimizer_mode, cursor_sharing, and 
db_file_multiblock_read_count. Basically, anything with a nondefault value is suspect in my mind, particularly if 
there is not a well-defined reason why it’s set to a nondefault value. The biggest problem with changing parameters 
is that they affect the optimizer’s calculations for every single statement in the system, which means that every single 
statement is reevaluated and the optimizer may come up with a new plan. Maybe this is what you want, but changing 
parameters certainly provides the opportunity for many plans to change, which is, by definition, the opposite of 
increasing stability.

Option 3: Add or Remove Access Paths
There are definitely times when a new index improves performance of a query significantly, and occasionally the 
statement is important enough to create one in a production system. But, the problem with adding an index is that 
a single index can change the execution plans of a number of statements. Assuming the statistics are in good shape, 
adding an index rarely has a significant negative effect on a query. Nevertheless, indexes should be tested with a 
representative workload prior to introduction into production. Also, don’t forget that adding an index most definitely 
adds overhead to DML that affects the columns you index.

And while I’m on the subject, removing unneeded indexes can improve DML statements significantly.  
It’s actually more common to see tables that are overindexed than ones that are underindexed. That’s because it’s 
scarier to remove an index than to create one. As a result, it usually takes an Act of Congress to get one removed from 
a production system. One of the main reasons for this is that it can take a lot of time to recreate an index on a large 
table. Beginning in 11g, there is a feature that makes this process more palatable, by the way. Indexes can be marked 
as invisible, which means the optimizer doesn’t consider them when determining execution plans. So you can see 



Chapter 17 ■ Plan Control

489

how your application behaves in production less the index you intend to drop, without actually dropping it. Invisible 
indexes continue to be maintained so you won’t see any improvement in DML speed as a result of making an index 
invisible, but you can make it visible again simply by issuing an alter index statement, if dropping the index turns out 
to have been a bad idea. Refer back to Chapter 12 for a more detailed review of invisible indexes.

So, adding (or removing) an index is a technique that can be used to modify execution plans, but it is not a 
particularly useful one when it comes to plan stability issues. If plans change, you need to solve the issue that is 
causing them to change or prevent them from changing. So, although I hate to say never, adding or removing an index 
is unlikely to prevent a plan from changing.

Option 4: Apply Hint-Based Plan Control Mechanisms
Oracle Database 11g and above implements several plan control mechanisms that rely on optimizer hints. The hint-based 
mechanisms supported in Oracle Database 11g and above are as follows:

Outlines (deprecated in 11g)•	

SQL Profiles•	

SQL Baselines•	

SQL Patches•	

These mechanisms are each designed with slightly different goals in mind, but they use the same basic approach 
of giving the application a set of hints that is named and associated with a SQL statement. The hints are then applied 
behind the scenes to any matching statement that is executed.

Outlines
Outlines, or Stored Outlines as they are sometimes called, were introduced shortly after the CBO. They are the oldest 
of the hint-based mechanisms and should not be used in 11g and above. The documentation and marketing material 
when they were introduced also referred to the new feature as “Plan Stability.” The design goal was to “lock” a specific 
plan for a statement. This was done by using the CREATE OUTLINE statement to parse a SQL statement (including 
coming up with an execution plan), determine a set of hints that should be sufficient to force the optimizer to pick that 
plan, and then store the hints. The next time a matching SQL statement was processed by the database, the hints were 
applied behind the scenes before the execution plan was determined. The intention was that the set of hints would  
be sufficient to allow one and only one plan for the given statement, regardless of the optimizer settings, statistics,  
and so on.

By the way, matching basically means that the text of the statement matches. Originally, Outlines had to match 
character for character, just like the normal rules for sharing SQL statements; but, for some reason, Oracle later 
decided that the matching algorithm should be somewhat relaxed. What this means is that in any version you’re 
likely to run into today, whitespace is collapsed and differences in case are ignored. So (at least as far as Outlines are 
concerned), "select * from dual" is the same as "SELECT * FROM DuAl". You still get two different statements in 
the shared pool, but they use the same Outline, if one exists.

With 9i, Oracle started to enhance this feature by adding the ability to edit the Outlines themselves, but they 
never really completed the job. In fact, they pretty much quit doing anything with the feature after 10gR1. The script 
that creates the DBMS_OUTLN package ($ORACLE_HOME/rdbms/admin/dbmsol.sql), for example, has not been updated 
since early in 2004 (with the exception of a tweak to keep it working in 11g). At any rate, the feature has worked pretty 
well over the years; in fact, it still works in 12c, although the documentation has been warning us for the last several 
years that the feature has been deprecated and is no longer being maintained.



Chapter 17 ■ Plan Control

490

The first version of the feature required you to create an Outline by specifying the statement inline in a  
CREATE OUTLINE statement. Here’s an example:
 
SQL> create or replace outline junk for category test on
  2  select avg(pk_col) from skew a where col1 > 0;
Outline created.
 

This syntax was a bit unwieldy because of having to specify the complete SQL statement as part of the command. 
Fortunately, a way to create an Outline was introduced later that allowed an Outline to be created on a statement that 
already existed in the shared pool. The CREATE_OUTLINE procedure was added to the DBMS_OUTLN package to do this. 
In general, it was a better approach because it was much easier to identify a cursor (with a hash value) than to cut and 
paste a long SQL statement to the command line. It also allowed you to see the plan arrived at by the optimizer prior 
to creating the Outline. Listing 17-10 shows the definition of the procedure and an example of its use.

Listing 17-10.  CREATE_OUTLINE

PROCEDURE CREATE_OUTLINE
 Argument Name                  Type                    In/Out Default?
 ------------------------------ ----------------------- ------ --------
 HASH_VALUE                     NUMBER                  IN
 CHILD_NUMBER                   NUMBER                  IN
 CATEGORY                       VARCHAR2                IN     DEFAULT
 
SQL> select sql_id, hash_value, child_number from v$sql
  2  where sql_text like 'select avg(pk_col) from skew where col1 = 136133'
  3  /
SQL_ID        HASH_VALUE CHILD_NUMBER
------------- ---------- ------------
fh70fkqr78zz3 2926870499            0
 
SQL> exec dbms_outln.create_outline(2926870499,0,'DEFAULT');
PL/SQL procedure successfully completed.
SQL> select category, ol_name, hintcount hints, sql_text from outln.ol$;
CATEGORY OL_NAME                        HINTS SQL_TEXT
-------- -----------------------------  -------------------------------------
DEFAULT  OUTLINE_11.2.0.3               6 select /*+ index(a SKEW_COL2_COL1)
DEFAULT  SYS_OUTLINE_10081416353513714  6 select avg(pk_col) from skew where
TEST     JUNK                           6 select avg(pk_col) from skew a wher
 

So you can see that the Outline was created in the DEFAULT category with a very ugly name and that it has 6 hints 
assigned to it. Let’s have a quick look at the hints:
 
SQL> @outline_hints
Enter value for name: SYS_OUTLINE_10081416353513714
Enter value for hint:
NAME                          HINT
----------------------------- --------------------------------------
SYS_OUTLINE_10081416353513714 IGNORE_OPTIM_EMBEDDED_HINTS
SYS_OUTLINE_10081416353513714 OPTIMIZER_FEATURES_ENABLE('11.2.0.3')
SYS_OUTLINE_10081416353513714 DB_VERSION('11.2.0.3')
SYS_OUTLINE_10081416353513714 ALL_ROWS



Chapter 17 ■ Plan Control

491

SYS_OUTLINE_10081416353513714 OUTLINE_LEAF(@"SEL$1")
SYS_OUTLINE_10081416353513714 INDEX_RS_ASC(@"SEL$1"
                               "SKEW"@"SEL$1"("SKEW"."COL1"))
6 rows selected.
 

In 10g and above, v$sql_plan has a column called other_xml. This column is a clob, and all the rows are null 
except the top record in the plan, which contains a mishmash of stuff, including the database version, the parsing 
schema name, the plan hash value, and so on. But, the most interesting bit is that the complete set of hints that is to 
be assigned to an Outline, if one is created using the DBMS_OUTLN.CREATE_OUTLINE procedure, is also contained in that 
column. Of course, it’s all in XML format, so you have to do an XML-type query to get it to come out nicely (or you can 
just use the sql_hints.sql script):
 
SQL> @sql_hints
Enter value for sql_id: fh70fkqr78zz3
Enter value for child_no: 0
 
OUTLINE_HINTS
-----------------------------------------------------------
OPTIMIZER_FEATURES_ENABLE('11.2.0.3')
DB_VERSION('11.2.0.3')
ALL_ROWS
OUTLINE_LEAF(@"SEL$1")
INDEX_SS(@"SEL$1" "SKEW"@"SEL$1" ("SKEW"."COL2" "SKEW"."COL1"))
6 rows selected.
 

Outlines definitely suffer from some quirkiness. In fact, I have described them previously as “half baked.” Here 
are a few of things you should be aware of:

Outlines aren’t used unless you set the •	 USE_STORED_OUTLINES pseudoparameter, which can be set 
at the session level or the system level. Setting this at the session level only makes sense to me for 
testing purposes. The value can be TRUE, FALSE, or a category name. (More about categories in a 
minute.) The default value is FALSE. This means that even if an Outline is created, it won’t be used. 
The really irritating thing about USE_STORED_OUTLINES is that it is not a full-fledged parameter, 
so you can’t see what it’s set to by selecting from the v$parameter view or its underlying X$ views 
(where the hidden parameters are exposed). More important, this quirk means that the 
USE_STORED_OUTLINES setting does not persist across instance bounces. This issue prompted 
an official bug and enhancement request (see Oracle Support Note 560331.1). The official 
response was to suggest a database trigger to set the value when an instance is started  
(see outline_startup_trigger.sql in the example download for the recommended trigger).

The •	 DBMS_OUTLN.CREATE_OUTLINE procedure uses the old hash_value identifier as opposed 
to the newer sql_id that was introduced in 10g. Although most of the internal structures were 
updated to use sql_id, Outlines never were. This is just a slight irritation because it means 
you have to find the hash value to use the DBMS_OUTLN.CREATE_OUTLINE procedure. (See the 
create_outline.sql script in the example download for a way to get around this.)

The •	 DBMS_OUTLN.CREATE_OUTLINE procedure is a bit buggy. It often results in error 1330, which 
disconnects your session from Oracle. There is an Oracle Support Note describing this issue 
(Note 463288.1) that references a bug (Bug 5454975) that was supposed to be fixed in 10.2.0.4. 
Anyway, the bottom line is that you should execute the command to enable stored Outlines 
at the session level (ALTER SESSION SET USE_STORED_OUTLINES=TRUE) before attempting  
to create an Outline with the DBMS_OUTLN.CREATE_OUTLINE procedure (again, see the  
create_outline.sql script).



Chapter 17 ■ Plan Control

492

The •	 DBMS_OUTLN.CREATE_OUTLINE procedure does not allow a name to be specified for an Outline. 
Instead, it creates a system-generated name. This is another minor irritation because Outlines 
can be renamed easily enough with the ALTER OUTLINE command (see the create_outline.sql 
script yet again for a way to do this when creating an outline).

Outlines are grouped together into categories. Each Outline is assigned to a single category. •	
The default category is DEFAULT. If USE_STORED_OUTLINES is set to TRUE, Outlines in the 
DEFAULT category are used. If USE_STORED_OUTLINES is set to some other text string, only 
Outlines in the category that matches the value of USE_STORED_OUTLINES are used.

As with all hints, Outline hints are directives that are obeyed unless they are invalid. Invalid •	
hints are silently ignored. An invalid hint does not necessarily cause other hints in the Outline 
to be ignored or disabled, however.

Despite their minor flaws, Outlines have been a standard method for influencing execution plans for the past decade 
and, prior to 10g, they were the only option available. They also work with RAC, so if you create an Outline (or Profile or 
Baseline, for that matter), it is picked up across all the nodes in the cluster. If you find yourself working on a 9i database, 
don’t discount their usefulness. If you’re working on 10g and above, read on, because there are other options available.

Note■■   I find it useful to include the sql_id and the plan_hash_value of a statement in the name of Outlines  
(and SQL Profiles and Baselines). For Outlines, I have used a convention of OL_sqlid_planhash, which makes it very 
easy to track the object back to a SQL statement and see what the original plan was that I was trying to “lock in.”  
See the create_outline.sql script for an example.

SQL Profiles
SQL Profiles were introduced in 10g. They are the second iteration of Oracle’s hint-based mechanisms for 
influencing execution plans. SQL Profiles are only documented as a part of the SQL Tuning Advisor (STA), so the only 
documented way to create a SQL Profile is to run an STA job. In some cases, STA offers to create a SQL Profile for you. 
The task of STA is to analyze a SQL statement and determine whether there is a better plan. Because it is allowed as 
much time as it needs, the advisor can sometimes find better execution plans than the optimizer, because it actually 
validates the optimizer’s original estimates by running various steps in a plan and comparing the actual results with 
the estimates. When it’s all done, if STA has found a better plan, it offers to implement a SQL Profile that hopefully 
causes the optimizer to generate a new and better plan.

Those offered SQL Profiles are simply a collection of hints (much like Outlines), and they almost always contain 
a lightly documented hint (OPT_ESTIMATE) that allows the optimizer to scale its estimates for various operations. 
Essentially, it’s a fudge factor. The problem with this hint is that, far from locking a plan in place, it locks an empirically 
derived fudge factor in place, which still leaves the optimizer with a lot of flexibility when it comes to choosing a plan. 
It also sets up a commonly occurring situation in which the fudge factors stop making sense because things change 
over time. It is common for SQL Profiles generated by STA to work well for a while and then lose their effectiveness, 
thus the observation that SQL Profiles tend to sour over time.



Chapter 17 ■ Plan Control

493

Regardless of their intended purpose, the fact remains that SQL Profiles provide a mechanism for applying hints 
to SQL statements behind the scenes in the same basic manner as Outlines. In fact, it appears that the code is actually 
based on the earlier Outline code. Of course, SQL Profiles have some additional features that provide some distinct 
advantages, such as the following:

SQL Profiles are turned on by default in 10g and above. They can be disabled by setting •	
SQLTUNE_CATEGORY to FALSE. This parameter behaves in much the same way as the  
USE_STORED_OUTLINE parameter; however, it is a real parameter that is exposed via v$parameter 
and it retains its value across bounces. The value can be TRUE, FALSE, or a category name.

SQL Profiles are assigned to categories just like Outlines. Each SQL Profile is assigned to a •	
single category. The default category is DEFAULT. If SQLTUNE_CATEGORY is set to TRUE, outlines 
in the DEFAULT category are used. If SQLTUNE_CATEGORY is set to some other text string, only 
SQL Profiles in the category that matches the value of SQLTUNE_CATEGORY are used. As with 
Outlines, this parameter can be changed with an ALTER SESSION statement that allows SQL 
Profiles to be tested without enabling them for the whole database (more on this later).

The •	 DBMS_SQLTUNE.IMPORT_SQL_PROFILE procedure creates a SQL Profile for a given SQL 
statement. Any set of hints may be passed to the procedure. Although this procedure is not 
mentioned in the documentation (at least as of 12.1.0.1), it is used by STA and migration 
procedures. It is also referenced by at least one Oracle Support document (Note 215187.1) as 
a way of creating what I call a manual SQL Profile. This is a giant leap forward from Outlines. 
With the IMPORT_SQL_PROFILE procedure, you can create any hints you want and apply them 
to any statement you want.

SQL Profiles have the ability to ignore literals when it comes to matching SQL statements. •	
Think of this as being similar to the cursor_sharing parameter. This means you can have a 
SQL Profile that matches multiple statements that differ only in their use of literals—without 
having to set the cursor_sharing parameter for the whole instance. This attribute of a SQL 
Profile is called FORCE_MATCHING. When you create a SQL Profile, you tell it whether you want 
to set this attribute. If the attribute is set to TRUE, the Profile applies to all statements that have 
the same signature, regardless of the literals used in the statement.

There is a view •	 (DBA_SQL_PROFILES) that exposes the SQL profiles that have been created.

As with all hints, SQL Profile hints are directives that are obeyed unless they are invalid. •	
Invalid hints are silently ignored. An invalid hint does not necessarily cause other hints in the 
SQL Profile to be ignored or disabled, however.

SQL Profiles appear to be able to apply most, if not all, valid hints.•	

SQL TUNING ADVISOR

STA is not the answer to plan stability issues. However, occasionally it is capable of finding a better plan than 
the one the optimizer comes up with for the reasons I already discussed. Sometimes I create a tuning task for 
a problem statement to see what suggestions STA might have. The example download for this book contains a 
number of scripts to help with this task (look for create_tuning_task.sql and accept_sql_profile.sql).

If STA recommends a SQL Profile, do yourself a favor and create it in an alternate category (TEST, for example). 
This allows you to review the hints and test the performance before making your users the guinea pigs in your 
experiment.

The hints can provide valuable information regarding where the optimizer is having problems. Remember that the 
OPT_ESTIMATE hint applies a scaling factor to various calculations based on its more thorough analysis.



Chapter 17 ■ Plan Control

494

Anywhere STA comes up with a very large or very small scaling factor is a direct pointer to a place in the plan 
where the optimizer is having trouble. Such a scaling factor can often point out a problem with statistics or, in 
some cases, a shortcoming of the optimizer itself. If it is an optimizer shortcoming and if the optimizer is going 
to keep making the same error no matter how the data change, then leaving an STA SQL Profile in place may be 
perfectly reasonable.

If, on the other hand, you’re looking for a way to lock in a specific plan, then you may want to consider creating 
another hint-based object (Profile, Baseline, or Patch) that contains directive hints instead of the OPT_ESTIMATE 
hint. This is fairly easy to accomplish, because all of these mechanisms can exist on the same statement. For 
example, you could accept the STA SQL Profile and then create a Baseline on the same statement. You could also 
use the lock_STA_profile.sql script from the example download to do away with the OPT_ESTIMATE-based 
profile and replace it with a SQL Profile using directive-type hints.

Listing 17-11 shows an example of a couple of scripts for finding SQL Profiles and statements that are using them.

Listing 17-11.  Scripts for Finding SQL Profiles

SQL> @sql_profiles.sql
Enter value for sql_text:
Enter value for name:
NAME                           CATEGORY  STATUS   FORCE SQL_TEXT
------------------------------ --------- -------- ----- -----------------
PROFILE_fgn6qzrvrjgnz          DEFAULT   DISABLED NO    select /*+ index(
PROFILE_8hjn3vxrykmpf          DEFAULT   DISABLED NO    select /*+ invali
PROFILE_69k5bhm12sz98          DEFAULT   DISABLED NO    SELECT dbin.insta
PROFILE_8js5bhfc668rp          DEFAULT   DISABLED NO    select /*+ index(
PROFILE_bxd77v75nynd8          DEFAULT   DISABLED NO    select /*+ parall
PROFILE_7ng34ruy5awxq          DEFAULT   DISABLED NO    select i.obj#,i.t
SYS_SQLPROF_0126f1743c7d0005   SAVED     ENABLED  NO    select avg(pk_col
PROF_6kymwy3guu5uq_1388734953  DEFAULT   ENABLED  YES   select 1
PROFILE_cnpx9s9na938m_MANUAL   DEFAULT   ENABLED  NO    select /*+ opt_pa
PROF_79m8gs9wz3ndj_3723858078  DEFAULT   ENABLED  NO    /* SQL Analyze(25
PROFILE_9ywuaagwscbj7_GPS      DEFAULT   ENABLED  NO    select avg(pk_col
PROF_arcvrg5na75sw_3723858078  DEFAULT   ENABLED  NO    select /*+ index(
SYS_SQLPROF_01274114fc2b0006   DEFAULT   ENABLED  NO    select i.table_ow
 
18 rows selected.
SQL> @find_sql_using_profile.sql
Enter value for sql_text:
Enter value for sql_id:
Enter value for sql_profile_name:
SQL_ID          PLAN_HASH SQL_PROFILE
-------------  ---------- ------------------------------
bqfx5q2jas08u  3755463150 SYS_SQLPROF_01281e513ace0000
SQL_TEXT
-------------------------------------------------------------
SELECT TASK_LIST.TASK_ID FROM (SELECT /*+ NO_MERGE(T) --
ORDERED */ T.TASK_ID FROM (SELECT * FROM DBA_ADVISOR_
TASKS ORDER BY TASK_ID DESC) T, DBA_ADVISOR_PARAMETERS_
PROJ P1, DBA_ADVISOR_PARAMETERS_PROJ P2 WHERE T.
ADVISOR_NAME='ADDM' AND T.STATUS = 'COMPLETED' AND



Chapter 17 ■ Plan Control

495

T.EXECUTION_START >= (SYSDATE - 1) AND T.HOW_CREATED
= 'AUTO' AND T.TASK_ID = P1.TASK_ID AND P1.PARAMETER_
NAME = 'INSTANCE' AND P1.PARAMETER_VALUE = SYS_CONTEXT
('USERENV','INSTANCE') AND T.TASK_ID = P2.TASK_ID AND
P2.PARAMETER_NAME = 'DB_ID' AND P2.PARAMETER_VALUE
= TO_CHAR(:B1 ) ORDER BY T.TASK_ID DESC) TASK_LIST
WHERE ROWNUM = 1
 

The sql_profiles.sql script queries DBA_SQL_PROFILES; the find_sql_using_profile.sql queries v$sql.  
The SQL Profiles with names that begin with SYS_SQLPROF are generated by STA; the others are created manually 
using the DBMS_SQLTUNE.IMPORT_SQL_PROFILE procedure.

Creating SQL Profiles
Now that we’ve reviewed the basics of SQL Profiles, let’s create one. To do this, we use a script called  
create_1_hint_profile.sql that simply prompts for a sql_id and a hint, and then creates a SQL tProfile for the 
statement containing the hint. As you review the example in Listing 17-12, note how we have a SQL that uses an  
INDEX SKIP SCAN operation in the plan and we use a Profile to change the plan to use a FULL scan operation.

Listing 17-12.  The create_1_hint_profile.sql Script

SQL> select /* test 1 hint */ avg(pk_col) from skew a where col1 = 222222;
AVG(PK_COL)
--------------------------------
   15722222
1 row selected.
 
SQL> @find_sql
Enter value for sql_text: select /* test 1 hint */ avg(pk_col) from skew % 222222
Enter value for sql_id:
SQL_ID        CHILD  PLAN_HASH EXECS AVG_ETIME  AVG_LIO
------------- ----- ---------- ----- ---------  --------
0pvj94afp6faw     0 2650913906     1       .10  876
SQL_TEXT
-------------------------------------------------------------
select /* test 1 hint */ avg(pk_col)
 from skew a where col1 = 222222
 
1 row selected.
 
SQL> @dcplan
Enter value for sql_id: 0pvj94afp6faw
Enter value for child_no:
Enter value for format: BASIC +ROWS +COST +PREDICATE
PLAN_TABLE_OUTPUT
-------------------------------------------------------------
SQL_ID  0pvj94afp6faw, child number 0
-------------------------------------------------------------
select /* test 1 hint */ avg(pk_col) from skew a where col1 = 222222
Plan hash value: 2650913906
 



Chapter 17 ■ Plan Control

496

----------------------------------------------------------------------------
| Id  | Operation                    | Name           | Rows  | Cost (%CPU)|
----------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |                |       |    34 (100)|
|   1 |  SORT AGGREGATE              |                |     1 |            |
|   2 |   TABLE ACCESS BY INDEX ROWID| SKEW           |    32 |    34   (0)|
|*  3 |    INDEX SKIP SCAN           | SKEW_COL2_COL1 |    32 |     5   (0)|
----------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
-------------------------------------------------------------
 
   3 - access("COL1"=222222)
       filter("COL1"=222222)
 
21 rows selected.
 
SQL> -- So it's using an index skip scan
SQL>
SQL> -- Now lets create a SQL Profile with a FULL hint
SQL>
SQL> @create_1_hint_sql_profile
Enter value for sql_id: 0pvj94afp6faw
Enter value for profile_name (PROFILE_sqlid_MANUAL): PROF_0pvj94afp6faw_FULL
Enter value for category (DEFAULT):
Enter value for force_matching (false):
Enter value for hint: FULL( A@SEL$1 )
Profile PROF_0pvj94afp6faw_FULL created.
 
SQL> select /* test 1 hint */ avg(pk_col) from skew a where col1 = 222222;
AVG(PK_COL)
--------------------------------
   15722222
1 row selected.
 
SQL> @find_sql
Enter value for sql_text: select /* test 1 hint */ avg(pk_col) from skew a where col1 %
Enter value for sql_id:
SQL_ID        CHILD PLAN_HASH EXECS AVG_ETIME AVG_LIO SQL_TEXT
------------- ----- --------- ----- --------- ------- ------------------------
0pvj94afp6faw     0 568322376     1      6.34 162,309 select /* test 1 hint */
                                                      avg(pk_col) from skew a
                                                      where col1 = 222222
1 row selected.
 
SQL> -- Well it has a different plan hash value and it took a lot longer
SQL>
SQL> @dcplan
Enter value for sql_id: 0pvj94afp6faw
Enter value for child_no:
Enter value for format: BASIC +ROWS +COST +PREDICATE
PLAN_TABLE_OUTPUT



Chapter 17 ■ Plan Control

497

--------------------------------------------------------
SQL_ID  0pvj94afp6faw, child number 0
--------------------------------------------------------
select /* test 1 hint */ avg(pk_col) from skew a where col1 = 222222
Plan hash value: 568322376
 
--------------------------------------------------------
| Id  | Operation          | Name | Rows  | Cost (%CPU)|
--------------------------------------------------------
|   0 | SELECT STATEMENT   |      |       | 28360 (100)|
|   1 |  SORT AGGREGATE    |      |     1 |            |
|*  2 |   TABLE ACCESS FULL| SKEW |    32 | 28360   (1)|
--------------------------------------------------------
 
Predicate Information (identified by operation id):
--------------------------------------------------------
   2 - filter("COL1"=222222)
    
Note
--------------------------------------------------------
   - SQL profile PROF_0pvj94afp6faw_FULL used for this statement
  
23 rows selected.
 
SQL> -- So it is using the SQL Profile and it did change to a FULL SCAN
SQL>
SQL> -- Let's check the hints in the SQL Profile
SQL>
SQL> @sql_profile_hints
Enter value for profile_name: PROF_0pvj94afp6faw_FULL
 
HINT
---------------------------------------------------------
FULL( A@SEL$1 )
1 rows selected.
 
SQL> -- Let's check the hints in the OTHER_XML field of V$SQL_PLAN
SQL>
SQL> @sql_hints
Enter value for sql_id: 0pvj94afp6faw
Enter value for child_no: 0
 
OUTLINE_HINTS
------------------------------------------------------------------
IGNORE_OPTIM_EMBEDDED_HINTS
OPTIMIZER_FEATURES_ENABLE('12.1.0.1')
DB_VERSION('12.1.0.1')
ALL_ROWS
OUTLINE_LEAF(@"SEL$1")
FULL(@"SEL$1" "A"@"SEL$1")
 
6 rows selected.
 



Chapter 17 ■ Plan Control

498

Notice that the hint was specified using the fully qualified alias for the skew table, FULL (A@SEL$1). This was done 
on purpose because Profiles and Baselines are more picky about object identification than those normal hints that are 
embedded in the SQL statement text. For example, it would be perfectly acceptable to use FULL (A) in the text of the 
SQL statement; but, if you put that into a SQL Profile, the optimizer does not know what to do with it  
(and so it silently ignores it). Notice also that the complete syntax for the FULL hint would also include the query block 
name as shown in the output from the sql_hints.sql script. Remember that this is the set of hints that Oracle thinks 
is necessary to recreate the plan, and thus is the set of hints that is used if you create an Outline on the statement. 
You may wonder how I knew that SEL$1 was the correct query block name to use. The answer is: Experience. And 
you know how I got the experience? By making lots of mistakes! Actually, because I know that the default query block 
names are SEL$1, UPD$1, and DEL$1, and this is a very simple query with only one query block and very little (if any) 
way that the optimizer could transform it to something else, it was a pretty good guess. But why guess when you can 
know? If you use DBMS_XPLAN.DISPLAY_CURSOR with the alias option, you can see exactly what the query block name 
and fully qualified aliases are (see Listing 17-13).

Listing 17-13.  DBMS_XPLAN.DISPLAY_CURSOR with the Alias Option

SQL> @dcplan
Enter value for sql_id: 0pvj94afp6faw
Enter value for child_no:
Enter value for format: BASIC +ROWS +COST +PREDICATE +ALIAS
 
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------
SQL_ID  0pvj94afp6faw, child number 0
-------------------------------------------------------------
select /* test 1 hint */ avg(pk_col) from skew a where col1 = 222222
Plan hash value: 568322376
 
--------------------------------------------------------
| Id  | Operation          | Name | Rows  | Cost (%CPU)|
--------------------------------------------------------
|   0 | SELECT STATEMENT   |      |       | 28360 (100)|
|   1 |  SORT AGGREGATE    |      |     1 |            |
|*  2 |   TABLE ACCESS FULL| SKEW |    32 | 28360   (1)|
--------------------------------------------------------
 
Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------
   1 - SEL$1
   2 - SEL$1 / A@SEL$1
 
Predicate Information (identified by operation id):
-------------------------------------------------------------
   2 - filter("COL1"=222222)
 
Note
-------------------------------------------------------------
   - SQL profile PROF_0pvj94afp6faw_FULL used for this statement
 
 29 rows selected.
 



Chapter 17 ■ Plan Control

499

Creating a SQL Profile to “Lock in” a Plan
SQL Profiles can also duplicate the functionality of Outlines, but without all the quirks, so you can create a SQL Profile 
using the same hints that an Outline uses (in other words, the ones in the other_xml column). The goal is to have all 
the hints necessary to “lock in” the plan. There is no way to guarantee the plan will never be able to change, but the 
technique works fairly well. It is actually quite easy to create a SQL Profile using the hints that an Outline would use, 
and of course there is a script in the example download to help you out (create_sql_profile.sql). Listing 17-14 
shows an example.

Listing 17-14.  The create_sql_profile.sql Script

SQL> select /* NOT IN */ department_name
  2     from hr.departments dept
  3     where department_id not in (select department_id from hr.employees emp);
no rows selected
 
SQL> @find_sql
Enter value for sql_text: select /* NOT IN */ department_name%
Enter value for sql_id:
SQL_ID        CHILD  PLAN_HASH EXECS AVG_ETIME AVG_LIO SQL_TEXT
------------- ----- ---------- ----- --------- ------- -------------------
875qbqc2gw2qz     0 4201340344     3       .00       9 select /* NOT IN */
                                                                 department_name
 
1 row selected.
 
SQL> @dcplan
Enter value for sql_id: 875qbqc2gw2qz
Enter value for child_no:
Enter value for format: BASIC +ROWS +COST +PREDICATE
 
PLAN_TABLE_OUTPUT
---------------------------------------------------------------------------
SQL_ID  875qbqc2gw2qz, child number 0
-------------------------------------------------------------------------
select /* NOT IN */ department_name    from hr.departments dept
where department_id not in (select department_id from hr.employees emp)
Plan hash value: 4201340344
 
-------------------------------------------------------------------------
| Id  | Operation                | Name            | Rows  | Cost (%CPU)|
-------------------------------------------------------------------------
|   0 | SELECT STATEMENT         |                 |       |     1 (100)|
|   1 |  MERGE JOIN ANTI NA      |                 |    17 |     1   (0)|
|   2 |   SORT JOIN              |                 |    27 |     0   (0)|
|   3 |    TABLE ACCESS BY INDEX | DEPARTMENTS     |    27 |     0   (0)|
|     |      ROWID BATCHED       |                 |       |            |
|   4 |     INDEX FULL SCAN      | DEPT_ID_PK      |    27 |     0   (0)|
|*  5 |   SORT UNIQUE            |                 |   107 |     1   (0)|
|   6 |    TABLE ACCESS FULL     | EMPLOYEES       |   107 |     1   (0)|
-------------------------------------------------------------------------
 



Chapter 17 ■ Plan Control

500

Predicate Information (identified by operation id):
---------------------------------------------------
 
   5 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
       filter("DEPARTMENT_ID"="DEPARTMENT_ID")
  
25 rows selected.
 
SQL> @create_sql_profile
Enter value for sql_id: 875qbqc2gw2qz
Enter value for child_no (0):
Enter value for profile_name (PROF_sqlid_planhash):
Enter value for category (DEFAULT):
Enter value for force_matching (FALSE):
 
SQL Profile PROF_875qbqc2gw2qz_4201340344 created.
 
SQL> select /* NOT IN */ department_name
  2     from hr.departments dept
  3     where department_id not in
  4        (select department_id from hr.employees emp);
 
no rows selected
 
SQL> @find_sql
Enter value for sql_text: select /* NOT IN */ department_name%
Enter value for sql_id:
SQL_ID        CHILD  PLAN_HASH EXECS AVG_ETIME AVG_LIO SQL_TEXT
------------- ----- ---------- ----- --------- ------- -------------------
875qbqc2gw2qz      1 4201340344     1       .01     17 select /* NOT IN */
                                                                 department_name
1 row selected.
 
SQL> @dcplan
Enter value for sql_id: 875qbqc2gw2qz
Enter value for child_no:
Enter value for format: BASIC +ROWS +COST +PREDICATE
 
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------
SQL_ID  875qbqc2gw2qz, child number 1
----------------------------------------------------------------------
select /* NOT IN */ department_name    from hr.departments dept
where department_id not in (select department_id from hr.employees emp)
Plan hash value: 4201340344



Chapter 17 ■ Plan Control

501

 
----------------------------------------------------------------------
| Id  | Operation                | Name         | Rows  | Cost (%CPU)|
----------------------------------------------------------------------
|   0 | SELECT STATEMENT         |              |       |     1 (100)|
|   1 |  MERGE JOIN ANTI NA      |              |    17 |     1   (0)|
|   2 |   SORT JOIN              |              |    27 |     0   (0)|
|   3 |    TABLE ACCESS BY INDEX | DEPARTMENTS  |    27 |     0   (0)|
|     |      ROWID BATCHED       |              |       |            |
|   4 |     INDEX FULL SCAN      | DEPT_ID_PK   |    27 |     0   (0)|
|*  5 |   SORT UNIQUE            |              |   107 |     1   (0)|
|   6 |    TABLE ACCESS FULL     | EMPLOYEES    |   107 |     1   (0)|
----------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   5 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
       filter("DEPARTMENT_ID"="DEPARTMENT_ID")
 
Note
-----
   - SQL profile PROF_875qbqc2gw2qz_4201340344 used for this statement
 
29 rows selected.
SQL> @sql_profile_hints
Enter value for profile_name: PROF_875qbqc2gw2qz_4201340344
 
HINT
-------------------------------------------------------------
IGNORE_OPTIM_EMBEDDED_HINTS
OPTIMIZER_FEATURES_ENABLE('12.1.0.1')
DB_VERSION('12.1.0.1')
ALL_ROWS
OUTLINE_LEAF(@"SEL$5DA710D3")
UNNEST(@"SEL$2")
OUTLINE(@"SEL$1")
OUTLINE(@"SEL$2")
INDEX(@"SEL$5DA710D3" "DEPT"@"SEL$1" ("DEPARTMENTS"."DEPARTMENT_ID"))
FULL(@"SEL$5DA710D3" "EMP"@"SEL$2")
LEADING(@"SEL$5DA710D3" "DEPT"@"SEL$1" "EMP"@"SEL$2")
USE_MERGE(@"SEL$5DA710D3" "EMP"@"SEL$2")
12 rows selected.
 

So, this is handy if you have a SQL statement in the shared pool with a plan that you like.

Creating a SQL Profile Using AWR
But, what if you have a statement that goes bad and there is no longer a copy of the good plan in the shared pool? 
No problem, as long as your AWR retention allows you to get back to a previous execution that used a plan you like, 
because all the hints are stored in the other_xml column of the dba_hist_sql_plan table along with the rest of the 
plan data. So, it is a relatively simple matter to create a SQL Profile using those hints to restore your previous plan 



Chapter 17 ■ Plan Control

502

(while you go looking for the reason it went south in the first place). Of course there is a script for that one as well 
(create_sql_profile_awr.sql). Listing 17-15 shows an example of its use (note that this example was run in 10g 
because it’s easier to get the optimizer to behave badly in 10g than in 11g or 12c).

Listing 17-15.  The create_sql_profile_awr.sql Script

SYS@LAB1024> @awr_plan_change
Enter value for sql_id: 05cq2hb1r37tr
 
SNAP_ID NODE BEGIN_INTERVAL_TIME    PLN_HSH_VAL EXECS AVG_ETIME   AVG_LIO
------- ---- ---------------------- ----------- ----- --------- ---------
9532    1    12-AUG-13 15.00.09.212  68322376       1    90.339   162,298
9534    1    12-AUG-13 10.00.08.716                 1    51.715   162,298
9535    1    13-AUG-13 18.00.10.280                 4    23.348   162,298
9536    1    15-AUG-13 16.00.05.439  3723858078     1   622.170 9,218,284
 
SYS@LAB1024>
SYS@LAB1024> -- statement 05cq2hb1r37tr has taken a turn for the worse
SYS@LAB1024> -- let's get it back to plan 568322376
SYS@LAB1024>
SYS@LAB1024> @create_sql_profile_awr
Enter value for sql_id: 05cq2hb1r37tr
Enter value for plan_hash_value: 568322376
Enter value for profile_name (PROF_sqlid_planhash):
Enter value for category (DEFAULT):
Enter value for force_matching (FALSE):
SQL Profile PROF_05cq2hb1r37tr_568322376 created.
SYS@LAB1024> @sql_profile_hints
Enter value for profile_name: PROF_05cq2hb1r37tr_568322376
 
HINT
-------------------------------------------------------------
IGNORE_OPTIM_EMBEDDED_HINTS
OPTIMIZER_FEATURES_ENABLE('10.2.0.4')
ALL_ROWS
OUTLINE_LEAF(@"SEL$1")
FULL(@"SEL$1" "A"@"SEL$1")
5 rows selected.
 

This approach is very handy if you have a statement that ran well at some point and AWR captured it.

Creating a SQL Profile by Using Another SQL Plan
What if you need to tune a statement from scratch, but you don’t have access to the code? Well, SQL Profiles have one 
more trick up their sleeve. Because we have already demonstrated that we can build SQL Profiles with any set of hints 
and associate them with any SQL statement, and because we have shown we can use other_xml as a source of hints, why 
not move a set of hints from one statement to another? This allows you to take a statement and manipulate it to get the 
plan you want (via hints, alter session statements, and so forth) and then create a SQL Profile on your unmanipulated 
statement using the hints from your manipulated statement. And, of course, there is a script in the example download 
to do this (move_sql_profile.sql). There are several steps to this process. First, we need to identify the statement 
and get its sql_id, then we need to make a copy of it to manipulate, then we need to create a SQL Profile on the new 
manipulated version, and, last, we need to move the hints to the original statement. Listing 17-16 shows an example.



Chapter 17 ■ Plan Control

503

Listing 17-16.  The move_sql_profile.sql Script

SQL> select count(*) from skew where col3 = '01-jan-10';
  COUNT(*)
-------------------------------------------------------------
         0
1 row selected.
 
SQL> @find_sql
Enter value for sql_text: select count(*) from skew where col3 = %
Enter value for sql_id:
SQL_ID        CHILD  PLAN_HASH EXECS AVG_ETIME AVG_LIO SQL_TEXT
------------- ----- ---------- ----- --------- ------- -----------------
4cp821ufcwvgc     0 3438766830     1       .39     675 select count(*)
                                                              from skew where
                                                              col3 = '01-jan-10'
1 row selected.
SQL> @dcplan
Enter value for sql_id: 4cp821ufcwvgc
Enter value for child_no:
Enter value for format: BASIC +ROWS +COST +PREDICATE
PLAN_TABLE_OUTPUT
-------------------------------------------------------------
SQL_ID  4cp821ufcwvgc, child number 0
-------------------------------------------------------------
select count(*) from skew where col3 = '01-jan-10'
Plan hash value: 3438766830
 
-------------------------------------------------------------
| Id  | Operation         | Name       | Rows  | Cost (%CPU)|
-------------------------------------------------------------
|   0 | SELECT STATEMENT  |            |       |     3 (100)|
|   1 |  SORT AGGREGATE   |            |     1 |            |
|*  2 |   INDEX RANGE SCAN| COL3_INDEX |     1 |     3   (0)|
-------------------------------------------------------------
 
Predicate Information (identified by operation id):
-------------------------------------------------------------
 
   2 - access("COL3"='01-jan-10')
  
19 rows selected.
 

So we have identified our statement and found the sql_id. Now let’s create another version of the statement and 
force it to use a different index. We do this by adding a hint to the select statement text (Listing 17-17).

Listing 17-17.  Adding an Inline Hint to the Select Statement Text

SQL> -- let's create a statement that does the same
SQL> -- thing but uses a different index
SQL>



Chapter 17 ■ Plan Control

504

SQL> select /*+ index (skew skew_col3_col2_col1) */ count(*)
  2 from skew where col3 = '01-jan-10';
  COUNT(*)
-------------------------------------------------------------
         0
1 row selected.
 
SQL> @find_sql
Enter value for sql_text: select /*+ index (skew skew_col3_col2_col1) */ count(*)%
Enter value for sql_id:
SQL_ID        CHILD  PLAN_HASH EXECS AVG_ETIME AVG_LIO SQL_TEXT
------------- ----- ---------- ----- --------- ------- ---------------------
09gdkwq1bs48h     0  167097056     1       .06       8 select /*+ index(skew
                                                                  skew_col3_col2_col1)
                                                                  */ count(*) from skew
                                                                  where '01- jan-10'
1 row selected.
 
SQL> @dcplan
Enter value for sql_id: 09gdkwq1bs48h
Enter value for child_no:
Enter value for format: BASIC +ROWS +COST +PREDICATE
 
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------
SQL_ID  09gdkwq1bs48h, child number 0
----------------------------------------------------------------------
select /*+ index (skew skew_col3_col2_col1) */ count(*) from skew
where col3 = '01-jan-10'
Plan hash value: 167097056
 
----------------------------------------------------------------------
| Id  | Operation         | Name                | Rows  | Cost (%CPU)|
----------------------------------------------------------------------
|   0 | SELECT STATEMENT  |                     |       |     4 (100)|
|   1 |  SORT AGGREGATE   |                     |     1 |            |
|*  2 |   INDEX RANGE SCAN| SKEW_COL3_COL2_COL1 |     1 |     4   (0)|
----------------------------------------------------------------------
 
Predicate Information (identified by operation id):
----------------------------------------------------------------------
   2 - access("COL3"='01-jan-10')
 
20 rows selected.
 

In Listing 17-17, you created a new statement (SQL_ID: 09gdkwq1bs48h) that has the same structure but uses a 
different execution plan (because of the hint). The next step is to create a SQL Profile on the new statement. We do this 
with the create_sql_profile.sql script, as shown in Listing 17-18.



Chapter 17 ■ Plan Control

505

Listing 17-18.  The create_sql_profile.sql Script

SQL> -- now let's create a profile on our new statement
SQL>
SQL> @create_sql_profile
Enter value for sql_id: 09gdkwq1bs48h
Enter value for child_no (0):
Enter value for profile_name (PROF_sqlid_planhash):
Enter value for category (DEFAULT):
Enter value for force_matching (FALSE):
SQL Profile PROF_09gdkwq1bs48h_167097056 created.
SQL> select /*+ index (skew skew_col3_col2_col1) */ count(*)
  2 from skew where col3 = '01-jan-10';
  COUNT(*)
-------------------------------------------------------------
         0
1 row selected.
 
SQL> @find_sql
Enter value for sql_text: select /*+ index (skew skew_col3_col2_col1) */ count(*)%
Enter value for sql_id:
SQL_ID        CHILD  PLAN_HASH EXECS AVG_ETIME AVG_LIO SQL_TEXT
------------- ----- ---------- ----- --------- ------- ---------------------
09gdkwq1bs48h     0  167097056     1       .01      16 select /*+ index(skew
                                                                  skew_col3_col2_col1)
                                                                  */ count(*) from skew
                                                                  where '01- jan-10'
1 row selected.
SQL> @dcplan
Enter value for sql_id: 09gdkwq1bs48h
Enter value for child_no:
Enter value for format: BASIC +ROWS +COST +PREDICATE
 
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------
SQL_ID  09gdkwq1bs48h, child number 0
----------------------------------------------------------------------
select /*+ index (skew skew_col3_col2_col1) */ count(*) from skew
where col3 = '01-jan-10'
Plan hash value: 167097056
 
----------------------------------------------------------------------
| Id  | Operation         | Name                | Rows  | Cost (%CPU)|
----------------------------------------------------------------------
|   0 | SELECT STATEMENT  |                     |       |     4 (100)|
|   1 |  SORT AGGREGATE   |                     |     1 |            |
|*  2 |   INDEX RANGE SCAN| SKEW_COL3_COL2_COL1 |     1 |     4   (0)|
----------------------------------------------------------------------
 



Chapter 17 ■ Plan Control

506

Predicate Information (identified by operation id):
----------------------------------------------------------------------
   2 - access("COL3"='01-jan-10')
 
Note
----------------------------------------------------------------------
   - SQL profile PROF_09gdkwq1bs48h_167097056 used for this statement
 
24 rows selected.
 

The last step is to move the newly created SQL Profile to the original statement. We do this with the  
move_sql_profile.sql script in Listing 17-19. Then, we verify that the SQL Profile is being used and has the  
desired effect.

Listing 17-19.  The move_sql_profile.sql Script

SQL> -- let's attach that same SQL Profile on to our original statement
SQL>
SQL> @move_sql_profile
Enter value for profile_name: PROF_09gdkwq1bs48h_167097056
Enter value for sql_id: 4cp821ufcwvgc
Enter value for category (DEFAULT):
Enter value for force_matching (false):
PL/SQL procedure successfully completed.
SQL> select count(*) from kso.skew where col3 = '01-jan-10';
  COUNT(*)
-------------------------------------------------------------
         0
1 row selected.
 
SQL> @find_sql
Enter value for sql_text: select count(*) from kso.skew where col3 = %
Enter value for sql_id:
SQL_ID        CHILD  PLAN_HASH EXECS AVG_ETIME AVG_LIO SQL_TEXT
------------- ----- ---------- ----- --------- ------- ----------------
4cp821ufcwvgc     0 167097056      1       .12      16 select count(*)
                                                       from skew where
                                                       col3 = '01-jan-10'
1 row selected.
 
SQL> @dcplan
Enter value for sql_id: 4cp821ufcwvgc
Enter value for child_no:
Enter value for format: BASIC +ROWS +COST +PREDICATE
 
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------
SQL_ID  4cp821ufcwvgc, child number 0
----------------------------------------------------------------------
select count(*) from skew where col3 = '01-jan-10'
Plan hash value: 167097056
 



Chapter 17 ■ Plan Control

507

----------------------------------------------------------------------
| Id  | Operation         | Name                | Rows  | Cost (%CPU)|
----------------------------------------------------------------------
|   0 | SELECT STATEMENT  |                     |       |     4 (100)|
|   1 |  SORT AGGREGATE   |                     |     1 |            |
|*  2 |   INDEX RANGE SCAN| SKEW_COL3_COL2_COL1 |     1 |     4   (0)|
----------------------------------------------------------------------
 
Predicate Information (identified by operation id):
----------------------------------------------------------------------
   2 - access("COL3"='01-jan-10')
 
Note
----------------------------------------------------------------------
   - SQL profile PROFILE_4cp821ufcwvgc_moved used for this statement
 
 
23 rows selected.
 

As you can see, the move worked and the new plan is in effect for the original statement. Moving SQL Profiles 
from one statement to another is a very useful technique and very easy to do. It basically allows you to manipulate a 
SQL statement until you get the plan you want and then attach the plan to a statement you can’t touch. There are a 
few restrictions you should be aware of, however:

You cannot change the structure of the statement. Remember that SQL Profile hints are very •	
specific when it comes to query block names. Anything that changes the query blocks does  
not work.

You cannot change any object aliases. Remember that all hints must reference objects by alias •	
names (if aliases exist in the statement). Adding, removing, or changing an alias name in your 
manipulated statement creates hints that won’t match the original, and so they are silently 
ignored.

Using FORCE_MATCHING with SQL Profiles
As mentioned earlier, SQL Profiles have a FORCE_MATCHING attribute that allows you to create a Profile with the 
ability to ignore literals, similar to how the cursor_sharing parameter works—converting literals to bind variables. 
Therefore, if you have a SQL Profile that matches multiple statements that differ only in their use of literals, setting the 
FORCE_MATCHING attribute of the Profile to TRUE allows the Profile to be used for all the statements, not just the one SQL 
that matches exactly the SQL text used originally to create the Profile. This is a fantastic option in the case when you 
either can’t or don’t want to change the cursor_sharing parameter at the instance level. And, it is a feature unique to 
SQL Profiles in that Baselines don’t use such an attribute.

There is one “gotcha” with the use of FORCE_MATCHING, however. This option works great if you’re working  
with SQL that has been generated from a tool and is formulated with all literals. But, if the SQL you wish to create  
a FORCE_MATCHING Profile for includes both literal strings and bind variables, you’ll run in to a bit of a problem,  
as shown in Listing 17-20. First, let’s test two queries that differ only by the literal string used. Notice that the  
FORCE_MATCHING_SIGNATURE (from v$sql) for each query is the same.



Chapter 17 ■ Plan Control

508

Listing 17-20.  SQL Profile Using the FORCE_MATCHING Restriction

SQL>
SQL>variable v1 varchar2(10)
SQL>exec :v1 := 'Sunday';
 
PL/SQL procedure successfully completed.
SQL>
SQL>select /* kmfmtst00 */ count(*) ct from km1 where mcal_year = 2011 ;
     CT
-------
    365
     
SQL>select /* kmfmtst00 */ count(*) ct from km1 where mcal_year = 2012 ;
     CT
-------
    366
SQL>
SQL>select /* getfm */ sql_id, plan_hash_value, force_matching_signature,
  2  substr(sql_text,1,200) sql_text
  3  from v$sql
  4  where upper(sql_text) like '%KMFMTST00%'
  5  and sql_text not like '%/* getfm */%' ;
 
SQL_ID        PLAN_HV    FORCE_MATCHING_SIGNATURE SQL_TEXT
------------- ---------- ------------------------ ------------------------
6sz5sqg1yu2u7 3996576519      9139782190997132164 select /* kmfmtst00 */
                                                            count(*) ct from km1
                                                            where mcal_year = 2011
88bgq57sjbtkt 3996576519      9139782190997132164 select /* kmfmtst00 */
                                                            count(*) ct from km1
                                                            where mcal_year = 2012
 

Now, let’s make a change to the SQL to add a bind variable in addition to the literal. Notice what happens to the 
FORCE_MATCHING_SIGNATURE:

SQL>select /* kmfmtst00 */ count(*) ct from km1 where mcal_year = 2011
  2  and mcal_day_name = :v1 ;
     CT
-------
     52
SQL>select /* kmfmtst00 */ count(*) ct from km1 where mcal_year = 2012
  2  and mcal_day_name = :v1 ;
     CT
-------
     53
SQL>
SQL>select /* getfm */ sql_id, plan_hash_value, force_matching_signature,
  2  substr(sql_text,1,200) sql_text
  3  from v$sql
  4  where upper(sql_text) like '%KMFMTST00%'
  5  and sql_text not like '%/* getfm */%' ;
 



Chapter 17 ■ Plan Control

509

SQL_ID        PLAN_HV    FORCE_MATCHING_SIGNATURE SQL_TEXT
------------- ---------- ------------------------ ------------------------
6sz5sqg1yu2u7 3996576519      9139782190997132164 select /* kmfmtst00 */
                                                            count(*) ct from km1
                                                            where mcal_year = 2011
88bgq57sjbtkt 3996576519      9139782190997132164 select /* kmfmtst00 */
                                                            count(*) ct from km1
                                                            where mcal_year = 2012
48rxh2r545xqy 3996576519      5839486434578375421 select /* kmfmtst00 */
                                                            count(*) ct from km1
                                                            where mcal_year = 2011
                                                            and mcal_day_name = :v1
6q610fykrr4d3 3996576519      8791659410855071518 select /* kmfmtst00 */
                                                            count(*) ct from km1
                                                            where mcal_year = 2012
                                                            and mcal_day_name = :v1
 

As you can see, when we add a bind variable to the SQL, it causes FORCE_MATCHING_SIGNATURE to become unique, 
which means that if we were to create a SQL Profile and set the FORCE_MATCHING attribute to TRUE on the statement 
that uses both a bind variable and a literal, the Profile does not work. Well, actually, it does work, but only on the 
one specific statement we used to create the Profile. Just make sure to keep this in mind when creating a Profile with 
FORCE_MATCHING_SIGNATURE set.

SQL Profiles Wrap-up
So, to wrap up the section on SQL Profiles, let me state that I believe they provide a very powerful tool for controlling 
execution plans. The ability to match multiple statements via the FORCE_MATCHING attribute and the ability to attach 
any set of hints to a statement via the IMPORT_SQL_PROFILE procedure sets SQL Profiles apart as one of the most useful 
tools in our tool belt. But remember, they are a tool and should be used carefully and consciously. If you use a Profile 
to remedy a problem situation but you don’t take time to go back and evaluate why there was a problem in the first 
place, you’ll end up with a lot of patches over a leak that may continue to get worse and worse. Always try to find and 
fix the root cause of the problem so that you can disable or drop Profiles after the problem is corrected. In this way, 
you can be assured the leak has been fixed, not just patched.

SQL Plan Baselines
Oracle Database 11g provided a new method of dealing with plan instability. The third iteration of Oracle’s hint-based  
mechanisms for influencing execution plans is called a SQL Plan Baseline (Baseline, for short). With Baselines, the design 
goal has morphed into eliminating backward movement (“performance regressions,” as the Oracle documentation calls 
them)—in other words, not allowing a statement to switch to a plan that is significantly slower than the one it has 
already been executing. This new mechanism depends on Baselines, which look very much like SQL Profiles; in fact, 
they are actually stored in the same structure in the data dictionary.

Baselines are, at their core, a set of hints given a name and attached to a specific SQL statement. They are 
associated with a SQL statement using the same “normalized” text matching as Outlines and SQL Profiles. Here are 
some key features of Baselines:

Baselines are used by default if they exist. There is a parameter to control whether they are •	
used (OPTIMIZER_USE_SQL_PLAN_BASELINE). It is set to TRUE by default.

Baselines are not created by default. So, like the older Outlines or SQL Profiles, you must do •	
something to create them.



Chapter 17 ■ Plan Control

510

The concept of categories has disappeared from Baselines.•	

Unlike Outlines and Profiles, you can have multiple plans within a Baseline for each SQL •	
statement. In an even more confusing twist, there’s a concept of a preferred set of Baselines 
called the fixed set. 

One of the key features of Baselines is that they are the first hint-based mechanism to have •	
knowledge of the plan that was used to create them. That is to say, they store a plan_hash_value 
along with the hints. So, if a Baseline is applied to a statement and the optimizer doesn’t come 
up with the same plan_hash_value that it had when the Baseline was created, all the hints are 
thrown out and the optimization is redone without any of the hints.

Note■■   It doesn’t actually happen in this order, but the point is that this mechanism is very different from Outlines and 
Profiles, in which the optimizer has no idea what plan the hints were trying generate. With Baselines, it does.

There is a view called •	 dba_sql_plan_baselines that exposes the Baselines that have  
been created.

Just like Outlines and SQL Profiles, Baselines apply to all instances in a RAC environment. •	
They are not localized to a specific instance.

SQL PLAN MANAGEMENT INFRASTRUCTURE

Baselines are a part of the SQL Plan Management (SPM) infrastructure introduced in 11g. The concept of SPM is 
to have a Baseline associated with every statement that runs through the database. The optimizer then uses the 
Baselines to attempt to recreate the original plans from which they were created.

Every time a statement is parsed, the optimizer goes through its normal process, including coming up with an 
execution plan. It then checks to see whether the plan it just came up with is already stored in a Baseline. If it is, 
the optimizer uses that plan. If it’s not, the optimizer uses the Baseline plan and stores the alternate plan in the 
history for later evaluation with the DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE function (assuming that the database 
is configured to do this).

The approach of saving plans for later evaluation sounds like a great idea to limit instability resulting from 
unexpected plan changes. The only real downside to this approach is that seeding the Baselines can be a difficult 
task, and it is not done by default. Although the result is that many shops have not fully embraced this feature yet, 
I see it being used more and more, at least for key SQL statements.

You can do pretty much the same things with Baselines that you can do with Outlines and SQL Profiles.  
For example, you can find a list of them, see what hints are contained by them, see what their status is, see which 
SQL statements are using them, and so on. Listing 17-21 shows a quick example using a few scripts from the example 
download.



Chapter 17 ■ Plan Control

511

Listing 17-21.  Using Baselines

SQL> @find_sql_using_baseline
Enter value for sql_text:
Enter value for sql_id:
Enter value for plan_hash_value:
SQL_ID          PLAN_HASH SQL_PLAN_BASELINE               AVG_ETIME SQL_TEXT
-------------  ---------- ------------------------------  --------------------------------
04s94zftphcgb  2650913906 SQL_PLAN_3mmrpt1hutfzs7456d135  .00 select sum(pk_col) from
12417fbdsfaxt  2333976600 SQL_PLAN_0j493a65j2bamc0e39d1a  .01 SELECT SQL_HANDLE FROM DB
2us663zxp440c   329476029 SQL_PLAN_6dny19g5cvmaj059cc611  .04 /* OracleOEM */ select at
3972rvxu3knn3  3007952250 SQL_PLAN_05a32329hrft07347ab53  .00 delete from sdo_geor_ddl_
               3007952250 SQL_PLAN_05a32329hrft07347ab53  .00 delete from sdo_geor_ddl_
62m44bym1fdhs  3137838658 SQL_PLAN_2jvcuyb2j5t1g4d67c3d9   .00 SELECT ID FROM WWV_FLOW_M
               3137838658 SQL_PLAN_2jvcuyb2j5t1g4d67c3d9   .00 SELECT ID FROM WWV_FLOW_M
6abthk1u14yb7  2848324471 SQL_PLAN_5y7pbdmj87bz3ea394c8e   .00 SELECT VERSION FROM V$INS
               2848324471 SQL_PLAN_5y7pbdmj87bz3ea394c8e   .00 SELECT VERSION FROM V$INS
9xw644rurr1nk  2848324471 SQL_PLAN_ba7pvw56m6m1cea394c8e   .00 SELECT REGEXP_REPLACE(VER
aukfj0ur6962z  2366097979 SQL_PLAN_adx60prqvaaqhf8e55c8a   .00 SELECT VALUE V FROM WWV_F
               2366097979 SQL_PLAN_adx60prqvaaqhf8e55c8a   .00 SELECT VALUE V FROM WWV_F
b1um9gxnf22a3  1475283301 SQL_PLAN_1kj53db9w5gzga4a6b425   .00 select count(*) from sqll
d56r760yr1tgt  2650913906 SQL_PLAN_dn32tuq14sj5q7456d135   .01 select sum(pk_col) from
f1b04310fhv7a  2650913906 SQLID_AR5DZ1STDPFC6_2650913906   .00  select sum(pk_col) from
fg5u3ydzcqzvw  3291240065 SQL_PLAN_3ndjuqr0f58a716c3d523   .03 select spb.sql_handle, sp
               3291240065 SQL_PLAN_3ndjuqr0f58a716c3d523   .03 select spb.sql_handle, sp
 
17 rows selected.
 
SQL> @baselines
Enter value for sql_text: %skew%
Enter value for name:
Enter value for plan_name:
SQL_HANDLE       PLAN_NAME          SQL_TEXT            ENABLED ACC FI
---------------- ------------------ ------------------- ------- --- --
SYS_SQL_17fbdf94 SQL_PLAN_1gyyzkj90 select avg(pk_col)  YES     NO  NO
                 SQL_PLAN_1gyyzkj90 select avg(pk_col)  YES     NO  NO
SYS_SQL_36bf1c88 SQL_PLAN_3dgswj3vr select avg(pk_col)  YES     NO  NO
                 SQL_PLAN_3dgswj3vr select avg(pk_col)  NO      YES NO
SYS_SQL_39cef5c8 SQL_PLAN_3mmrpt1hu select sum(pk_col)  YES     YES NO
SYS_SQL_3a363ab5 SQL_PLAN_3ndjuqr0f select spb.sql_hand YES     YES NO
SYS_SQL_3c55382b SQL_PLAN_3sp9s5cpk select sum(pk_col)  YES     YES NO
SYS_SQL_94dc89c0 SQL_PLAN_99r49s08j select avg(pk_col)  YES     NO  NO
                 SQL_PLAN_99r49s08j select avg(pk_col)  YES     NO  NO
SYS_SQL_d0686c14 SQL_PLAN_d0u3c2kat select avg(pk_col)  YES     YES NO
SYS_SQL_da0c59d5 SQL_PLAN_dn32tuq14 select sum(pk_col)  YES     YES NO
SYS_SQL_f1140cdd DODA               select sql_id, chil YES     YES NO
SYS_SQL_f5cd6b7b SQLID_F1B04310FHV7 select sum(pk_col)  YES     YES NO
 
13 rows selected.
 



Chapter 17 ■ Plan Control

512

SQL> @baseline_hints
Enter value for baseline_plan_name: SQLID_F1B04310FHV7A_2650913906
OUTLINE_HINTS
-----------------------------------------------------------------------IGNORE_OPTIM_EMBEDDED_HINTS
OPTIMIZER_FEATURES_ENABLE('12.1.0.1')
DB_VERSION('12.1.0.1')
ALL_ROWS
OUTLINE_LEAF(@"SEL$1")
INDEX_SS(@"SEL$1" "SKEW"@"SEL$1" ("SKEW"."COL2" "SKEW"."COL1"))
 
6 rows selected.
 

The naming of Baselines is not particularly friendly. The sql_handle is a unique identifier for a SQL statement 
whereas the sql_plan_name is a unique identifier for a plan. By the way, the sql_plan_name is also called  
sql_plan_baseline in the v$sql view.

Creating SQL Baselines
There are many ways to create Baselines. They can be created automatically for every statement that is executed by 
setting the OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES parameter to TRUE. They can also be created for statements 
in a SQL Tuning Set using the LOAD_PLANS_FROM_SQLSET function, or they can be migrated from Outlines using the 
MIGRATE_STORED_OUTLINE function. These mechanisms are primarily designed for seeding Baselines when doing 
migrations.

Creating a Baseline for an individual statement that is already in the cursor cache can be accomplished via the 
DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE function. All the function needs is a sql_id and a plan_hash_value. 
Optionally, a parameter can be used to define the baseline as FIXED. If it’s FIXED then it gets priority over any other 
Baselines for that statement, except other FIXED Baselines. Confused? Well, it’s not exactly the most straightforward 
setup. Keeping it simple, I’d think one FIXED Baseline is plenty. After all, you’re looking to minimize plan changes. So, 
with that said, let’s look at an example of creating a Baseline for a single statement in Listing 17-22.

Listing 17-22.  Creating a Baseline for a Single Statement

SQL> select sum(pk_col) from skew where col1=666666;
 
SUM(PK_COL)
-----------
  517333312
 
SQL> @find_sql
Enter value for sql_text: %66666%
Enter value for sql_id:
SQL_ID        CHILD  PLAN_HASH EXECS AVG_ETIME AVG_LIO SQL_TEXT
------------- ----- ---------- ----- --------- ------- ------------------
dv1qm9crkf281     0 2650913906     1       .08      45 select sum(pk_col)
                                                                  from skew
                                                                  col1=666666
SQL> @create_baseline
Enter value for sql_id: dv1qm9crkf281
Enter value for plan_hash_value: 2650913906



Chapter 17 ■ Plan Control

513

Enter value for fixed (NO):
Enter value for enabled (YES):
Enter value for plan_name (ID_sqlid_planhashvalue):
Baseline SQLID_DV1QM9CRKF281_2650913906 created.
 
SQL> select sql_handle, plan_name, sql_text
 2  from dba_sql_plan_baselines where sql_text like '%66666%';
SQL_HANDLE               PLAN_NAME                      SQL_TEXT
------------------------ ------------------------------ -------------------
SYS_SQL_8a22ceb091365064 SQLID_DV1QM9CRKF281_2650913906 select sum(pk_col)
                                                                   from skew
1 row selected.
 
SQL> select sum(pk_col) from skew where col1=666666;
SUM(PK_COL)
-----------
  517333312
 
1 row selected.
 
SQL> /
SUM(PK_COL)
-----------
  517333312
 
1 row selected.
 
SQL> @dcplan
Enter value for sql_id: dv1qm9crkf281
Enter value for child_no:
Enter value for format: BASIC +ROWS +COST +PREDICATE
 
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------
SQL_ID  dv1qm9crkf281, child number 1
----------------------------------------------------------------------------
select sum(pk_col) from skew where col1=666666
Plan hash value: 2650913906
 
----------------------------------------------------------------------------
| Id  | Operation                    | Name           | Rows  | Cost (%CPU)|
----------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |                |       |    34 (100)|
|   1 |  SORT AGGREGATE              |                |     1 |            |
|   2 |   TABLE ACCESS BY INDEX ROWID| SKEW           |    32 |    34   (0)|
|*  3 |    INDEX SKIP SCAN           | SKEW_COL2_COL1 |    32 |     5   (0)|
----------------------------------------------------------------------------
 



Chapter 17 ■ Plan Control

514

Predicate Information (identified by operation id):
----------------------------------------------------------------------------
   3 - access("COL1"=666666)
       filter("COL1"=666666)
Note
----------------------------------------------------------------------------
   - SQL plan baseline SQLID_DV1QM9CRKF281_2650913906 used for this statement
 
46 rows selected.
 

Listing 17-22 shows the use of the create_baseline.sql script that creates a Baseline on an existing statement 
in the shared pool. The script also renames the Baseline to something more meaningful (SQLID_sqlid_planhash by 
default). This renaming works only in 11gR2 and above, by the way; 11gR1 allows you to rename a Baseline, but there 
is a bug that causes a statement that uses a renamed Baseline to fail. Consequently, the create_baseline.sql script 
does not rename Baselines if the version is not 11.2 or higher.

Creating SQL Baselines from AWR
Baselines can also be used to retrieve a plan from the AWR history, although it’s not quite as straightforward as getting the 
plan from the cursor cache. Listing 17-23 shows an of example of doing this with the create_baseline_awr.sql script.

Listing 17-23.  The create_baseline_awr.sql Script

SQL> @find_sql_awr
Enter value for sql_text: %cursor%skew%
Enter value for sql_id:
 
SQL_ID        SQL_TEXT
------------- -------------------------------------------------------------
3ggjbbd2varq2 select /*+ cursor_sharing_exact */ avg(pk_col) from skew
                         where col1 = 1
48up9g2j8dkct select /*+ cursor_sharing_exact */ avg(pk_col) from skew
                         where col1 = 136135
2z6s4zb5pxp9k select /*+ opt_param('cursor_sharing' 'exact') */ avg(pk_col)
                         from skew where
13krz9pwd6a88 select /*+ opt_param('cursor_sharing=force') */ avg(pk_col)
                         from skew
 
4 rows selected.
 
SQL> @dplan_awr
Enter value for sql_id: 3ggjbbd2varq2
Enter value for plan_hash_value:
PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------
SQL_ID 3ggjbbd2varq2
-------------------------------------------------------------------------
select /*+ cursor_sharing_exact */ avg(pk_col) from skew where col1 = 1
Plan hash value: 568322376
 



Chapter 17 ■ Plan Control

515

---------------------------------------------------------------------------
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |      |       |       | 28366 (100)|          |
|   1 |  SORT AGGREGATE    |      |     1 |    24 |            |          |
|   2 |   TABLE ACCESS FULL| SKEW |  3149K|    72M| 28366   (1)| 00:05:41 |
---------------------------------------------------------------------------
 
15 rows selected.
 
SQL> @find_sql
Enter value for sql_text:
Enter value for sql_id: 3ggjbbd2varq2
 
no rows selected
 
SQL> -- so it's not in the cursor cache
SQL>
SQL> @create_baseline_awr
Enter value for SQL_ID: 48up9g2j8dkct
Enter value for PLAN_HASH_VALUE: 568322376
Enter value for fixed (NO):
Enter value for enabled (YES):
Enter value for plan_name (ID_sqlid_planhashvalue):
 
Baseline SQLID_48UP9G2J8DKCT_568322376 created.
 
SQL>
SQL> select sql_handle, plan_name, sql_text
 2  from dba_sql_plan_baselines where plan_name like 'SQLID_48UP9G2J8DKCT_568322376';
 
SQL_HANDLE               PLAN_NAME
------------------------ ------------------------------
SYS_SQL_d52c57087080269e SQLID_48UP9G2J8DKCT_568322376
 
SQL_TEXT
--------------------------------------------------------
select /*+ cursor_sharing_exact */ avg(pk_col)
 
1 row selected. 

Evolving SQL Baselines
Whether you’ve set the OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES parameter to TRUE to create Baselines for every 
statement automatically or you are creating them manually, what happens when Baselines need to be updated? 
Because Baselines are accepted and put into use, the plan “locked in” by a Baseline may, over time, have different 
plans generated for it. Those plans may be better or they may be worse, but they are simply added to the statement’s 
plan history until they can be verified and not used. This is the whole idea behind plan stability; plans won’t change, 
but sometimes better plans are developed and must be evaluated, verified, and evolved to be used.



Chapter 17 ■ Plan Control

516

Plans that have been generated and stored in a statement’s plan history but not yet accepted for use can be 
verified using the DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE function. Each unaccepted plan is executed, and its 
performance is compared with that of the existing accepted plan. To make it a fair comparison, the conditions in effect 
at the time the unaccepted plan was added are used (things like instance parameters, bind variables, and so forth). If 
the new plan’s performance exceeds the current one, it is accepted and added to the Baseline. Listing 17-24 shows an 
example of an Evolve SQL Plan Baseline Report.

Listing 17-24.  An Evolve SQL Plan Baseline Report

SQL> -- Check the status of plans in plan history.
SQL> select plan_name, enabled, accepted from dba_sql_plan_baselines;
 
PLAN_NAME                     ENABLED ACCEPTED
----------------------------- ------- --------
SYS_SQL_PLAN_d52c57084a620f25  YES    YES
SYS_SQL_PLAN_d52c57087080269e  YES    NO
 
SQL> var report clob;
SQL> exec :report := dbms_spm.evolve_sql_plan_baseline();
 
PL/SQL procedure successfully completed.
SQL> print :report
 
REPORT
--------------------------------------------------------------------
                        Evolve SQL Plan Baseline Report
--------------------------------------------------------------------
 
Inputs:
--------------------------------------------------------------------
  SQL_HANDLE =
  PLAN_NAME  =
  TIME_LIMIT = DBMS_SPM.AUTO_LIMIT
  VERIFY     = YES
  COMMIT     = YES
  
Plan: SYS_SQL_PLAN_d52c57087080269e
--------------------------------------------------------------------
  Plan was verified: Time used .1 seconds.
  Passed performance criterion: Compound improvement ratio >= 10.13
  Plan was changed to an accepted plan.
                      Baseline Plan      Test Plan     Improv. Ratio
                      -------------      ---------     -------------
  Execution Status:        COMPLETE       COMPLETE
  Rows Processed:               960            960
  Elapsed Time(ms):              19             15              1.27
  CPU Time(ms):                  18             15               1.2
  Buffer Gets:                 1188            116             10.24
  Disk Reads:                     0              0
  Direct Writes:                  0              0
  Fetches:                        0              0
  Executions:                     1              1
 



Chapter 17 ■ Plan Control

517

--------------------------------------------------------------------
                                 Report Summary
--------------------------------------------------------------------
Number of SQL plan baselines verified: 1.
 
SQL> -- Check the status of plans in plan history to verify acceptance.
 
SQL> select plan_name, enabled, accepted from dba_sql_plan_baselines;
 
PLAN_NAME                      ENABLED ACCEPTED
-----------------------------  ------- --------
SYS_SQL_PLAN_d52c57084a620f25  YES     YES
SYS_SQL_PLAN_d52c57087080269e  YES     YES
 

You can also evolve an unaccepted plan from plan history by using STA. If you have access to Enterprise Manager, 
using STA from that tool is likely the quickest and easiest way to do this. But, if you don’t have access to Enterprise 
Manager or if you just like having a bit more control over the process, here are the basic steps to do it from the 
command line (in other words, SQL*Plus):

	 1.	 Create a tuning task for a single SQL statement or for multiple statements.  
See create_tuning_task.sql.

There are actually three parts to this: creating the tuning task, executing it, and then •	
reporting on it.

DBMS_SQLTUNE.CREATE_TUNING_TASK•	

DBMS_SQLTUNE.EXECUTE_TUNING_TASK•	

DBMS_SQLTUNE.REPORT_TUNING_TASK•	

Note the default time limit for the execute part is 30 minutes, so you may want to reduce •	
that (the create_tuning_task.sql script prompts you for a value in seconds). By the way, 
the reason it can take so long is that the advisor can actually execute parts of the statement 
to get better estimates of the number of rows returned by a particular step.

Primary recommendations are often to accept a SQL Profile, but there may be other •	
recommendations such as creating indexes and so forth.

The report output shows the old plan and the proposed new plan.•	

	 2.	 Review recommendations.

Never, ever, ever (I really mean it) blindly accept a recommendation.•	

Look at the new plan as proposed by •	 REPORT_TUNING_TASK.

Specifically, evaluate the proposed plan and, if possible and if time permits, test it further.•	

	 3.	 Prepare a script to disable the SQL Profile to be created. See disable_sql_profile.sql.

You do have a back-out plan right?•	

It is very easy to disable a profile. However, once a plan is selected, it is not changed. The •	
execution continues to use that plan until it finishes.



Chapter 17 ■ Plan Control

518

	 4.	 Accept the SQL Profile. See accept_tuning_task.sql (or accept_sql_profile.sql).

•	 DBMS_SQLTUNE.ACCEPT_TUNING_TASK

	 5.	 Confirm the performance improvement. See find_sql.sql, find_sql_stats.sql, 
dcplan.sql.

Existing active cursors continue processing.•	

A new child cursor is created using the Profile, and subsequent executions use it.•	

You can compare the performance of the old plan and the new one.•	

	 6.	 Remember, SQL Profiles do not lock the execution plan.

	 7.	 Figure out why the plan went crazy in the first place.

Plan evolution can be done manually or it can be automated by scheduling it to run during a maintenance 
window. But, allowing automatic evolution of plans can be a bit risky in that you forgo any oversight on your part. I’m 
not that trusting, but if you’re comfortable, go for it.

Automatic Plan Evolution in 12c
Beginning in 12c, automatic plan evolution has been enhanced to be done by the SQL Plan Management Evolve 
Advisor. This advisor is an AutoTask named SYS_AUTO_SPM_EVOLVE_TASK and it operates during the nightly 
maintenance window to evolve unaccepted plans automatically. Because the maintenance window is time limited by 
default, the unaccepted plans are ranked from oldest to newest, then the process attempts to evolve as many plans as 
possible before the end of the maintenance window.

Any unaccepted plans that are evaluated to perform better than any existing accepted plans in their SQL plan 
Baseline are accepted automatically—without any intervention from you. But, if an unaccepted plan doesn’t measure 
up to current performance measurements, it remains unaccepted and is held for at least another 30 days before the 
AutoTask job tries to evolve it again (but only if the LAST_EXECUTED date has been updated to indicate the statement 
was run within that 30-day period).

You can still evolve unaccepted plans manually or through Enterprise Manager, but using the  
DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE method as described in Listing 17-24 should be changed to use the  
evolve advisor, because this procedure has been deprecated. Instead, the steps to evolve plans manually include  
the following:

	 1.	 Use DBMS_SPM.CREATE_EVOLVE_TASK to create the evolve task for the plan you want  
to evolve.

	 2.	 Use DBMS_SPM.EXECUTE_EVOLVE_TASK with the task name from the create evolve task step.

	 3.	 Use DBMS_SPM.REPORT_EVOLVE_TASK to report how the evolve task turned out.

	 4.	 If you agree with the report findings and wish to accept the plan, use  
DBMS_SPM.ACCEPT_SQL_PLAN_BASELINE to accept it manually.

Furthermore, 12c has changed things such that not only does the SQL Plan Baseline contain the complete set 
of hints needed to reproduce a specific plan, but also the actual execution plan itself is recorded when the plan is 
evolved and added to the Baseline. For any plans that had Baselines present from 11g, the actual execution plan is 
captured and added to the baseline the first time it is executed in 12c. Keep in mind that having the actual execution 
plan and being able to review it isn’t the same as being able to reproduce the plan, the hints are still needed for that, 
but it does provide a guide so that if the plan can’t be reproduced, you can see what it “should” be.



Chapter 17 ■ Plan Control

519

So Baselines are obviously the wave of the future, but they still lack some of the flexibility of SQL Profiles when 
it comes to applying custom controls to statements. They can attempt to lock in plans from the cursor cache or from 
AWR history, but they cannot import arbitrary hints or apply to many statements at a time like SQL Profiles can via the 
FORCE_MATCHING attribute. However, they can collect alternate plans for later evaluation and they are designed to store 
a large set of plans in an attempt to keep any plan from changing without warning.

SQL Patches
One final option you have to help exert a bit of influence over SQL execution plans is to use a SQL Patch. Using a SQL 
Patch, you can inject a hint (or set of hints) into a SQL statement that you otherwise cannot touch. This could be in the 
case of vendor-supplied code or even for your own SQL when it is embedded in an application that can’t be modified 
as quickly as you may need. The documented use of a SQL Patch is that it is a SQL manageability object intended to be 
generated by the SQL Repair Advisor to work around a plan that causes a failure. Generally speaking, the SQL Patch tells 
the optimizer to adjust the plan in some way or to avoid a particular optimization so that the failure no longer occurs.

But, even though the documentation doesn’t mention it, you can create SQL Patches yourself. Any SQL Patch  
you create can provide a set of hints that you want the optimizer to use during parse time for a particular query.  
The end result is that you can inject hints into code that you otherwise couldn’t touch. To create a SQL Patch 
manually, use DBMS_SQLDIAG_INTERNAL.I_CREATE_PATCH. Using the function, specify the query text you wish to  
patch as well as a set of hints to apply to that query. Listing 17-25 shows a very simple example of using a SQL Patch  
to add a GATHER_PLAN_STATISTICS hint to a SQL statement that is performing poorly. We want to inject the hint to  
be able to get more detailed row-source execution statistics when it executes to help our problem diagnosis efforts.

Listing 17-25.  Using a SQL Patch to Add a GATHER_PLAN_STATISTICS Hint

SQL>-- The setting of the statistics_level = TYPICAL.
SQL>-- No rowsource execution statistics will be captured.
SQL>
SQL>show parameter statistics_level
NAME_COL_PLUS_SHOW_PARAM       TYPE        VALUE_COL_PLUS_SHOW_PARAM
------------------------------ ----------- ------------------------------
statistics_level               string      TYPICAL
SQL>
SQL>select count(*) from class_sales ;
 
  COUNT(*)
----------
  90000000
 
SQL>select * from table(dbms_xplan.display_cursor(null,null,'ALLSTATS LAST')) ;
PLAN_TABLE_OUTPUT
-----------------------------------------------------------
SQL_ID  6fpdvs2gy4vu3, child number 0
-----------------------------------------------------------
select count(*) from class_sales
Plan hash value: 3145879882
 



Chapter 17 ■ Plan Control

520

-----------------------------------------------------------
| Id  | Operation                  | Name        | E-Rows |
-----------------------------------------------------------
|   0 | SELECT STATEMENT           |             |        |
|   1 |  SORT AGGREGATE            |             |      1 |
|   2 |   TABLE ACCESS STORAGE FULL| CLASS_SALES |     90M|
-----------------------------------------------------------
 
Note
-----
   - Warning: basic plan statistics not available. These are only collected when:
       * hint 'gather_plan_statistics' is used for the statement or
       * parameter 'statistics_level' is set to 'ALL', at session or system level
 
SQL> -- Create a SQL Patch to inject the hint
SQL> begin
  2  dbms_sqldiag_internal.i_create_patch(
  3  sql_text => 'select count(*) from class_sales',
  4  hint_text => 'gather_plan_statistics',
  5  name => 'PATCH_KMTEST1',
  6  category => 'DEFAULT');
  7  end;
  8  /
 
PL/SQL procedure successfully completed.
SQL> -- Run the SQL again and try to display the plan statistics.
SQL>select count(*) from class_sales ;

  COUNT(*)
----------
  90000000
 
Elapsed: 00:00:04.46
SQL>select * from table(dbms_xplan.display_cursor(null,null,'ALLSTATS LAST')) ;
 
PLAN_TABLE_OUTPUT
-----------------------------------------------------------
SQL_ID  6fpdvs2gy4vu3, child number 1
-----------------------------------------------------------
select count(*) from class_sales
Plan hash value: 3145879882
 
-----------------------------------------------------------------------------
| Id  | Operation                  | Name        | E-Rows | A-Rows | Buffers|
-----------------------------------------------------------------------------
|   0 | SELECT STATEMENT           |             |        |      1 |     18K|
|   1 |  SORT AGGREGATE            |             |      1 |      1 |     18K|
|   2 |   TABLE ACCESS STORAGE FULL| CLASS_SALES |     90M|     90M|     18K|
-----------------------------------------------------------------------------
 
Note
-----
   - SQL patch "PATCH_KMTEST1" used for this statement
 



Chapter 17 ■ Plan Control

521

As you can see by the Note and by the fact that the ALLSTATS LAST format parameter didn’t generate an error, the 
Patch we applied to add the GATHER_PLAN_STATISTICS hint was used. After we get the information we want, we can 
drop the Patch (using DBMS_SQLDIAG.DROP_SQL_PATCH) or we can disable it (DBMS_SQLDIAG.ALTER_SQL_PATCH).

SQL Patches give you the ability to inject a hint, or set of hints, quickly into a SQL statement with relative ease. 
They are tied to a specific SQL text, so they are like Baselines in that aspect and not as flexible as SQL Profiles. 
However, if you need a quick way to hint a SQL statement you can’t otherwise touch, they can be a great option.

Hint-Based Plan Control Mechanisms Wrap-up
Of the options available, I believe that SQL Profiles are the most straightforward and functional. They have the 
advantage of force matching, which allows a single SQL Profile to apply to multiple SQL statements by ignoring  
literals (much like cursor_sharing=force; in other words, the “force” matching). They also have a built-in procedure 
(DBMS_SQLTUNE.IMPORT_SQL_PROFILE) that allows any set of hints to be attached to any SQL statement. You can 
similarly attach a set of hints using SQL Patches, but because they must be attached to a specific SQL text, they are not 
as flexible as Profiles. Both Profiles and Patches are extremely powerful tools that basically allow you to apply any hint 
to any statement, even if you don’t have access to the code. Baselines don’t allow you to apply hints in the same manner 
and are thus a disadvantage in that way over Profiles or Patches. Baselines do store the original plan_hash_value, 
which means they can determine whether the hints are still generating the original plan. But, until 12c, they have no 
way of getting back to the original plan in cases when the hints fail to do their job. Their only option at that point  
is to throw away the hints all together and try again. In 12c, the actual execution plan is stored in the Baseline, too,  
so instead of just having a set of hints that “should” get you back to the same plan, you have the actual plan itself to 
refer to.

Summary
There are several things that contribute to plan instability and several techniques that can be applied to correct and 
stabilize plan performance. SQL Profiles and SQL Patches provide an extremely valuable tool in situations when the 
need is urgent and the ability to change the code is nonexistent. They also have the advantage of being very specific 
in their scope (they can be targeted at a single statement without the possibility of having negative effects on other 
statements). Baselines can also be very useful if you are using 11g and above. Although they are not as flexible as 
Profiles or Patches, they do have the advantage of knowing what plan they are trying to recreate. They also have the 
capability of keeping a list of alternate plans that can be evaluated later. STA Profiles can be useful for identifying 
better plans and pointing out problem areas, but I am not a fan of implementing them in most cases. In general,  
I would rather have a mechanism that applies directive hints that lists specific objects and join methods rather than 
fudge factors. All these types of hint-based control mechanisms, though, should be considered temporary fixes. 
Although they may work well for an extended period of time while a more permenant solution is contemplated, they 
really should be considered a temporary fix while appropriate statistics-gathering methodology is implemented or 
code is changed to make appropriate use of literals or while any other long-term solution is put in place.

From a philosophical standpoint, I strongly believe that consistency is more important than absolute speed.  
So when a choice must be made, I always favor slightly reduced but consistent performance over anything that 
doesn’t provide that consistency.



523

Chapter 18

Miscellaneous SQL Constructs

The SQL language offers a wide variety of constructs—from the very simple to the extremely complex. In this book,  
we looked at many examples that demonstrate the core topics. This chapter is devoted to a review of several use cases 
for constructs that should help round out your knowledge.

Conditional Logic Constructs
Oracle supports many different ways to implement conditional IF–THEN–ELSE logic in SQL statements. Sometimes 
you need to determine conditionally which column data are emitted in the column list. Sometimes you need to 
determine which rows are returned by having a more complex condition in the predicate. Wherever you need to apply 
conditional logic, you have several constructs from which to choose that I describe in this section:

•	 DECODE

•	 CASE

•	 NVL,  NVL2

•	 COALESCE

•	 NULLIF

Using DECODE
DECODE is a proprietary Oracle function that provides a simple conditional construct. Prior to Oracle version 8.1.6, 
when the CASE statement was introduced, DECODE was the only way to implement conditional logic. DECODE is limited 
to use with equality operators, so a CASE statement is certainly more flexible. But, DECODE can be useful for writing 
short, simple logical comparisons, as shown in Listing 18-1.

Listing 18-1.  Using a Simple DECODE Construct 

SQL> select ename, decode (deptno, 10, 'Accounting',
  2  20, 'Research',
  3  30, 'Sales',
  4  'Unknown') as dept
  5  from scott.emp
  6  where rownum < 6 ;
 



Chapter 18 ■ Miscellaneous SQL Constructs

524

ENAME      DEPT
---------- ----------
SMITH      Research
ALLEN      Sales
WARD       Sales
JONES      Research
MARTIN     Sales
 

One difference between DECODE and CASE is that DECODE does not expect datatype consistency in the conditions 
and resulting statements, as shown in Listing 18-2.

Listing 18-2.  DECODE Using Different Datatype Comparisons

SQL>select decode(42,42,1,
  2                 '42','2',
  3                 3) tst
  4  from dual ;
 
       TST
----------
         1
 
1 row selected.
 
SQL>select case 42 when 42  then 1
  2                when '42' then '2'
  3                else 3   end tst
  4  from dual ;
              when '42' then '2'
                   *
ERROR at line 2:
ORA-00932: inconsistent datatypes: expected NUMBER got CHAR
 

Although this isn’t a big factor most of the time, it is something to keep in mind. Also note that this datatype 
mismatch oversight on the part of DECODE is only applicable for number and string datatypes. If we try to use a date 
datatype with a number or string, we get the same error as CASE.

Another thing to keep in mind about DECODE is how it handles null values. If you use 
DECODE(null,null,'NULL','NOT NULL'), the answer is 'NULL'. This is different from most null comparisons in that 
null usually does not equal null (in other words, null = null does not match). In reality, using DECODE for null checks 
isn’t really the proper function to use because NVL, NVL2, or CASE is actually better. Generally speaking, CASE is a better, 
more flexible, easier to read alternative, but DECODE remains an old standby for simple logic.

Using CASE
A CASE statement is used to choose from a set of conditions to execute a corresponding statement when a condition 
is matched. There are two types of CASE statements: simple and searched. For simple CASE statements, a single 
expression is evaluated and compared with several possible values, as shown in Listing 18-3.



Chapter 18 ■ Miscellaneous SQL Constructs

525

Listing 18-3.  A Simple CASE Statement 

SQL>create table grades (
  2  student_id number,
  3  subject_id number,
  4  grade      char(1));
 
Table created.
 
SQL>insert into grades values (1,1,'A');
 
SQL>insert into grades values (2,1,'C');
 
SQL>insert into grades values (3,1,'A');
 
SQL>insert into grades values (4,1,'D');
 
SQL>insert into grades values (5,1,'F');
 
SQL>insert into grades values (6,1,'B');
 
SQL>insert into grades values (7,1,'C');
 
SQL>insert into grades values (8,1,'C');
 
SQL>select student_id,
  2  case grade
  3  when 'A' then 'Very Good'
  4  when 'B' then 'Good'
  5  when 'C' then 'Fair'
  6  when 'D' then 'Poor'
  7  when 'F' then 'Failure'
  8  else 'Withdrawn' end as grade
  9  from grades;
 
STUDENT_ID GRADE
---------- ---------
         1 Very Good
         2 Fair
         3 Very Good
         4 Poor
         5 Failure
         6 Good
         7 Fair
         8 Fair
 
8 rows selected.
 

A searched CASE statement differs from the simple type in that it allows for more complex conditions to be 
evaluated. With a searched CASE statement, multiple—possibly differing—Boolean expressions are evaluated, and the 
first one with a value of TRUE is chosen, as shown in Listing 18-4.



Chapter 18 ■ Miscellaneous SQL Constructs

526

Listing 18-4. A Searched CASE Statement 

SQL>select student_id,
  2  case when grade <= 'B' then 'Honor Roll'
  3       when grade = 'F' then 'Needs Tutoring'
  4       else 'Satisfactory' end grade_category
  5  from grades ;
 
STUDENT_ID GRADE_CATEGORY
---------- --------------
         1 Honor Roll
         2 Satisfactory
         3 Honor Roll
         4 Satisfactory
         5 Needs Tutoring
         6 Honor Roll
         7 Satisfactory
         8 Satisfactory
 
8 rows selected.
 

In both the simple and searched CASE constructs, the conditions are evaluated sequentially from top to bottom 
and execution halts after the first match is found. This means if more than one condition is TRUE, only the first result 
action is taken.

CASE statements can be used throughout a SQL statement and not just in the SELECT column list, as shown in the 
previous two listings. One way to use a CASE statement is to eliminate repeating accesses on the same table (or tables), 
as shown in Listing 18-5.

Listing 18-5.  Using CASE to Eliminate Repeated Table Accesses 

-- Original SQL using UNION
select customer_id, order_total, 0 as disc_rate
from
(select c.customer_id,  nvl(sum(o.order_total),0) as order_total
  from oe.customers c, oe.orders o
 where c.customer_id = o.customer_id(+)
 group by c.customer_id ) t2
where order_total = 0
union
select customer_id, order_total, .1 as disc_rate
from
(select c.customer_id,  nvl(sum(o.order_total),0) as order_total
  from oe.customers c, oe.orders o
 where c.customer_id = o.customer_id
 group by c.customer_id ) t2
where order_total > 0 and order_total < 100000
union
select customer_id, order_total, .15 as disc_rate
from
(select c.customer_id,  nvl(sum(o.order_total),0) as order_total
  from oe.customers c, oe.orders o
 where c.customer_id = o.customer_id



Chapter 18 ■ Miscellaneous SQL Constructs

527

 group by c.customer_id ) t2
where order_total >= 100000 and order_total <= 500000
union
select customer_id, order_total, .2 as disc_rate
from
(select c.customer_id,  nvl(sum(o.order_total),0) as order_total
  from oe.customers c, oe.orders o
 where c.customer_id = o.customer_id
 group by c.customer_id ) t2
where order_total > 500000
;
 
SQL>@dcplan
Enter value for sql_id: c7ngvkwthdaak
Enter value for child_no:
Enter value for format: BASIC +PREDICATE +ROWS
 
PLAN_TABLE_OUTPUT
-----------------------------------------------------------------------
Plan hash value: 729697565
 
---------------------------------------------------------------------
| Id  | Operation                         | Name            | Rows  |
---------------------------------------------------------------------
|   0 | SELECT STATEMENT                  |                 |       |
|   1 |  SORT UNIQUE                      |                 |    10 |
|   2 |   UNION-ALL                       |                 |       |
|*  3 |    FILTER                         |                 |       |
|   4 |     SORT GROUP BY NOSORT          |                 |     1 |
|   5 |      MERGE JOIN OUTER             |                 |   377 |
|   6 |       INDEX FULL SCAN             | CUSTOMERS_PK    |   319 |
|*  7 |       SORT JOIN                   |                 |   105 |
|   8 |        TABLE ACCESS BY INDEX ROWID| ORDERS          |   105 |
|*  9 |         INDEX RANGE SCAN          | ORD_CUSTOMER_IX |   105 |
|* 10 |    FILTER                         |                 |       |
|  11 |     SORT GROUP BY NOSORT          |                 |     3 |
|  12 |      TABLE ACCESS BY INDEX ROWID  | ORDERS          |   105 |
|  13 |       INDEX FULL SCAN             | ORD_CUSTOMER_IX |   105 |
|* 14 |    FILTER                         |                 |       |
|  15 |     SORT GROUP BY NOSORT          |                 |     3 |
|  16 |      TABLE ACCESS BY INDEX ROWID  | ORDERS          |   105 |
|  17 |       INDEX FULL SCAN             | ORD_CUSTOMER_IX |   105 |
|* 18 |    FILTER                         |                 |       |
|  19 |     SORT GROUP BY NOSORT          |                 |     3 |
|  20 |      TABLE ACCESS BY INDEX ROWID  | ORDERS          |   105 |
|  21 |       INDEX FULL SCAN             | ORD_CUSTOMER_IX |   105 |
---------------------------------------------------------------------
 

g



Chapter 18 ■ Miscellaneous SQL Constructs

528

Predicate Information (identified by operation id):
---------------------------------------------------
 
   3 - filter(NVL(SUM("O"."ORDER_TOTAL"),0)=0)
   7 - access("C"."CUSTOMER_ID"="O"."CUSTOMER_ID")
       filter("C"."CUSTOMER_ID"="O"."CUSTOMER_ID")
   9 - access("O"."CUSTOMER_ID">0)
  10 - filter((NVL(SUM("O"."ORDER_TOTAL"),0)>0 AND
              NVL(SUM("O"."ORDER_TOTAL"),0)<100000))
  14 - filter((NVL(SUM("O"."ORDER_TOTAL"),0)>=100000 AND
              NVL(SUM("O"."ORDER_TOTAL"),0)<=500000))
  18 - filter(NVL(SUM("O"."ORDER_TOTAL"),0)>500000)
 
-- Rewritten SQL using CASE
select c.customer_id, nvl(sum(o.order_total),0) as order_total,
case when nvl(sum(o.order_total),0) = 0 then 0
     when nvl(sum(o.order_total),0) < 100000 then .1
     when nvl(sum(o.order_total),0) between 100000 and 500000 then .15
     when nvl(sum(o.order_total),0) > 500000 then .2
     else 0 end
as disc_rate
from oe.customers c, oe.orders o
where c.customer_id = o.customer_id(+)
group by c.customer_id
;
 
PLAN_TABLE_OUTPUT
--------------------------------------------------------------
 
Plan hash value: 3685486572
 
------------------------------------------------------------------
| Id  | Operation                      | Name            | Rows  |
------------------------------------------------------------------
|   0 | SELECT STATEMENT               |                 |       |
|   1 |  SORT GROUP BY NOSORT          |                 |    47 |
|   2 |   MERGE JOIN OUTER             |                 |   377 |
|   3 |    INDEX FULL SCAN             | CUSTOMERS_PK    |   319 |
|*  4 |    SORT JOIN                   |                 |   105 |
|   5 |     TABLE ACCESS BY INDEX ROWID| ORDERS          |   105 |
|*  6 |      INDEX RANGE SCAN          | ORD_CUSTOMER_IX |   105 |
------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   4 - access("C"."CUSTOMER_ID"="O"."CUSTOMER_ID")
       filter("C"."CUSTOMER_ID"="O"."CUSTOMER_ID")
   6 - access("O"."CUSTOMER_ID">0)
 



Chapter 18 ■ Miscellaneous SQL Constructs

529

Notice how much simpler the SQL becomes when using CASE. Not only is it simpler, but also it is more efficient. 
The two tables, orders and customers, only have to be accessed once instead of once per condition. Keep in mind 
that CASE is a great alternative when you need different sets of data from the same tables.

Using NVL, NVL2, and COALESCE
The functions NVL, NVL2, and COALESCE all deal specifically with nulls. Although you could use DECODE or CASE to 
formulate null comparison logic, these functions are specifically available to provide special, simple treatment for 
nulls. Consider the syntax for each:
 
NVL(expr1, expr2)
If expr1 is null, then NVL returns expr2.
If expr1 is not null, then NVL returns expr1.
 
NVL2(expr1, expr2, expr3)
If expr1 is null, then NVL2 returns expr3.
If expr2 is not null, then NVL2 returns expr2.
 
COALESCE(expr[,expr]...)
Returns the first non-null expr in the expression list.
 

Now take a look at the examples of their use in Listing 18-6.

Listing 18-6.  NVL, NVL2, COALESCE, CASE, and DECODE Examples

SQL>select nvl(comm,0)
  2  from scott.emp
  3  where comm is null
  4  and rownum = 1;
 
NVL(COMM,0)
-----------
          0
 
1 row selected.
 
SQL>select nvl2(comm,comm,0)
  2  from scott.emp
  3  where comm is null
  4  and rownum = 1 ;
 
NVL2(COMM,COMM,0)
-----------------
                0
 
1 row selected.
 
SQL>select coalesce(comm,0)
  2  from scott.emp
  3  where comm is null
  4  and rownum = 1 ;
 



Chapter 18 ■ Miscellaneous SQL Constructs

530

COALESCE(COMM,0)
----------------
               0
 
1 row selected.
 
SQL>select case when comm is null then 0
  2             else comm end comm
  3  from scott.emp
  4  where comm is null
  5  and rownum = 1 ;
 
      COMM
----------
         0
 
1 row selected.
 
SQL>select decode(comm,null,0,comm) comm
  2  from scott.emp
  3  where comm is null
  4  and rownum = 1 ;
 
      COMM
----------
         0
 
1 row selected.
 

In each of the examples, the answer is the same. The decision regarding which one to use is really just a matter of 
personal preference. When the comparison is truly intended to work with nulls, I prefer to avoid CASE and DECODE just 
because they require a bit more typing. Plus, by using NVL, NVL2, or COALESCE, the intent to deal specifically with nulls 
is clear. Listing 18-7 shows one of my favorite ways to use NVL in scripts when I want to have a dynamic WHERE clause.

Listing 18-7.  Using NVL for a Dynamic WHERE Clause

SQL>select sql_id, child_number, plan_hash_value plan_hash, executions execs,
  2  (elapsed_time/1000000)/decode(nvl(executions,0),0,1,executions) avg_etime,
  3  buffer_gets/decode(nvl(executions,0),0,1,executions) avg_lio,
  4  sql_text
  5  from v$sql s
  6  where upper(sql_text) like upper(nvl('&sql_text',sql_text))
  7  and sql_id like nvl('&sql_id',sql_id)
  8  order by 1, 2, 3
  9  /
Enter value for sql_text: %karen%
Enter value for sql_id:
 
no rows selected
 

The very simple technique shown here allows me to enter either value as input. Or, I can leave the values both 
empty and the null value causes the comparison to be made against the same column value, resulting in all rows 



Chapter 18 ■ Miscellaneous SQL Constructs

531

being matched. I discussed similar techniques in Chapter 5, if you want to refer back for more detail. As I said, this is 
a quick way to be able to write a single SQL statement to cover several inputs. However, I caution you about using this 
technique in SQL when you’re concerned about performance. The technique can make it hard for the optimizer to 
produce the very best plan that covers all scenarios given different inputs. Be careful and test thoroughly!

Using NULLIF
If you’ve ever had to write a SQL statement that needed to include expressions that could result in a “divide by zero” 
error, NULLIF should be your friend. The syntax for NULLIF is as follows:
 
NULLIF(expr1,expr2)
If expr1 = expr2, NULLIF returns null.
If expr1 <> expr2, NULLIF returns expr1.
 

Typically, this function is to be used for numeric comparisons. You may use nonnumeric datatypes as well, as 
long as both expressions have the same datatype. As I mentioned, one of the reasons I love NULLIF is that it makes it 
easy to avoid the “divide by zero” error, as shown in Listing 18-8.

Listing 18-8.  Using NULLIF to Avoid the “Divide by Zero” Error

SQL> select sql_id, child_number, plan_hash_value plan_hash, executions execs,
  2  (elapsed_time/1000000)/nullif(executions,0) avg_etime,
  3  buffer_gets/nullif(executions,0) avg_lio,
  4  sql_text
  5  from v$sql s
  6  where upper(sql_text) like upper(nvl('&sql_text',sql_text))
  7  and sql_id like nvl('&sql_id',sql_id)
  8  order by 1, 2, 3
  9  /
Enter value for sql_text:
Enter value for sql_id: c7ngvkwthdaak
 
SQL_ID        CHILD_NUMBER  PLAN_HASH EXECS  AVG_ETIME AVG_LIO SQL_TEXT
------------- ------------ ---------- ----- ---------- ------- -----------
c7ngvkwthdaak            0  729697565     1    .012356      13 select cust
 
1 row selected.
 

Did you notice that the SQL statement I used here is the same one I used in Listing 18-7 with a combination of 
DECODE and NVL? This syntax yields the same result but is much simpler and easier to read.

Conditional logic constructs provide a level of flexibility similar to what you’d find in PL/SQL or other 
programming languages. However, the ability to include conditional processing directly in a SQL statement allows 
us to exploit fully the power of set-based data access. There are several options that can be used interchangeably and 
your choice of which to use is mainly a personal preference. However, I encourage you to review options you’ve never 
used before to see if they help you write simple, easy-to-understand code.



Chapter 18 ■ Miscellaneous SQL Constructs

532

PIVOT/UNPIVOT Queries
Pivoting is a common technique that allows you to write cross-tabulation (also called crosstab, matrix, or transposed) 
queries that rotate rows of data into aggregated columns of data. Data may also be “unpivoted” (in other words, 
rotated from columns into rows) using similar techniques, but unpivoting is not the reverse of pivoting. Pivoting data 
creates aggregates; unpivoting cannot undo aggregations made by pivoting, so it’s not truly an opposite function.

Using PIVOT
Prior to Oracle 11g, pivoting data required some bulky and tedious manipulation to formulate a SQL statement to 
pivot. However, beginning with Oracle 11g, the PIVOT SQL function was introduced to provide a much more elegant 
solution. Listing 18-9 shows a simple example of how a pivot query was written prior to 11g and after using the 
PIVOT function.

Listing 18-9.  Comparing Old Pivot Query Formulation with the PIVOT Function 

-- Old way
 
SQL>select *
  2  from (select job, sum(decode(deptno,10,sal)) dept10,
  3                    sum(decode(deptno,20,sal)) dept20,
  4                    sum(decode(deptno,30,sal)) dept30,
  5                    sum(decode(deptno,40,sal)) dept40
  6          from scott.emp
  7         group by job)
  8  order by job ;
 
JOB           DEPT10     DEPT20     DEPT30     DEPT40
--------- ---------- ---------- ---------- ----------
ANALYST                    6000
CLERK           1300       1900        950
MANAGER         2450       2975       2850
PRESIDENT       5000
SALESMAN                              5600
 
5 rows selected.
 
-- New way using PIVOT function
 
SQL>select * from
  2   (select job, deptno, sum(sal) sal from scott.emp group by job, deptno)
  3     PIVOT ( sum(sal) FOR deptno IN (10, 20, 30, 40) )
  4  order by job;
 
JOB               10         20         30         40
--------- ---------- ---------- ---------- ----------
ANALYST                    6000
CLERK           1300       1900        950
MANAGER         2450       2975       2850
PRESIDENT       5000
SALESMAN                              5600
 
5 rows selected.
 



Chapter 18 ■ Miscellaneous SQL Constructs

533

As shown in the listing, pivoting data is the process of taking multiple rows, aggregating them, and transposing 
them into columns, with each column representing a different range of aggregate data. And, as you can see, using the 
PIVOT function is much simpler than the old way. The syntax of a PIVOT statement is as follows: 
 
SELECT ...
FROM    ...
PIVOT [XML]          Note the placement between the FROM and WHERE clauses
        ( pivot_clause
          pivot_for_clause
          pivot_in_clause )
WHERE   ...
 

The three clauses used with the PIVOT keyword are the following:

	 1.	 pivot_clause: defines the columns to be aggregated

	 2.	 pivot_for_clause: defines the columns to be grouped and pivoted

	 3.	 pivot_in_clause: defines the range of values to which to limit the results; the resulting 
aggregations for each value are transposed into a separate column

Using the PIVOT query from Listing 18-9 as an example, the clauses are as follows:
 
select * from
  (select job, deptno, sum(sal) sal
     from scott.emp group by job, deptno)
          PIVOT ( sum(sal)             pivot_clause
           FOR deptno                   pivot_for_clause
           IN (10, 20, 30, 40) )                 pivot_in_clause
order by job;
 

In this query, the aggregate salary totals by department have been transposed into columns. Our example used a 
single aggregation on the sal column, but you can specify multiple columns if desired. Another thing to keep in mind 
is that pivot operations perform an implicit GROUP BY using any columns not in the pivot_clause. In our example, we 
used an inline view to group by the data first, but this actually was not necessary because of the implicit GROUP BY, as 
shown in Listing 18-10.

Listing 18-10.  Impliciting GROUP BY When Using the PIVOT Function 

SQL>select * from
  2  (select job, deptno, sal from scott.emp)
  3   pivot (sum(sal) for deptno in (10,20,30,40)) ;
 
JOB               10         20         30         40
--------- ---------- ---------- ---------- ----------
CLERK           1300       1900        950
SALESMAN                              5600
PRESIDENT       5000
MANAGER         2450       2975       2850
ANALYST                    6000
 
5 rows selected.
 



Chapter 18 ■ Miscellaneous SQL Constructs

534

The data are pivoted on the deptno aggregations only, and the range of values is limited to the hard coded  
pivot_in_clause list. As you can see, the column names are the same as the pivot_in_clause. This is the default 
behavior and it can be changed by using column aliases if desired, as shown in Listing 18-11.

Listing 18-11.  Using Aliases with the PIVOT Function 

SQL>select * from
  2  (select job, deptno, sal from scott.emp)
  3  pivot (sum(sal) as sum_sal
  4  for deptno
  5  in (10 as dept10,
  6      20 as dept20,
  7      30 as dept30,
  8      40 as dept40)) ;
 
JOB       DEPT10_SUM_SAL DEPT20_SUM_SAL DEPT30_SUM_SAL DEPT40_SUM_SAL
--------- -------------- -------------- -------------- --------------
CLERK               1300           1900            950
SALESMAN                                          5600
PRESIDENT           5000
MANAGER             2450           2975           2850
ANALYST                            6000
 
5 rows selected.
 

Notice how Oracle concatenates the aliases to form the column names. This means if we don’t alias the values  
in the pivot_in_clause, the column names are a concatenation of the list of values and our aggregated column alias 
(for example, 10_SUM_SAL).

You can also pivot multiple columns, but be careful because each additional column means doubling the 
number of aggregates. Listing 18-12 shows the addition of one new aggregate and a limiting WHERE clause as well.

Listing 18-12.  Using Multiple Aggregates for the PIVOT Function 

SQL> select * from
  2  (select job, deptno, sal from scott.emp)
  3  pivot (sum(sal) as sum, count(sal) as ct
  4  for deptno
  5  in (10 as dept10,
  6      20 as dept20,
  7      30 as dept30))
  8  where job = 'MANAGER';
 
JOB       DEPT10_SUM  DEPT10_CT DEPT20_SUM  DEPT20_CT DEPT30_SUM  DEPT30_CT
--------- ---------- ---------- ---------- ---------- ---------- ----------
MANAGER         2450          1       2975          1       2850          1
 
1 row selected.
 



Chapter 18 ■ Miscellaneous SQL Constructs

535

There are a few things to be aware of when using PIVOT:

Any columns referenced only in the •	 pivot_clause cannot be used in the SELECT column list.

Any columns referenced only in the •	 pivot_for_clause cannot be used in the SELECT column list.

All columns in the •	 pivot_clause must be aggregate functions.

Last, whenever you use a PIVOT function, it is typically reflected in the execution plan, as shown in Listing 18-13.

Listing 18-13.  Execution Plan for the PIVOT Function 

 
---------------------------------------------------
| Id  | Operation                  | Name | Rows  |
---------------------------------------------------
|   0 | SELECT STATEMENT           |      |       |
|   1 |  SORT GROUP BY NOSORT PIVOT|      |     1 |
|*  2 |   TABLE ACCESS FULL        | EMP  |     3 |
---------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   2 - filter("JOB"='MANAGER')
 

Depending on how we limit our pivot data, it is possible for the optimizer not to use the PIVOT operation. When 
this happens, the optimizer determines that it is more effective to do a normal AGGREGATE operation instead. However, 
most of the time, the PIVOT operation is chosen as the most effective.

One thing you may have noticed is that the examples have used a known list of values for the pivot_in_clause. 
Unfortunately, there isn’t support for dynamic lists of values. Listing 18-14 shows the resulting error message if you try 
to use a subquery to provide a list of values.

Listing 18-14.  Dynamic pivot_in_clause Is Not Allowed

SQL>select * from scott.emp
  2  pivot (sum(sal)
  3  for deptno in (select deptno from scott.dept));
for deptno in (select deptno from scott.dept))
               *
ERROR at line 3:
ORA-00936: missing expression
 

But never fear! There is a remedy! When I listed the PIVOT syntax earlier in this section, did you notice the 
optional XML keyword? If you add the XML keyword, the generated pivot set provides the results in XML format. The 
root element is <PivotSet>, and each value is identified by a name–value pair, as shown in Listing 18-15.

Listing 18-15.  Using the XML Option 

SQL>select *
  2  from (select job, deptno, sal from scott.emp)
  3   pivot XML
  4  (sum(sal)
  5   for deptno in (ANY));
 



Chapter 18 ■ Miscellaneous SQL Constructs

536

JOB       DEPTNO_XML
--------- --------------------------------------------------
ANALYST   <PivotSet><item><column name =
          "DEPTNO">20</column><column name =
          "SUM(SAL)">6000</column></item></PivotSet>
 
CLERK     <PivotSet><item><column name =
          "DEPTNO">10</column><column name =
          "SUM(SAL)">1300</column></item><item><column name
          = "DEPTNO">20</column><column name =
          "SUM(SAL)">1900</column></item><item><column name
          = "DEPTNO">30</column><column name =
          "SUM(SAL)">950</column></item></PivotSet>
 
MANAGER   <PivotSet><item><column name =
          "DEPTNO">10</column><column name =
          "SUM(SAL)">2450</column></item><item><column name
          = "DEPTNO">20</column><column name =
          "SUM(SAL)">2975</column></item><item><column name
          = "DEPTNO">30</column><column name =
          "SUM(SAL)">2850</column></item></PivotSet>
 
PRESIDENT <PivotSet><item><column name =
          "DEPTNO">10</column><column name =
          "SUM(SAL)">5000</column></item></PivotSet>
 
SALESMAN  <PivotSet><item><column name =
          "DEPTNO">30</column><column name =
          "SUM(SAL)">5600</column></item></PivotSet> 
 
5 rows selected.
 

The resulting data can now be manipulated with XPath or XQuery expressions. You can also use any subquery 
you desire in place of the ANY keyword. If you use a subquery, make sure the result set is unique; otherwise, an error 
occurs. Another thing to keep in mind about generating XML elements is that quite a bit of data above and beyond the 
results themselves are generated. Consider your requirements carefully and weigh the overheads of this method with 
how you’ll process the XML results to make sure your performance doesn’t suffer adversely.

Using UNPIVOT
The UNPIVOT function also appeared with PIVOT in Oracle 11g. To unpivot data means to rotate data from columns 
back to rows. As mentioned earlier, if you PIVOT data, you can’t simply UNPIVOT the pivoted dataset and expect it to 
return the output as it was prior to pivoting. UNPIVOT has no capability to convert aggregates back to their raw data 
elements. The syntax of an UNPIVOT statement is as follows: 
 
SELECT ...
FROM   ...
PIVOT [INCLUDE|EXCLUDE NULLS]
        ( unpivot_clause
          unpivot_for_clause
          unpivot_in_clause )
WHERE   ...
 



Chapter 18 ■ Miscellaneous SQL Constructs

537

The three clauses used with the UNPIVOT keyword are the following:

	 1.	 unpivot_clause: defines the name for a column to represent the unpivoted values

	 2.	 unpivot_for_clause: defines the name for the column that results from the unpivot query

	 3.	 unpivot_in_clause: defines the list of pivoted columns (not values) to be unpivoted

To demonstrate how UNPIVOT works, let’s start by creating a PIVOTed set of data using our example query, as 
shown in Listing 18-16.

Listing 18-16.  Creating a Table with PIVOTed Data  

SQL>create table pivot_tab as
  2  select * from
  3   (select job, deptno, sal from scott.emp)
  4   pivot (sum(sal) as sum_sal
  5   for deptno
  6   in (10 as dept10,
  7       20 as dept20,
  8       30 as dept30,
  9       40 as dept40)) ;
 
Table created.
 
SQL>select * from pivot_tab ;
 
JOB       DEPT10_SUM_SAL DEPT20_SUM_SAL DEPT30_SUM_SAL DEPT40_SUM_SAL
--------- -------------- -------------- -------------- --------------
CLERK               1300           1900            950
SALESMAN                                          5600
PRESIDENT           5000
MANAGER             2450           2975           2850
ANALYST                            6000
 
5 rows selected.
 

Now, let’s unpivot our dataset, as shown in Listing 18-17.

Listing 18-17.  Using UNPIVOT

SQL>select * from pivot_tab
  2  unpivot ( sal_amt
  3  for deptsal_desc
  4  in (dept10_sum_sal, dept20_sum_sal, dept30_sum_sal, dept40_sum_sal)) ;
 
JOB       DEPTSAL_DESC      SAL_AMT
--------- -------------- ----------
CLERK     DEPT10_SUM_SAL       1300
CLERK     DEPT20_SUM_SAL       1900
CLERK     DEPT30_SUM_SAL        950
SALESMAN  DEPT30_SUM_SAL       5600
PRESIDENT DEPT10_SUM_SAL       5000
MANAGER   DEPT10_SUM_SAL       2450



Chapter 18 ■ Miscellaneous SQL Constructs

538

MANAGER   DEPT20_SUM_SAL       2975
MANAGER   DEPT30_SUM_SAL       2850
ANALYST   DEPT20_SUM_SAL       6000
 
9 rows selected.
 

Note that the list of column names from our pivoted table data provides the column value for the unpivot_for_
clause column named deptsal_desc. The values themselves are used to populate the sal_amt column values, as 
indicated in unpivot_clause. Although we used our example table of pivoted data, we can unpivot the columns of 
any table or view.

It is useful to alias the columns in the unpivot_in_clause because it allows us to change the descriptive data to 
something different from the original column name. Unlike the PIVOT function, the column or columns referred to in 
the unpivot_in_clause are the only ones that can be aliased. This makes sense, because the unpivot_clause (sal_
amt) is the name we wish to use and it doesn’t need further aliasing. Listing 18-18 shows an example of using an alias 
with a bit of creativity to reverse engineer back to deptno.

Listing 18-18.  Using Aliases with UNPIVOT  

SQL> select * from pivot_tab
  2  unpivot ( sal_amt
  3  for deptno
  4  in (dept10_sum_sal as '10',
  5      dept20_sum_sal as '20',
  6      dept30_sum_sal as '30',
  7      dept40_sum_sal as '40')) ;
 
JOB       DEPTNO    SAL_AMT
--------- ------ ----------
CLERK     10           1300
CLERK     20           1900
CLERK     30            950
SALESMAN  30           5600
PRESIDENT 10           5000
MANAGER   10           2450
MANAGER   20           2975
MANAGER   30           2850
ANALYST   20           6000
 
9 rows selected.
 

Similar to the PIVOT function, the optimizer identifies the presence of the UNPIVOT function in the execution plan 
using an UNPIVOT operation, as shown in Listing 18-19.

Listing 18-19.  Execution Plan for the UNPIVOT Function 

-------------------------------------------------
| Id  | Operation           | Name      | Rows  |
-------------------------------------------------
|   0 | SELECT STATEMENT    |           |       |
|*  1 |  VIEW               |           |    20 |
|   2 |   UNPIVOT           |           |       |
|   3 |    TABLE ACCESS FULL| PIVOT_TAB |     5 |
-------------------------------------------------
 



Chapter 18 ■ Miscellaneous SQL Constructs

539

Predicate Information (identified by operation id):
---------------------------------------------------
 
   1 - filter("unpivot_view_007"."SAL_AMT" IS NOT NULL)
 

Note the presence of the VIEW operation that uses a filter predicate to remove the null values for sal_amt. This 
is the default behavior resulting from the EXCLUDING NULLS clause. If we use INCLUDING NULLS instead, the filter is 
removed and rows with null values are displayed.

A really nifty use of UNPIVOT that is related to unpivoting a previously pivoted dataset is simply using it to pivot 
particularly wide output to read down the page instead of across, as shown in Listing 18-20.

Listing 18-20.  Using the UNPIVOT Function

SQL>select column_name, column_value from
  2  (select to_char(empno) as empno, ename, job, to_char(mgr) mgr,
  3   to_char(hiredate,'mm/dd/yyyy') hiredate, to_char(sal) sal,
  4   to_char(comm) comm, to_char(deptno) deptno
  5  from scott.emp where rownum = 1)
  6  unpivot (column_value
  7  for column_name
  8  in (empno, ename, job, mgr, hiredate, sal, comm, deptno));
 
COLUMN_N COLUMN_VALUE
-------- ----------------------------------------
EMPNO    7369
ENAME    SMITH
JOB      CLERK
MGR      7902
HIREDATE 12/17/1980
SAL      800
DEPTNO   20
 
7 rows selected.
 

In this example, note how the results are now displayed down the page instead of across. Also note that all the 
columns have converted to string datatypes in the inline view. This is because of a restriction on how an UNPIVOT 
query is processed. Unless all the columns have the same datatype, the query fails with “ORA-01790: expression must 
have same datatype as corresponding expression.” This restriction certainly makes things a bit tedious but, given a bit 
of effort, we could write a dynamic SQL wrapper for this type of query and use it to unpivot data from any table. I leave 
that exercise to you for additional practice.

SQL to Generate Test Data
There are times when you may find it difficult to performance test your SQL because of the lack of appropriate 
test data. This could be a result of the fact that your application is new and lacks real data that can be copied for 
development use, or it could be that your development environment only loads partial datasets and not a full copy 
ofproduction. Or, maybe you just want to test how a particular bit of SQL works and only need dummy data. Using 
some very simple SQL constructs, you can generate random test data quite easily.



Chapter 18 ■ Miscellaneous SQL Constructs

540

What to Watch out For
Before you start generating any data, make sure you know what to watch out for. The main thing to keep in mind is to 
try and keep to a minimum the overhead required to create your data. One of the most frequently used techniques 
can be a real resource hog if you’re not careful. This technique involves using an actual “big” table as a driver to create 
your test data, as shown in Listing 18-21.

Listing 18-21.  Generating Rows Using a “Big” Table

SQL>create table from_big as
  2  select * from dba_source ;
 
Table created.
 
Elapsed: 00:00:10.40
 
SQL>select count(*) from from_big ;
 
  COUNT(*)
----------
    403941
 
1 row selected.
 

In this case, we get a good-size set of data, but it took more than ten seconds and it had to read from a system view. 
This isn’t too bad if you only plan on generating a single copy of the data. But, what happens when you want to create  
ten times the data? There are several other techniques to consider to produce more random data without requiring 
you to query preexisting tables:

•	 CONNECT BY clause

•	 MODEL clause 

•	 WITH clause

Using CONNECT BY 
You can use CONNECT BY to generate data using FAST DUAL as the source. Listing 18-22 shows how to use this method 
most efficiently.

Listing 18-22.  Generating Rows Using CONNECT BY

SQL>create table conn_by as
  2  select count(*) ct from
  3  (select rownum rn from
  4   (select rownum rn from dual connect by rownum <= 1000) t1,
  5   (select rownum rn from dual connect by rownum <= 1000) t2,
  6   (select rownum rn from dual connect by rownum <= 1000) t3
  7   where rownum <= 1000000);
 
Table created.
 
Elapsed: 00:00:03.15
 



Chapter 18 ■ Miscellaneous SQL Constructs

541

SQL> @dcplan
Enter value for sql_id: 84s1cjrn9sumf
Enter value for child_no: 0
Enter value for format: BASIC
 
PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------
EXPLAINED SQL STATEMENT:
------------------------
create table conn_by
 
Plan hash value: 2015107946
 
-------------------------------------------------------
| Id  | Operation                              | Name |
-------------------------------------------------------
|   0 | CREATE TABLE STATEMENT                 |      |
|   1 |  LOAD AS SELECT                        |      |
|   2 |   OPTIMIZER STATISTICS GATHERING       |      |
|   3 |    SORT AGGREGATE                      |      |
|   4 |     VIEW                               |      |
|   5 |      COUNT STOPKEY                     |      |
|   6 |       MERGE JOIN CARTESIAN             |      |
|   7 |        MERGE JOIN CARTESIAN            |      |
|   8 |         VIEW                           |      |
|   9 |          COUNT                         |      |
|  10 |           CONNECT BY WITHOUT FILTERING |      |
|  11 |            FAST DUAL                   |      |
|  12 |         BUFFER SORT                    |      |
|  13 |          VIEW                          |      |
|  14 |           COUNT                        |      |
|  15 |            CONNECT BY WITHOUT FILTERING|      |
|  16 |             FAST DUAL                  |      |
|  17 |        BUFFER SORT                     |      |
|  18 |         VIEW                           |      |
|  19 |          COUNT                         |      |
|  20 |           CONNECT BY WITHOUT FILTERING |      |
|  21 |            FAST DUAL                   |      |
-------------------------------------------------------
 

In this example, it took just more than three seconds to generate a one million-row table. You may be wondering 
why there are three inline views being cartesian joined to create the data instead of just using a single CONNECT BY 
ROWNUM < 1000000. This method is used to prevent the process from running out of private memory, as shown in 
Listing 18-23.



Chapter 18 ■ Miscellaneous SQL Constructs

542

Listing 18-23.  Memory Error When Using CONNECT BY

SQL>select count(*) from
  2  (select rownum rn from dual connect by rownum <= 10000000) ;
    (select rownum rn from dual connect by rownum <= 10000000)
                       *
ERROR at line 2:
ORA-30009: Not enough memory for CONNECT BY operation
 

As shown, I used a large number of rows (ten million instead of one million), but this simple statement can 
consume enough UGA/PGA to error out as a result of a lack of memory. CONNECT BY is recursive in nature and 
therefore consumes more memory as you increase the number of rows you want in a single shot. So, to create large 
amounts of data, you simply have to use CONNECT BY with lower recursion. Writing the statement to use MERGE JOIN 
CARTESIAN does the trick!

Personally, I prefer a combination method of using the CONNECT BY method and WITH clause, but it doesn’t use a 
recursive WITH (discussed later). Instead, it simply uses the WITH clause to avoid repeating the inline query, as shown 
in Listing 18-22. Listing 18-24 demonstrates how to combine the WITH and CONNECT BY clauses to formulate an easy-
to-read, understandable, and efficient data generator.

Listing 18-24.  Using WITH and CONNECT BY

SQL>create table with_conn_by as
  2  with data_gen as
  3  (
  4  select /*+ materialize */ rownum rid
  5  from dual
  6  connect by level < 1000
  7  )
  8  select mod(rownum-1, 1000) as num_mod1,
  9    trunc(dbms_random.value(0,1000)) rand_val1,
 10    trunc(dbms_random.value(0,1000)) rand_val2,
 11    rpad('z',100) pad_data
 12  from data_gen t1, data_gen t2, data_gen t3
 13  where rownum <= 1000000 ;
 
Table created.
 
Elapsed: 00:00:32.97
 

Notice how in this example I also demonstrated how to populate additional columns with various types of data. 
Using variations of this example, you can create any quantity and type of data you wish.

Using the MODEL Clause
We discussed the MODEL clause in great detail in Chapter 9. Although it may seem a bit intimidating at first, using the 
MODEL clause is quite powerful and particularly useful—and simple—when generating dummy data, as shown in 
Listing 18-25.



Chapter 18 ■ Miscellaneous SQL Constructs

543

Listing 18-25.  Generating Rows Using the MODEL Clause 

SQL>create table model_tab as (
  2   select *
  3   from dual
  4   model
  5     dimension by (0 d)
  6     measures (0 rnum)
  7     rules iterate (1000000)
  8     (rnum[ITERATION_NUMBER] = ITERATION_NUMBER+1)
  9   )  ;
 
Table created.
 
Elapsed: 00:05:09.26
 

The MODEL clause method took significantly longer than the CONNECT BY method to produce the same one 
million-row dataset (more than five minutes vs. a few seconds!). This time difference results from the way the two 
constructs use memory. Memory usage reported by CONNECT BY doesn’t use work-area memory, so normal PGA 
size restrictions such as PGA_AGGREGATE_TARGET don’t apply to it. But, the MODEL clause does use work-area memory 
traditionally, and if there is too much information to be retained in the private memory allocation, it spills over to 
disk (TEMP). For this reason, using the MODEL clause is more limiting in terms of time and resources required. I have 
only used this method a handful of times and I find it most useful when I want to create a limited amount of data with 
numerous columns using spreadsheetlike formulas to populate them.

Using the Recursive WITH Clause
Subfactored queries were discussed in Chapter 10. Listing 18-26 shows an example of using a recursive WITH clause to 
generate test data.

Listing 18-26  Generating Rows Using the Recursive WITH Clause

SQL>create table with_tab as
  2  with data_gen(rn)
  3  as
  4  (select 1 rn from dual
  5   union all
  6   select rn+1 from data_gen
  7   where rn < 1000000 )
  8  select * from data_gen;
 
Table created.
 
Elapsed: 00:00:26.43
 

Once again, the time it takes to use a recursive WITH clause is significantly greater than the CONNECT BY 
construct, but it is also significantly less than the MODEL clause. Always keep in mind that the more rows you wish  
to create—particularly if you are creating random data (similar to what I showed in Listing 18-24) and not just  
a one-column table—as shown in most of the examples, the longer it takes and the more resources (particularly CPU) 
it uses.



Chapter 18 ■ Miscellaneous SQL Constructs

544

Data Generator Wrap-up
In this section, I showed you a few of the more common ways to generate data. There are others, including a pipelined 
PL/SQL function, that can be used as well. The construct you choose certainly makes a difference with regard to the 
time it takes to generate the amount and type of data you want as, well as the database resources used. Always keep in 
mind that both your time and your database’s resources are valuable. Don’t waste either one!

Summary
The SQL language offers many constructs to help you build and extract data from your database. Many constructs 
have similar functionality and serve the same purpose, such as NVL, NVL2, and COALESCE. Others, such as PIVOT and 
UNPIVOT, help you manipulate data to report it more understandably. Using the examples in this chapter as a guide, 
I urge you to continue to explore out-of-the-box uses for the SQL language that help you do your job more proficiently.



A�       �
Access methods, 57. See also Index scan  

access methods
full scan access methods, 57

full scan operations, 58
high-water mark, 62–67
multiblock reads, 61–62
throwaway, 61

Active Session History (ASH), 441
Active transactions

atomicity, 409
SCN number, 409–411

ACYCLIC algorithm, 249
ACYCLIC FAST algorithm, 250
Adaptive cursor sharing, 460
Advanced grouping. See GROUPBY clause
Aggregate functions, 113, 202, 242

analytic mode/nonanalytic mode, 202
default window specification, 204
granular window specifications, 204
MAX function, 203
sum(sale) function, 202–203

Aggregating statistics, 472
Analytic functions, 199

aggregate functions, 202
analytic mode/nonanalytic mode, 202
default window specification, 204
granular window  

specifications, 204
MAX function, 203
sum(sale) function, 202–203

anatomy of, 200
order-by-clause, 200
partition-by-clause, 200
windowing-clause, 201

conventional SQL statements, 199
denormalized fact table, 200

dense_rank function, 212
FIRST|LAST KEEP function, 213
vs. rank function, 212
syntax, 212

dynamic SQL statement, 225
execution plans, 222
first value function, 207–208
lag functions, 204–205
last_value function, 209
lead functions, 204, 207
listagg function, 221
nesting analytic functions, 226
nth_value function, 209

definition, 210
syntax, 210

NTILE function, 218
organizational behavior, 229
overview, 199
parallelism, 227
percentile_cont function, 216

calculation, 216
median value, 216
syntax, 216

percentile_disc function, 217
percent_rank function, 215
PGA size, 228
predicates, 223
rank function, 211

calculation, 211
definition, 211
syntax, 211

ratio-report function, 214
row_number function, 213
stddev function, 220
types, 201
windows, 199

ANSI isolation levels, 399
ANSI/ISO SQL standard, 399

Index

545



Antijoins, 299
alternative syntax, 329
hints, 333
instance level, 334
nested loop antijoin, 324
NOT IN and NOT EXISTS  

queries, 320, 324
LEFT OUTER statement, 324
MINUS operator, 322
NOT NULL constraint, 321
with NVL function, 321–322

null aware(NA), 326
requirements, 340
restrictions, 337
venn diagram, 319

Application characteristics
compressed indexes, 356

benefit, 358
creation, 357
index/validate structure statement, 358
syntax, 357

descending indexes, 362
Function-Based Indexes, 359
Reverse key indexes, 361

creation, 362
issues, 361

Autonomous transactions
calling transaction, 421–424
order logging transaction, 420–421
use of, 420

AUTOTRACE command, 133
AWR and Statspack, 473

B�       �
Bind variable peeking, 459
Bitmap Indexes

BITMAP AND operation, 348
DML, 347

Bitmap join indexes, 365
B-tree indexes

structure, 346–347
tree traversal algorithms, 346

Buffer cache
blocks, 31
latches, 31
logical and physical read, 32
soft and hard parse, 32
touch count, 31

BUFFER SORT operation, 89
Building logical expressions

AND condition, 125
bind variables, 126
CASE statements, 125
CONCATENATION, 130

conditional logic, 125
conditional WHERE clause, 127
UNION ALL, 129
WHERE clause, 125

C�       �
Cardinality feedback. See Statistics feedback
Cartesian joins, 81, 88
Child operations, 136
Clustering factor, 70
COALESCE function, 529
Compressed indexes

benefit, 358
creation, 357
index/validate structure statement, 358
syntax, 357

Conditional insert, 373
Conditional logic constructs

CASE statement, 524
repeat table acces elimination, 526
searched CASE statement, 526
simple CASE statement, 525

COALESCE function, 529
DECODE construct, 523
DECODE vs. CASE statement, 524
NULLIF function, 531
NVL and NVL2 functions, 529

CONNECT BY clause, 540
CONNECT_BY_ROOT operator, 288
PRIOR operator, 281
pseudocolumn level creation, 286
START WITH clause, 282
SYS_CONNECT_BY_PATH Function, 286
types, 285

Connect_by_iscycle Pseudocolumn and  
NOCYCLE parameter

cycle error, 291
detection, 292
recursive subfactored query, 293

Connect_by_isleaf pseudocolumn, 294
BREADTH FIRST searching, 298
LEAD() function, 296
leaf nodes finding, 295

Cost Based Optimizer (CBO), 8, 453, 477
COUNT aggregate function, 113
Create Table As Select (CTAS), 380, 394
CUBE extension

operation, 174
replace UNION ALL with CUBE, 184
rows returns, 178
SALES_HISTORY schema, 180
UNION ALL, 179, 181

CUBE operation, 11
CYCLIC algorithm, 250

■ index

546



D�       �
Database, 26
Database interface, 2
Data definition language (DDL), 398
Data Manipulation Language (DML), 347, 369, 398

DELETE, 386
INSERT, 369 (see also DML error logging)

conditional processing, 373
direct path inserts, 369
multitable insert, 371

MERGE, 389
performance comparison, 392
syntax and usage, 389

truncate command, 388
UPDATE, 380

Create Table As Select, 380
INSERT APPEND technique, 382

Data Warehouse Query, 365
DBMS_METADATA package, 382
dbms_xplan.display_cursor  

function, 142
DBMS_XPLAN package, 148
DELETE statement, 20, 386
Descending indexes, 362
Dictionary cache, 26
Direct path inserts, 369
DISPLAY function, 150
DISTINCT clause, 13
DML error logging

APPEND hint, 379
better insert error logging, 376
commit or rollback, 379
CREATE_ERROR_LOG procedure, 379
creation, 373
DBMS_ERRLOG.CREATE_ERROR_LOG  

parameters, 379
LOG ERRORS clause, 379
LOG ERRORS INTO, 375
SKIP_UNSUPPORTED parameter, 379

Dynamic WHERE Clause, 530

E�       �
Embedded SQL statements, 2
Environmental values change, 456
Execution plans, 131. See also SQL monitor reports

association and view, 142
collecting plan operations, 144
cost of, 50
dbms_xplan.display_cursor, 146
DBMS_XPLAN package, 148
definition of, 50

executing and fetching rows, 53
EXPLAIN PLAN statement

access and filter predicates, 140
ACCESS_PREDICATES column, 140
bind variable datatypes, 136
breaking plan, 135
FILTER_PREDICATES column, 140
iterative operations, 136
narrative, 141
parent-child relationships, 140
pass-thru operations, 136
PLAN_TABLE, 133
producing plan output, 136
reading, 138
row-source execution statistics, 131
TRACEONLY EXPLAIN option, 133
use of, 131
working operations, 136

later plan retrieve, 146
optimizer, 50, 52
predicates, 53
problem solving

missing/suboptimal index, 158
stale statistics, 163
TABLE ACCESS FULL operation, 158
wrap-up, 163

selectivities, 53
SET SERVEROUTPUT OFF, 146
statistics, 50, 53
using, for problem solving, 165
viewing recently generated SQL, 141

EXTRACT() function, 280

F�       �
Fast full scan, 80
For loop, 237
FORMAT parameter, 149–150
FROM clause, 9, 20, 276
Full scan, 76
Full scan access methods, 57

full scan operations
COUNT aggregate function, 59
query, 59
random vs. sequentially stored row values, 59
TABLE ACCESS FULL operation, 60
test table, 58

high-water mark
blocks, 62
example, 63
normal operations, 62–63

multiblock reads, 61–62
throwaway, 61

■ Index

547



G�       �
Global indexes, 352
GROUP BY and ORDER BY clauses, 111
GROUP BY clause, 11–12, 169, 533. See also CUBE extension

advanced functionality, 174
basic usage, 169
column requirements, 169
convoluted SQL, 170–171
COUNT() function, 169
execution plan, 172
GROUPING() function

DECODE() function, 187
HAVING clause, 188
NULL values, 186

GROUPING_ID(), 189
HAVING clause, 173–174
ORDER BY clause, 170
restrictions, 195–197
ROLLUP() extension, 194
SETS() extension, 192

GROUPING() function
DECODE() function, 187
HAVING clause, 188
NULL values, 186

GROUPING_ID(), 189, 192
GROUPING SETS() extension, 192

H�       �
Hard parse, 27
Hash joins, 85
Hash partitioning scheme

Algorithm, 356
creation, 355
dbms_rowid.rowid_object, 355
RAC, 354
right-hand growth index, 354

HAVING clause, 12, 173–174
High-water mark

blocks, 62
example, 63
normal operations, 62–63

Hint-based mechanisms
Outlines/Stored Outlines, 489

CREATE_OUTLINE Procedure, 490
DBMS_OUTLN.CREATE_OUTLINE, 491
OL sqlid planhash, 492
USE_STORED_OUTLINES, 491–492

SQL Patches, 519
SQL Plan Baselines, 509

12c, plan evolution, 518
create_baseline_awr.sql script, 514
create_baseline.sql script, 512
dba_sql_plan_baselines, 510

evolvation, 515
fixed set, 510

SQL Profiles, 492
DBMS_SQLTUNE.IMPORT_SQL_PROFILE, 493
FORCE_MATCHING, 493
sql_profiles.sql script, 494
SQLTUNE_CATEGORY, 493
SQL Tuning Advisor (STA), 492
STA, 493
USE_STORED_OUTLINE parameter, 493
Wrap-up, 521

SQL Profiles creation, 495
create_sql_profile_awr.sql Script, 501
create_sql_profile.sql, 499
create_sql_profile.sql script, 505
DBMS_XPLAN.DISPLAY_CURSOR, 498
FORCE_MATCHING, 507
move_sql_profile.sql script, 502, 506
Wrap-up, 509

I�       �
Identical statement

bind variables, 29
different executions, 28
latches, 30
serialization devices, 31
spinning, 31

IF statement, 308
IGNORE NAV clause, 248
Indexes, 257, 341. See also Application characteristics

access path, 342–343
Bitmap Indexes

BITMAP AND operation, 348
DML, 347

B-tree indexes, 346
structure, 346–347
tree traversal algorithms, 346

buffer cache, 342
columns, 344
global indexes, 352
hash partitioning scheme, 354

Algorithm, 356
creation, 355
dbms_rowid.rowid_object, 355
RAC, 354
right-hand growth index, 354

index-organized tables (IOTs), 348
primary key, 348
properties, 349
secondary indexes, 350
unique indexes, 349

Local partitioned indexes, 350, 352
partition elimination, 351
table partition, 350

■ index

548



management problems, 363
Bitmap join indexes, 365
invisible indexes, 363–364
virtual indexes, 365

NULL handling, 346
parallelism, 344
range partitioning scheme, 354
uses, 342

Index-organized tables (IOTs)
primary key, 348
properties, 349
secondary indexes, 350
unique indexes, 349

Index scan access methods, 67
block accesses, 68
B-tree index, 67
column value and rowid, 67
fast full scan, 80
full scan, 76
index structure

blevel, 69
B-tree indexes, 69
leaf blocks, 68–69
logical view, 69
RBA, 69
root block, 68

index unique scan, 74
range scan, 75
rowid, 68
scan types, 70

clustering factor, 70
computing clustering_factor, 71
different table blocks, 72
random vs. sequentially loaded row values, 70
TABLE_CACHE_BLOCKS parameter, 73

single-block reads, 68
skip scan, 79

Index unique scan, 74
Inner join, 301
INSERT APPEND technique, 382
INSERT statement, 369. See also DML error logging

APPEND hint, 370
compared with MERGE, 394
conditional processing, 373
direct path inserts, 369
multitable insert, 15–17, 371
single-table insert, 14–15

Instance, 26
Instrumentation Library for Oracle (ILO)

advantages, 448
AWR or StatsPack data, 448
consistent labeling, 443
CPU, 448
database aplication instalation, 447

data entry, 447
elapsed time, 441, 445
ILO_MODULE and ILO_ACTION labels, 446
in single session, 442
repeating/simultaneous executions, 447
requirements, 442
resource usage, 448
SQL tracing, 441
task sequences, 447
test harness and measurement tool, 446
troubleshooting problems, 448

AWR data, 450–451
sequential listing processes, 450
timeout errors, 449

unbounded data ranges, 448
ZIP file, 442

INTERSECT, 106
Isolating transactions, 417
Isolation levels, 399–400
Iteration

PRESENTV function
vs. PRESENTNNV function, 246
syntax, 245

syntax, 243

J�       �
Join elimination

limitations, 45
outer join guarantees, 44
primary key–foreign key constraint, 43

Join methods, 57
cartesian join, 81, 88
diagram, 81
driven-to table, 82
driving table, 82
equi-joins, 87
FROM and WHERE clause, 81
hash joins, 85
inner table, 82
nested loops joins, 82
order, 81
outer joins

ANSI join syntax, 91
full outer joins, 92
oracle–equivalent syntax, 93
sample query, 89

PRIMARY KEY constraint, 82
sort-merge joins, 84, 87
UNIQUE constraint, 82

K�       �
KEEP NAV clause, 248

■ Index

549



L�       �
Lag function, 205
LEAD() function, 207, 296
Least Recently Used (LRU) algorithm, 27, 31
Library cache, 26–28
LIKE operator, 75
listagg function, 221
LNNVL function, 337

M�       �
Materialized view, 48
MERGE statement, 22, 389

compared with INSERT and CTAS, 394
performance comparison, 392
syntax and usage, 389

MINUS, 105
Model clause, 231, 543. See also Iteration

aggregate functions, 242
execution plans, 249

ACYCLIC algorithm, 249
ACYCLIC FAST algorithm, 250
CYCLIC algorithm, 250
sequential order, 251–252

for loop, 237
Indexes, 257
inter-row reference, 232

array elements, 234
denormalized fact table, 232
inventory formula calculation, 233
rules and formula, 234
SQL statement, 234

lookup tables, 246
definition, 246
main model section, 247
reference clause, 246
using Iso_code rule, 247

material views, 253
NULLs, 248

IGNORE NAV clause, 248
KEEP NAV clause, 248

parallelism, 255
partition pruning, 256
positional notation, 235
predicate pushing, 252
RETURN UPDATED ROWS clause, 239
row evaluation order, 239

cell level, 240
sequential order, 239
using DESC keyword, 241

rule evaluation order, 241
automatic order, 242
sequential order, 241

spreadsheets, 231
subquery factor, 258

in SQL Access, 258
WITH clause, 258

symbolic notation, 236
Multiblock reads, 61–62
Multi-table inserts, 15–17, 371
Multi-version read consistency model, 400–401, 414

N�       �
Nested loop antijoin, 324
Nested loop semijoin, 308, 315
Nested loops joins, 82
Nesting analytic functions, 226
NO_MERGE hint, 38
NO_QUERY_TRANSFORMATION, 36
NOT NULL constraint, 80, 321
nth_value function, 209

definition, 210
syntax, 210

NTILE function, 218
Null(s)

aggregate functions, 113
comparisons and expressions, 109
GROUP BY and ORDER BY clauses, 111
set operations, 110
sets and, 107
two-value logic, 109
unintuitive results, 107
value, 107

NULL handling, 346
NULLIF function, 531
NVL() function, 186, 321–322

O�       �
Object-level statistics, 454
Online analytic processing (OLAP) queries, 199
Oracle architecture, 25
Oracle Call Interface (OCI), 2
Oracle Concepts Guide, 26
Oracle cost-based optimizer (CBO), 8
Oracle database, 26
ORDER BY clause, 13–14, 76, 98, 200
ORDER BY elimination, 45
Order Entry (OE) schema

confirmation queries, 408
inventory, 406
order transaction, 407
sales manager, 406
schema changes, 404
tables, 403–404

Outer joins
ANSI join syntax, 91
full outer joins, 92
Oracle–equivalent syntax, 93
sample query, 89

■ index

550



P�       �
Parallelism, 227, 344
Partition-by-clause, 200
percentile_cont function

calculation, 216
median value, 216
syntax, 216

percentile_disc function, 217
percent_rank function, 215
PGA_AGGREGATE_LIMIT (PGAL), 228
PGA_AGGREGATE_TARGET (PGAT), 228
PIVOT function

clauses, 533
execution plan, 535
GROUP BY clause, 533
vs. Old pivot query formulation, 532
pivot_in_clause, 535
syntax, 533
using aliases, 534
using XML, 535–536
WHERE clause, 534

PIVOT operator, 261, 263
Plan control, 477

Hints, optimizer, 478, 480
Explicit named blocks, 484
Query Block Naming, 481
Query Transformation Turned Off, 483
Trace File Excerpts, 479, 485
valid_hints.sql.Script, 479

literals, 478
Modified Query Structure, 478
problem solving, 477
without code access, 485

Add or Remove access paths, 488
changing statistics, 486
Hint-based mechanisms (see Hint-based 

mechanisms)
modifying databases, 486, 488

Plan instability end, 475
Plan stability and control, 453

identification, 469
aggregating statistics, 472
diagnostic scripts queries, 470
history of a statement’s performance, 471
statistical variance, 473
variations around a point in time, 474

plan instability
adaptive cursor sharing, 460
bind variable peeking, 459
CBO inputs, 453
environmental values change, 456
no_invalidate parameter, 454
object-level statistics, 454

OLTP-type environment, 453
rolling invalidation, 454
SQL statement, 458

statistics feedback
execution plan, 465
SQL plan directive, 466

Positional notation, 235
Predicate pushing, 46
Procedural vs. set-based approach, 96

EMP and DEPT sets, 99
logical reads, 96
process flow diagram vs. nested set diagram, 98
self-join, 96
thinking approach, 99

Program (process) global area (PGA), 26

Q�       �
Quality assurance. See Testing and quality assurance
Query block, 34
Query transformation, 33. See also SQL execution

join elimination
limitations, 45
outer join guarantees, 44
primary key–foreign key constraint, 43

materialized view, 48
NO_MERGE hint, 48
NO_PUSH_PRED hint, 48
ORDER BY elimination, 45
predicate pushing, 46
query blocks, 34
REWRITE hint, 50
rownum pseudocolumn, 48
SELECT keyword, 34
statement, 34
subquery unnesting

correlated subquery, 42
FILTER operation, 42
HASH JOIN join, 42
NO_UNNEST hint, 41
subquery caching, 42
uncorrelated subquery, 41
views and subqueries, 41

view merging, 36
Questions

building logical expressions
AND condition, 125
bind variables, 126
CASE statements, 125
CONCATENATION, 130
conditional logic, 125
conditional WHERE clause, 127
UNION ALL, 129
WHERE clause, 125

■ Index

551



categorizations
common types, 116
conversation, 116
differences, 117

data, 120
intellectual habit and habits, 115
purpose, 116
question, 117

R�       �
Range scan, 75
Rank function

calculation, 211
definition, 211
syntax, 211

Ratio-report function, 214
Read committed isolation level, 399
Read uncommitted isolation level, 399–400
Real Application Clusters(RAC), 354
Recursive subquery factoring (RSF), 281

BREADTH FIRST searching, 284
CONNECT BY clause (see also Connect_by_iscycle 

Pseudocolumn and NOCYCLE parameter; 
Connect_by_isleaf pseudocolumn)

CONNECT_BY_ROOT operator, 288
PRIOR operator, 281
pseudocolumn level creation, 286
START WITH clause, 282
SYS_CONNECT_BY_PATH Function, 286
types, 285

employee table, 282
restrictions, 283
UNION ALL operator, 283

Regression testing, 431
Relational database management systems (RDBMS), 1
Relative Block Address (RBA), 69
Repeatable read isolation level, 399
Rolling invalidation, 454
ROLLUP() extension, 194
ROLLUP operation, 11
row_number function, 213

S�       �
Savepoints

data returning, 411
verification, 414

Scalar subqueries, 13
Searched CASE statement, 526
SELECT. See Data Manipulation Language (DML)
SELECT statement

CBO, 8
female customers, 9

FROM clause, 9
GROUP BY clause, 11–12
HAVING clause, 12
ORDER BY clause, 13–14
query processing, 8
SELECT list, 12–13
WHERE clause, 11

Semijoins, 299
ANY keyword, 302
correlated vs. noncorrelated subquery, 304
definition, 299
EXISTS syntax, 304
hints, 312

FILTER operation, 314
NO_SEMIJOIN hint, 312–313

IF statement, 308
inner join, 301
inner join with DISTINCT, 301, 303
instance level, 314

nested loops semijoin, 315
restriction, 317
valid values parameter, 314

nested loop semijoin, 308
requirements, 318
ugly INTERSECT, 302
using EXISTS query, 300, 311
using IN query, 300, 311
venn diagram, 299

Serializable isolation level, 399
Serializable transactions, 414
Set(s), 95. See also Set operations

nulls
aggregate functions, 113
comparisons and expressions, 109
GROUP BY and ORDER BY clauses, 111
set operations, 110
two-value logic, 109
unintuitive results, 107
value, 107

procedural vs. set-based approach, 96
EMP and DEPT sets, 99
logical reads, 96
process flow diagram vs. nested  

set diagram, 98
self-join, 96
thinking approach, 99

thinking in, 22 sets, 95–96
SET clause, 17
SET game, 95–96
Set operations, 101

INTERSECT operator, 101, 106
MINUS operator, 101, 105
queries, 101
SELECT statements, 101
UNION ALL operator, 101

■ index

552

Questions (cont.)



UNION and UNION ALL
examples, 102
HASH UNIQUE operation, 102
ORDER BY clause, 102
venn diagram, 101

UNION operator, 101
Set transaction command, 402
Simple CASE statement, 525
Single child operations, 136
Single-table inserts, 14–15
Skip scan, 79
Sliding windowing-clause, 201
Soft parse, 27
Sort–merge joins, 84
SQL

database interface, 2
DELETE statement, 20
INSERT statement

multitable insert, 15–17
single-table insert, 14–15

language, 1
MERGE statement, 22
preprocessor, 2
SELECT statement

CBO, 8
female customers, 9
FROM clause, 9
GROUP BY clause, 11–12
HAVING clause, 12
ORDER BY clause, 13–14
query processing, 8
SELECT list, 12–13
WHERE clause, 11

SQL*Plus
command execution, 6
configuration, 3
database connection, 3
introduction, 2
login.sql file, 5
set command, 4
slash (/), 7

statements, 8
UPDATE statement, 17

SQL Constructs, 523. See also Conditional  
logic constructs

PIVOT function, 532
clauses, 533
execution plan, 535
GROUP BY clause, 533
vs. Old pivot query formulation, 532
pivot_in_clause, 535
syntax, 533
using aliases, 534
using XML, 535–536
WHERE clause, 534

test data generation, 539
MODEL clause, 543
using big table, 540
using CONNECT BY clause, 540
WITH clause, 543

UNPIVOT function, 536–537
clauses, 537
execution plan, 538
syntax, 536
table creation, 537
unpivot_for_clause, 538
unpivot_in_clause, 538
using aliases, 538
VIEW operation, 539

SQL execution, 25
buffer cache

blocks, 31
latches, 31
logical and physical read, 32
soft and hard parse, 32
touch count, 31

executing and fetching rows, 53
arraysize, 54–55
FETCH calls, 54
SELECT statements, 54

execution plan
cost of, 50
definition of, 50
optimizer, 50, 52
predicates, 53
selectivities, 53
statistics, 50, 53

identical statement
bind variables, 29
different executions, 28
hard parsing, 30
latches, 30
serialization devices, 31
spinning, 31

library cache, 27–28
Oracle architure, 25
overview, 55–56
shared pool and, 26–27

SQL monitor reports, 154
dbms_sqltune.report_sql_monitor, 155
display, 155
HTML, 157
MONITOR and NO_MONITOR, 154

SQL optimization
cost calculation, 274
FROM clause, 276
modified income search

INLINE hint, 270
MATERIALIZING, 272

using WITH clause, 276

■ Index

553



WITH PL/SQL function
advantages, 266
and INLINE hint, 269–270
MATERIALIZING, 267–268

SQL Plan Management (SPM), 510
SQL TUNING ADVISOR, 493
Stale statistics, 163
Statistical Variance, 473
Statistics feedback

execution plan, 465
SQL plan directive, 466

stddev function, 220
Subquery factoring, 261. See also SQL optimization

RSF (see Recursive subquery factoring (RSF))
with cross table, 263–264
without cross table, 261
WITH PL/SQL function, 264

customer report generation, 278
EXTRACT() function, 280
features, 278
temporary tables, 279

Subquery unnesting
correlated subquery, 42
FILTER operation, 42
HASH JOIN join, 42
NO_UNNEST hint, 41
subquery caching, 42
uncorrelated subquery, 41
views and subqueries, 41

Symbolic notation, 236
System change number (SCN), 401
System global area (SGA), 26, 401

buffer cache
blocks, 31
latches, 31
logical and physical read, 32
soft and hard parse, 32
touch count, 31

shared pool, 26–27

T�       �
Task sequences, 447
Test-driven development (TDD), 427
Testing and quality assurance, 425

data model, 427
execution plan, 436
ILO (see Instrumentation Library for  

Oracle (ILO))
regression testing, 431
schema changes, 431

and new product data, 432
historical data, 431
object recompilation, 434

TDD, 427
test cases, 425
unit tests, 428, 434

and scripts, 429
invalid objects, 429
lists, 428
verification task, 429

Throwaway, 61
Transaction processing

ACID compliance, 409
ACID properties, 398–399
active transactions

atomicity, 409
SCN number, 409–411

atomicity, 398
autonomous

calling transaction, 421–424
order logging transaction, 420–421
use of, 420

constistency, 398
control statements, 397, 401

commit, 401
rollback, 402
savepoint, 402
set constraints, 402
set transaction, 402

definition, 397–398
dirty read, 400
durability, 398
grouping operations into, 402–403
isolation, 398, 417
isolation levels, 399–400
multi-version read consistency, 400–401
non-repeatable read, 400
Order Entrey (OE) schema

confirmation queries, 408
inventory, 406
order transaction, 407
sales manager, 406
schema changes, 404
tables, 403–404

phantom read, 400
redo logs, 401
savepoints

data returning, 411
verification, 414

serializing, 414
undo blocks, 401

TRUNCATE command, 388

U�       �
Unbounded data ranges, 448
Unintuitive results, 107
UNION ALL operator, 283

■ index

554

SQL optimization (cont.)



UNION and UNION ALL
examples, 102
HASH UNIQUE operation, 102
ORDER BY clause, 102
venn diagram, 101

Unit tests
invalid objects, 429
lists, 428
and scripts, 429
verification task, 429

UNKNOWN value, 11
UNPIVOT function, 536–537

clauses, 537
execution plan, 538
syntax, 536
table creation, 537
unpivot_for_clause, 538
unpivot_in_clause, 538

using aliases, 538
VIEW operation, 539

UPDATE statement, 17, 380
Create Table As Select, 380
INSERT APPEND technique, 382

V�       �
Venn diagram, 299, 319
VIEW keyword, 38
View merging, 36

W, X, Y, Z�       �
WHERE clause, 11, 17, 20, 337, 534
Windowing functions, 199
WITH clause, 258, 543
WITH PL/SQL function, 264

■ Index

555



Pro Oracle SQL
Second Edition

Karen Morton

Kerry Osborne

Robyn Sands

Riyaj Shamsudeen

Jared Still



Pro Oracle SQL

Copyright © 2013 by Karen Morton, Kerry Osborne, Robyn Sands, Riyaj Shamsudeen, and Jared Still

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material 
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, 
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. 
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material 
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the 
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the 
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from 
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are 
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6220-6

ISBN-13 (electronic): 978-1-4302-6221-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion 
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified 
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither 
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may 
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Jonathan Hassell
Technical Reviewer: Arup Nanda
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, 

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,  
Matthew Moodie, Jeff Olson, Jeffrey Pepper,  Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, 
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Mark Powers
Copy Editor: Catherine Ohala
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, 
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit  
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + 
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation. 

For information on translations, please e-mail rights@apress.com, or visit www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook 
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at  
www.apress.com/9781430262206. For detailed information about how to locate your book’s source code, go to  
www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781430262206
www.apress.com/source-code/


v

Contents

About the Authors�������������������������������������������������������������������������������������������������������������� xvii

About the Technical Reviewer�������������������������������������������������������������������������������������������� xix

Acknowledgments�������������������������������������������������������������������������������������������������������������� xxi

Chapter 1: Core SQL■■ ������������������������������������������������������������������������������������������������������������1

The SQL Language�������������������������������������������������������������������������������������������������������������������������1

Interfacing to the Database������������������������������������������������������������������������������������������������������������2

Review of SQL*Plus������������������������������������������������������������������������������������������������������������������������2

Connect to a Database������������������������������������������������������������������������������������������������������������������������������������������� 3

Configuring the SQL*Plus Environment������������������������������������������������������������������������������������������������������������������ 3

Executing Commands��������������������������������������������������������������������������������������������������������������������������������������������� 6

The Five Core SQL Statements�������������������������������������������������������������������������������������������������������8

The SELECT Statement�������������������������������������������������������������������������������������������������������������������8

The FROM Clause��������������������������������������������������������������������������������������������������������������������������������������������������� 9

The WHERE Clause����������������������������������������������������������������������������������������������������������������������������������������������� 11

The GROUP BY Clause������������������������������������������������������������������������������������������������������������������������������������������� 11

The HAVING Clause����������������������������������������������������������������������������������������������������������������������������������������������� 12

The SELECT List���������������������������������������������������������������������������������������������������������������������������������������������������� 12

The ORDER BY Clause������������������������������������������������������������������������������������������������������������������������������������������� 13

The INSERT Statement�����������������������������������������������������������������������������������������������������������������14

Single-Table Inserts���������������������������������������������������������������������������������������������������������������������������������������������� 14

Multitable Inserts�������������������������������������������������������������������������������������������������������������������������������������������������� 15

The UPDATE Statement����������������������������������������������������������������������������������������������������������������17

The DELETE Statement�����������������������������������������������������������������������������������������������������������������20



■ Contents

vi

The MERGE Statement�����������������������������������������������������������������������������������������������������������������22

Summary��������������������������������������������������������������������������������������������������������������������������������������24

Chapter 2: SQL Execution■■ �������������������������������������������������������������������������������������������������25

Oracle Architecture Basics�����������������������������������������������������������������������������������������������������������25

SGA: The Shared Pool�������������������������������������������������������������������������������������������������������������������26

The Library Cache������������������������������������������������������������������������������������������������������������������������27

Identical Statements��������������������������������������������������������������������������������������������������������������������28

SGA: The Buffer Cache�����������������������������������������������������������������������������������������������������������������31

Query Transformation�������������������������������������������������������������������������������������������������������������������33

Query Blocks�������������������������������������������������������������������������������������������������������������������������������������������������������� 34

View Merging�������������������������������������������������������������������������������������������������������������������������������������������������������� 36

Subquery Unnesting��������������������������������������������������������������������������������������������������������������������������������������������� 41

Join Elimination���������������������������������������������������������������������������������������������������������������������������������������������������� 43

ORDER BY Elimination������������������������������������������������������������������������������������������������������������������������������������������ 45

Predicate Pushing������������������������������������������������������������������������������������������������������������������������������������������������� 46

Query Rewrite with Materialized Views���������������������������������������������������������������������������������������������������������������� 48

Determining the Execution Plan���������������������������������������������������������������������������������������������������50

Executing the Plan and Fetching Rows����������������������������������������������������������������������������������������53

SQL Execution: Putting It All Together������������������������������������������������������������������������������������������55

Summary��������������������������������������������������������������������������������������������������������������������������������������56

Chapter 3: Access and Join Methods■■ �������������������������������������������������������������������������������57

Full Scan Access Methods�����������������������������������������������������������������������������������������������������������57

How Full Scan Operations Are Chosen����������������������������������������������������������������������������������������������������������������� 58

Full Scans and Throwaway����������������������������������������������������������������������������������������������������������������������������������� 61

Full Scans and Multiblock Reads�������������������������������������������������������������������������������������������������������������������������� 61

Full Scans and the High-Water Mark�������������������������������������������������������������������������������������������������������������������� 62

Index Scan Access Methods���������������������������������������������������������������������������������������������������������67

Index Structure����������������������������������������������������������������������������������������������������������������������������������������������������� 68

Index Scan Types�������������������������������������������������������������������������������������������������������������������������������������������������� 70

Index Unique Scan������������������������������������������������������������������������������������������������������������������������������������������������ 74



■ Contents

vii

Index Range Scan������������������������������������������������������������������������������������������������������������������������������������������������� 75

Index Full Scan����������������������������������������������������������������������������������������������������������������������������������������������������� 76

Index Skip Scan���������������������������������������������������������������������������������������������������������������������������������������������������� 79

Index Fast Full Scan��������������������������������������������������������������������������������������������������������������������������������������������� 80

Join Methods��������������������������������������������������������������������������������������������������������������������������������81

Nested Loops Joins���������������������������������������������������������������������������������������������������������������������������������������������� 82

Sort–Merge Joins������������������������������������������������������������������������������������������������������������������������������������������������� 84

Hash Joins������������������������������������������������������������������������������������������������������������������������������������������������������������ 85

Cartesian Joins����������������������������������������������������������������������������������������������������������������������������������������������������� 88

Outer Joins����������������������������������������������������������������������������������������������������������������������������������������������������������� 89

Summary��������������������������������������������������������������������������������������������������������������������������������������94

Chapter 4: SQL Is about Sets■■ ��������������������������������������������������������������������������������������������95

Thinking in Sets����������������������������������������������������������������������������������������������������������������������������95

Moving from Procedural to Set-Based Thinking��������������������������������������������������������������������������������������������������� 96

Procedural vs. Set-Based Thinking: An Example�������������������������������������������������������������������������������������������������� 99

Set Operations����������������������������������������������������������������������������������������������������������������������������101

UNION and UNION ALL���������������������������������������������������������������������������������������������������������������������������������������� 101

MINUS����������������������������������������������������������������������������������������������������������������������������������������������������������������� 105

INTERSECT���������������������������������������������������������������������������������������������������������������������������������������������������������� 106

Sets and Nulls����������������������������������������������������������������������������������������������������������������������������107

NULLs and Unintuitive Results���������������������������������������������������������������������������������������������������������������������������� 107

NULL Behavior in Set Operations������������������������������������������������������������������������������������������������������������������������ 110

NULLs and GROUP BY and ORDER BY����������������������������������������������������������������������������������������������������������������� 111

NULLs and Aggregate Functions������������������������������������������������������������������������������������������������������������������������� 113

Summary������������������������������������������������������������������������������������������������������������������������������������113

Chapter 5: It’s about the Question■■ ����������������������������������������������������������������������������������115

Asking Good Questions��������������������������������������������������������������������������������������������������������������115

The Purpose of Questions����������������������������������������������������������������������������������������������������������116

Categories of Questions�������������������������������������������������������������������������������������������������������������116

Questions about the Question����������������������������������������������������������������������������������������������������117



■ Contents

viii

Questions about Data�����������������������������������������������������������������������������������������������������������������120

Building Logical Expressions������������������������������������������������������������������������������������������������������124

Summary������������������������������������������������������������������������������������������������������������������������������������130

Chapter 6: SQL Execution Plans■■ �������������������������������������������������������������������������������������131

Explain Plan��������������������������������������������������������������������������������������������������������������������������������131

Using Explain Plan���������������������������������������������������������������������������������������������������������������������������������������������� 131

The Plan Table���������������������������������������������������������������������������������������������������������������������������������������������������� 133

Breaking Down the Plan������������������������������������������������������������������������������������������������������������������������������������� 135

Understanding How EXPLAIN PLAN Can Miss the Mark������������������������������������������������������������������������������������� 136

Reading the Plan������������������������������������������������������������������������������������������������������������������������������������������������ 138

Access and Filter Predicates������������������������������������������������������������������������������������������������������������������������������ 140

Reading the Plan as a Narrative������������������������������������������������������������������������������������������������������������������������� 141

Execution Plans��������������������������������������������������������������������������������������������������������������������������141

Viewing Recently Generated SQL����������������������������������������������������������������������������������������������������������������������� 141

Viewing the Associated Execution Plan�������������������������������������������������������������������������������������������������������������� 142

Collecting the Plan Statistics������������������������������������������������������������������������������������������������������������������������������ 144

Identifying SQL Statements for Later Plan Retrieval������������������������������������������������������������������������������������������ 146

Understanding DBMS_XPLAN in Detail��������������������������������������������������������������������������������������������������������������� 148

Using SQL Monitor Reports��������������������������������������������������������������������������������������������������������������������������������� 154

Using Plan Information for Solving Problems����������������������������������������������������������������������������������������������������� 158

Summary������������������������������������������������������������������������������������������������������������������������������������167

Chapter 7: Advanced Grouping■■ ���������������������������������������������������������������������������������������169

Basic GROUP BY Usage��������������������������������������������������������������������������������������������������������������169

HAVING Clause����������������������������������������������������������������������������������������������������������������������������173

“New” GROUP BY Functionality��������������������������������������������������������������������������������������������������174

CUBE Extension to GROUP BY�����������������������������������������������������������������������������������������������������174

Putting CUBE to Work�����������������������������������������������������������������������������������������������������������������180

Eliminate NULLs with the GROUPING( ) Function������������������������������������������������������������������������186

Extending Reports with GROUPING( )������������������������������������������������������������������������������������������188

Extending Reports with GROUPING_ID( )������������������������������������������������������������������������������������189



■ Contents

ix

GROUPING SETS ( ) and ROLLUP( )����������������������������������������������������������������������������������������������192

GROUP BY Restrictions���������������������������������������������������������������������������������������������������������������195

Summary������������������������������������������������������������������������������������������������������������������������������������198

Chapter 8: Analytic Functions■■ ����������������������������������������������������������������������������������������199

Overview �����������������������������������������������������������������������������������������������������������������������������������199

Example Data ����������������������������������������������������������������������������������������������������������������������������200

Anatomy of Analytic Functions ��������������������������������������������������������������������������������������������������200

List of Functions ������������������������������������������������������������������������������������������������������������������������201

Aggregation Functions ��������������������������������������������������������������������������������������������������������������202

Aggregate Function over an Entire Partition ������������������������������������������������������������������������������������������������������ 203

Granular Window Specifications ������������������������������������������������������������������������������������������������������������������������ 204

Default Window Specification ���������������������������������������������������������������������������������������������������������������������������� 204

lead and lag �������������������������������������������������������������������������������������������������������������������������������204

Syntax and Ordering ������������������������������������������������������������������������������������������������������������������������������������������ 205

Example 1: Returning a Value from a Prior Row ������������������������������������������������������������������������������������������������ 205

Understanding That Offset Is in Rows ��������������������������������������������������������������������������������������������������������������� 206

Example 2: Returning a Value from an Upcoming Row ������������������������������������������������������������������������������������� 207

first_value and last_value ���������������������������������������������������������������������������������������������������������207

Example: first_value to Calculate Maximum ����������������������������������������������������������������������������������������������������� 208

Example: last_value to Calculate Minimum�������������������������������������������������������������������������������������������������������� 209

Other Analytic Functions �����������������������������������������������������������������������������������������������������������209

nth_value������������������������������������������������������������������������������������������������������������������������������������������������������������ 209

rank ������������������������������������������������������������������������������������������������������������������������������������������������������������������� 211

dense_rank �������������������������������������������������������������������������������������������������������������������������������������������������������� 212

row_number ������������������������������������������������������������������������������������������������������������������������������������������������������ 213

ratio_to_report �������������������������������������������������������������������������������������������������������������������������������������������������� 214

percent_rank ����������������������������������������������������������������������������������������������������������������������������������������������������� 215

percentile_cont �������������������������������������������������������������������������������������������������������������������������������������������������� 216

percentile_disc �������������������������������������������������������������������������������������������������������������������������������������������������� 217

NTILE������������������������������������������������������������������������������������������������������������������������������������������������������������������ 218



■ Contents

x

stddev ���������������������������������������������������������������������������������������������������������������������������������������������������������������� 220

listagg ���������������������������������������������������������������������������������������������������������������������������������������������������������������� 221

Performance Tuning ������������������������������������������������������������������������������������������������������������������222

Execution Plans ������������������������������������������������������������������������������������������������������������������������������������������������� 222

Predicates ���������������������������������������������������������������������������������������������������������������������������������������������������������� 223

Indexes �������������������������������������������������������������������������������������������������������������������������������������������������������������� 224

Advanced Topics�������������������������������������������������������������������������������������������������������������������������225

Dynamic SQL ����������������������������������������������������������������������������������������������������������������������������������������������������� 225

Nesting Analytic Functions �������������������������������������������������������������������������������������������������������������������������������� 226

Parallelism ��������������������������������������������������������������������������������������������������������������������������������������������������������� 227

PGA Size ������������������������������������������������������������������������������������������������������������������������������������������������������������ 228

Organizational Behavior ������������������������������������������������������������������������������������������������������������229

Summary �����������������������������������������������������������������������������������������������������������������������������������229

Chapter 9: The MODEL Clause■■ �����������������������������������������������������������������������������������������231

Spreadsheets�����������������������������������������������������������������������������������������������������������������������������231

Interrow Referencing Via the MODEL Clause������������������������������������������������������������������������������232

Example Data������������������������������������������������������������������������������������������������������������������������������������������������������ 232

Anatomy of a MODEL Clause������������������������������������������������������������������������������������������������������������������������������ 233

Rules������������������������������������������������������������������������������������������������������������������������������������������������������������������� 234

Positional and Symbolic References������������������������������������������������������������������������������������������235

Positional Notation��������������������������������������������������������������������������������������������������������������������������������������������� 235

Symbolic Notation���������������������������������������������������������������������������������������������������������������������������������������������� 236

FOR Loops����������������������������������������������������������������������������������������������������������������������������������������������������������� 237

Returning Updated Rows������������������������������������������������������������������������������������������������������������238

Evaluation Order�������������������������������������������������������������������������������������������������������������������������239

Row Evaluation Order����������������������������������������������������������������������������������������������������������������������������������������� 239

Rule Evaluation Order����������������������������������������������������������������������������������������������������������������������������������������� 241

Aggregation��������������������������������������������������������������������������������������������������������������������������������242

Iteration��������������������������������������������������������������������������������������������������������������������������������������243

An Example��������������������������������������������������������������������������������������������������������������������������������������������������������� 244

PRESENTV and NULLs����������������������������������������������������������������������������������������������������������������������������������������� 245



■ Contents

xi

Lookup Tables�����������������������������������������������������������������������������������������������������������������������������246

NULLs�����������������������������������������������������������������������������������������������������������������������������������������248

Performance Tuning with the MODEL Clause�����������������������������������������������������������������������������249

Execution Plans�������������������������������������������������������������������������������������������������������������������������������������������������� 249

Predicate Pushing����������������������������������������������������������������������������������������������������������������������������������������������� 252

Materialized Views��������������������������������������������������������������������������������������������������������������������������������������������� 253

Parallelism���������������������������������������������������������������������������������������������������������������������������������������������������������� 255

Partitioning in MODEL Clause Execution������������������������������������������������������������������������������������������������������������ 256

Indexes��������������������������������������������������������������������������������������������������������������������������������������������������������������� 257

Subquery Factoring��������������������������������������������������������������������������������������������������������������������258

Summary������������������������������������������������������������������������������������������������������������������������������������259

Chapter 10: Subquery Factoring■■ �������������������������������������������������������������������������������������261

Standard Usage��������������������������������������������������������������������������������������������������������������������������261

WITH Using a PL/SQL Function���������������������������������������������������������������������������������������������������264

Optimizing SQL���������������������������������������������������������������������������������������������������������������������������266

Testing Execution Plans�������������������������������������������������������������������������������������������������������������������������������������� 266

Testing the Effects of Query Changes����������������������������������������������������������������������������������������������������������������� 270

Seizing Other Optimization Opportunities����������������������������������������������������������������������������������������������������������� 273

Applying Subquery Factoring to PL/SQL������������������������������������������������������������������������������������������������������������� 278

Recursive Subqueries����������������������������������������������������������������������������������������������������������������281

A CONNECT BY Example������������������������������������������������������������������������������������������������������������������������������������� 281

The Example Using an RSF��������������������������������������������������������������������������������������������������������������������������������� 282

Restrictions on RSF�������������������������������������������������������������������������������������������������������������������������������������������� 283

Differences from CONNECT BY��������������������������������������������������������������������������������������������������������������������������� 284

Duplicating CONNECT BY Functionality��������������������������������������������������������������������������������������284

The level Pseudocolumn������������������������������������������������������������������������������������������������������������������������������������� 285

The SYS_CONNECT_BY_PATH Function�������������������������������������������������������������������������������������������������������������� 286

The CONNECT_BY_ROOT Operator��������������������������������������������������������������������������������������������������������������������� 288



■ Contents

xii

The connect_by_iscycle Pseudocolumn and NOCYCLE Parameter�������������������������������������������������������������������� 291

The connect_by_isleaf Pseudocolumn��������������������������������������������������������������������������������������������������������������� 294

Summary������������������������������������������������������������������������������������������������������������������������������������298

Chapter 11: Semijoins and Antijoins■■ ������������������������������������������������������������������������������299

Semijoins������������������������������������������������������������������������������������������������������������������������������������299

Semijoin Plans����������������������������������������������������������������������������������������������������������������������������307

Controlling Semijoin Plans���������������������������������������������������������������������������������������������������������312

Controlling Semijoin Plans Using Hints�������������������������������������������������������������������������������������������������������������� 312

Controlling Semijoin Plans at the Instance Level����������������������������������������������������������������������������������������������� 314

Semijoin Restrictions�����������������������������������������������������������������������������������������������������������������316

Semijoin Requirements��������������������������������������������������������������������������������������������������������������318

Antijoins�������������������������������������������������������������������������������������������������������������������������������������319

Antijoin Plans�����������������������������������������������������������������������������������������������������������������������������324

Controlling Antijoin Plans�����������������������������������������������������������������������������������������������������������333

Controlling Antijoin Plans Using Hints���������������������������������������������������������������������������������������������������������������� 333

Controlling Antijoin Plans at the Instance Level������������������������������������������������������������������������������������������������� 334

Antijoin Restrictions�������������������������������������������������������������������������������������������������������������������337

Antijoin Requirements ���������������������������������������������������������������������������������������������������������������340

Summary������������������������������������������������������������������������������������������������������������������������������������340

Chapter 12: Indexes■■ ��������������������������������������������������������������������������������������������������������341

Understanding Indexes���������������������������������������������������������������������������������������������������������������342

When to Use Indexes������������������������������������������������������������������������������������������������������������������������������������������ 342

Choice of Columns���������������������������������������������������������������������������������������������������������������������������������������������� 344

The Null Issue����������������������������������������������������������������������������������������������������������������������������������������������������� 345

Index Structural Types����������������������������������������������������������������������������������������������������������������346

B-tree indexes���������������������������������������������������������������������������������������������������������������������������������������������������� 346

Bitmap Indexes��������������������������������������������������������������������������������������������������������������������������������������������������� 347

Index-Organized Tables�������������������������������������������������������������������������������������������������������������������������������������� 348



■ Contents

xiii

Partitioned Indexes���������������������������������������������������������������������������������������������������������������������350

Local Indexes������������������������������������������������������������������������������������������������������������������������������������������������������ 350

Global Indexes���������������������������������������������������������������������������������������������������������������������������������������������������� 352

Hash Partitioning vs. Range Partitioning������������������������������������������������������������������������������������������������������������ 354

Solutions to Match Application Characteristics��������������������������������������������������������������������������356

Compressed Indexes������������������������������������������������������������������������������������������������������������������������������������������ 356

Function-Based Indexes������������������������������������������������������������������������������������������������������������������������������������� 359

Reverse Key Indexes������������������������������������������������������������������������������������������������������������������������������������������ 361

Descending Indexes������������������������������������������������������������������������������������������������������������������������������������������� 362

Solutions to Management Problems������������������������������������������������������������������������������������������363

Invisible Indexes������������������������������������������������������������������������������������������������������������������������������������������������� 363

Virtual Indexes���������������������������������������������������������������������������������������������������������������������������������������������������� 364

Bitmap Join Indexes������������������������������������������������������������������������������������������������������������������������������������������� 365

Summary������������������������������������������������������������������������������������������������������������������������������������367

Chapter 13: Beyond the SELECT■■ ��������������������������������������������������������������������������������������369

INSERT����������������������������������������������������������������������������������������������������������������������������������������369

Direct Path Inserts���������������������������������������������������������������������������������������������������������������������������������������������� 369

Multitable Inserts������������������������������������������������������������������������������������������������������������������������������������������������ 371

Conditional Insert����������������������������������������������������������������������������������������������������������������������������������������������� 373

DML Error Logging ��������������������������������������������������������������������������������������������������������������������������������������������� 373

UPDATE���������������������������������������������������������������������������������������������������������������������������������������380

Using CTAS vs. UPDATE�������������������������������������������������������������������������������������������������������������������������������������� 380

Using INSERT APPEND vs. UPDATE��������������������������������������������������������������������������������������������������������������������� 382

DELETE���������������������������������������������������������������������������������������������������������������������������������������386

MERGE����������������������������������������������������������������������������������������������������������������������������������������389

Syntax and Usage����������������������������������������������������������������������������������������������������������������������������������������������� 389

Performance Comparison����������������������������������������������������������������������������������������������������������������������������������� 392

Summary������������������������������������������������������������������������������������������������������������������������������������395



■ Contents

xiv

Chapter 14: Transaction Processing■■ �������������������������������������������������������������������������������397

What Is a Transaction?���������������������������������������������������������������������������������������������������������������397

ACID Properties of a Transaction������������������������������������������������������������������������������������������������398

Transaction Isolation Levels�������������������������������������������������������������������������������������������������������399

Multiversion Read Consistency��������������������������������������������������������������������������������������������������400

Transaction Control Statements�������������������������������������������������������������������������������������������������401

Commit��������������������������������������������������������������������������������������������������������������������������������������������������������������� 401

Savepoint������������������������������������������������������������������������������������������������������������������������������������������������������������ 402

Rollback�������������������������������������������������������������������������������������������������������������������������������������������������������������� 402

Set Transaction��������������������������������������������������������������������������������������������������������������������������������������������������� 402

Set Constraints��������������������������������������������������������������������������������������������������������������������������������������������������� 402

Grouping Operations into Transactions��������������������������������������������������������������������������������������402

The Order Entry Schema������������������������������������������������������������������������������������������������������������403

The Active Transaction���������������������������������������������������������������������������������������������������������������409

Using Savepoints������������������������������������������������������������������������������������������������������������������������411

Serializing Transactions�������������������������������������������������������������������������������������������������������������414

Isolating Transactions�����������������������������������������������������������������������������������������������������������������417

Autonomous Transactions����������������������������������������������������������������������������������������������������������420

Summary������������������������������������������������������������������������������������������������������������������������������������424

Chapter 15: Testing and Quality Assurance■■ ��������������������������������������������������������������������425

Test Cases����������������������������������������������������������������������������������������������������������������������������������425

Testing Methods�������������������������������������������������������������������������������������������������������������������������427

Unit Tests������������������������������������������������������������������������������������������������������������������������������������������������������������ 428

Regression Tests������������������������������������������������������������������������������������������������������������������������������������������������� 431

Schema Changes������������������������������������������������������������������������������������������������������������������������������������������������ 431

Repeating the Unit Tests������������������������������������������������������������������������������������������������������������������������������������� 434

Execution Plan Comparison �������������������������������������������������������������������������������������������������������436

Instrumentation��������������������������������������������������������������������������������������������������������������������������441

Adding Instrumentation to Code������������������������������������������������������������������������������������������������������������������������� 442

Testing for Performance������������������������������������������������������������������������������������������������������������������������������������� 446



■ Contents

xv

Testing to Destruction����������������������������������������������������������������������������������������������������������������447

Troubleshooting through Instrumentation ���������������������������������������������������������������������������������448

Summary������������������������������������������������������������������������������������������������������������������������������������451

Chapter 16: Plan Stability■■ �����������������������������������������������������������������������������������������������453

Plan Instability: Understanding the Problem������������������������������������������������������������������������������453

Changes to Statistics������������������������������������������������������������������������������������������������������������������������������������������ 454

Changes to the Environment������������������������������������������������������������������������������������������������������������������������������ 456

Changes to the SQL�������������������������������������������������������������������������������������������������������������������������������������������� 458

Bind Variable Peeking����������������������������������������������������������������������������������������������������������������������������������������� 458

Adaptive Cursor Sharing������������������������������������������������������������������������������������������������������������������������������������� 460

Statistics Feedback��������������������������������������������������������������������������������������������������������������������465

About SQL Plan Directives���������������������������������������������������������������������������������������������������������������������������������� 466

Identifying Plan Instability����������������������������������������������������������������������������������������������������������469

Capturing Data on Currently Running Queries���������������������������������������������������������������������������������������������������� 470

Reviewing the History of a Statement’s Performance���������������������������������������������������������������������������������������� 471

Aggregating Statistics by Plan���������������������������������������������������������������������������������������������������������������������������� 472

Looking for Statistical Variance by Plan������������������������������������������������������������������������������������������������������������� 473

Checking for Variations around a Point in Time�������������������������������������������������������������������������������������������������� 474

Summary������������������������������������������������������������������������������������������������������������������������������������475

Chapter 17: Plan Control■■ ������������������������������������������������������������������������������������������������477

Plan Control: Solving the Problem����������������������������������������������������������������������������������������������477

Modifying Query Structure��������������������������������������������������������������������������������������������������������������������������������� 478

Making Appropriate Use of Literals�������������������������������������������������������������������������������������������������������������������� 478

Giving the Optimizer Some Hints������������������������������������������������������������������������������������������������������������������������ 478

Plan Control: Without Access to the Code����������������������������������������������������������������������������������485

Option 1: Change the Statistics�������������������������������������������������������������������������������������������������������������������������� 486

Option 2: Change Database Parameters������������������������������������������������������������������������������������������������������������� 488

Option 3: Add or Remove Access Paths�������������������������������������������������������������������������������������������������������������� 488

Option 4: Apply Hint-Based Plan Control Mechanisms��������������������������������������������������������������������������������������� 489

Outlines�������������������������������������������������������������������������������������������������������������������������������������������������������������� 489



■ Contents

xvi

SQL Profiles�������������������������������������������������������������������������������������������������������������������������������������������������������� 492

SQL Plan Baselines��������������������������������������������������������������������������������������������������������������������������������������������� 509

SQL Patches������������������������������������������������������������������������������������������������������������������������������������������������������� 519

Hint-Based Plan Control Mechanisms Wrap-up�������������������������������������������������������������������������������������������������� 521

Summary������������������������������������������������������������������������������������������������������������������������������������521

Chapter 18: Miscellaneous SQL Constructs■■ ��������������������������������������������������������������������523

Conditional Logic Constructs������������������������������������������������������������������������������������������������������523

Using DECODE���������������������������������������������������������������������������������������������������������������������������������������������������� 523

Using CASE��������������������������������������������������������������������������������������������������������������������������������������������������������� 524

Using NVL, NVL2, and COALESCE������������������������������������������������������������������������������������������������������������������������ 529

Using NULLIF������������������������������������������������������������������������������������������������������������������������������������������������������ 531

PIVOT/UNPIVOT Queries��������������������������������������������������������������������������������������������������������������532

Using PIVOT�������������������������������������������������������������������������������������������������������������������������������������������������������� 532

Using UNPIVOT���������������������������������������������������������������������������������������������������������������������������������������������������� 536

SQL to Generate Test Data����������������������������������������������������������������������������������������������������������539

What to Watch out For���������������������������������������������������������������������������������������������������������������������������������������� 540

Using CONNECT BY �������������������������������������������������������������������������������������������������������������������������������������������� 540

Using the MODEL Clause������������������������������������������������������������������������������������������������������������������������������������ 542

Using the Recursive WITH Clause����������������������������������������������������������������������������������������������������������������������� 543

Data Generator Wrap-up������������������������������������������������������������������������������������������������������������������������������������� 544

Summary������������������������������������������������������������������������������������������������������������������������������������544

Index����������������������������������������������������������������������������������������������������������������������������������545



xvii

About the Authors

For more than 25 years, Karen Morton has worked in information technology 
starting out as a mainframe programmer, then developer, DBA, data architect, 
author, researcher, educator, and consultant. Having used Oracle since the early 
’90s, she began teaching others how to use Oracle over 15 years ago. Today she is 
focused primarily on Oracle performance optimization, particularly in the areas of 
SQL tuning and understanding the Oracle optimizer.

Karen’s years of experience have meshed well into optimizing applications 
running on both non-Exadata and Exadata platforms. In her role as Senior 
Technical Consultant for Enkitec, an Oracle–centric consulting and services 
company, her deep knowledge of how SQL works and how Exadata features 
require a change in approach to many optimization efforts allows her to 
understand what to do and when to do it, regardless of whether the environment 
is Exadata or non-Exadata.

Karen is the co-author of three books from Apress: Beginning Oracle SQL, 
Expert Oracle Practices: Database Administration from the Oak Table, and  

Pro Oracle SQL. She’s a frequent speaker at conferences and user groups, a member of the OakTable Network, 
and an Oracle ACE.

Kerry Osborne began working with Oracle (version 2) in 1982. He has worked 
as both a developer and a DBA. For the past several years he has been focused 
on understanding Oracle internals and solving performance problems. He is 
an OakTable member and an Oracle ACE Director. Kerry is a frequent speaker 
at Oracle conferences. He is also a co-founder of Enkitec, an Oracle-focused 
consulting company headquartered in Dallas, Texas. He blogs at  
kerryosborne.oracle-guy.com.

kerryosborne.oracle-guy.com


■ About the Authors

xviii

Robyn Sands is a software engineer on Oracle’s Real-World Performance team. 
She has been working with Oracle since 1996, and has extensive experience 
in application development, large system implementations, and performance 
measurement. Robyn began her career in industrial and quality engineering, 
and has combined her prior education and experience with her love of data by 
searching for new ways to build database systems with consistent performance 
and minimal maintenance requirements. She is a member of the OakTable 
Network and co-author of three books: Expert Oracle Practices, Expert PL/SQL, 
and Pro Oracle SQL, all published by Apress.

Riyaj Shamsudeen is an industry-recognized RAC expert, database internals 
specialist, and performance tuning specialist with 20 years of experience in 
implementing, using, and tuning RAC and Oracle products. He is an Oracle ACE 
Director and proud member of the OakTable network. Riyaj has co-authored four 
books about Oracle Database and performance. He is an active blogger  
(at http://orainternals.wordpress.com), President of OraInternals, and  
a frequent international speaker in major conferences such as UKOUG, HOTSOS, 
OpenWorld, and RMOUG. Social: www.linkedin.com/in/riyajshamsudeen;  
@riyajshamsudeen.

Jared Still is a senior database administrator at Pythian. Jared has been working 
with databases since 1988, and with Oracle in particular since 1994, beginning with 
Oracle version 7.0.13. During that time, he participated in a wide range of database 
administration tasks, as is the norm at smaller companies. Data modeling, database 
design, and overcoming Compulsive Tuning Disorder (CTD) have all been part of 
the job. As part of the CTD recovery process, he began learning how databases—and 
Oracle in particular—actually work.

The revelation was that well-performing databases and applications do not  
happen by accident, but by design. And “by design” means that you must understand  

how databases work, and how to make efficient use of the SQL language to create scalable applications and databases. 
Jared’s goal for this book is to make it easier for developers and database administrators to understand and use 
advanced SQL syntax. There are many features that have been introduced since Oracle 8i, and yet they seem to be 
seldom used. This book should help rectify that.

http://orainternals.wordpress.com
www.linkedin.com/in/riyajshamsudeen
@riyajshamsudeen


xix

About the Technical Reviewer

Arup Nanda (e-mail: arup@proligence.com ; Twitter: @arupnanda; LinkedIn:  
 linkedin.com/in/arupnanda/) has been an Oracle DBA for the last 18 years,  

spanning all aspects of the job—from modeling to performance tuning. He  
specializes in RAC, Exadata, and High Availability solutions. He has authored four 
books on Oracle technology, written 500+ published articles, and presented almost  
300 training sessions in 22 countries. He is an Oracle–certified professional, Oracle 
ACE director, member of the OakTable Network, member of the Board of Directors 
of Exadata SIG, and member of the Editorial Board for SELECT Journal (the IOUG 
publication). Acknowledging his accomplishments and community involvement, 
Oracle awarded him DBA of the Year in 2003 and Enterprise Architect of the  
Year in 2012. He blogs at http://arup.blogspot.com.

arup@proligence.com
@arupnanda
linkedin.com/in/arupnanda/
http://arup.blogspot.com


xxi

Acknowledgments

I want to thank my co-authors, the fantastic folks at Apress, and, most of all, my family for their support and patience. 
The work to update Pro Oracle SQL was much easier thanks to all of you.

—Karen Morton


	Pro Oracle SQL
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Core SQL
	The SQL Language
	Interfacing to the Database
	Review of SQL*Plus
	Connect to a Database
	Configuring the SQL*Plus Environment
	Executing Commands

	The Five Core SQL Statements
	The SELECT Statement
	The FROM Clause
	The WHERE Clause
	The GROUP BY Clause
	The HAVING Clause
	The SELECT List
	The ORDER BY Clause

	The INSERT Statement
	Single-Table Inserts
	Multitable Inserts

	The UPDATE Statement
	The DELETE Statement
	The MERGE Statement
	Summary

	Chapter 2: SQL Execution
	Oracle Architecture Basics
	SGA: The Shared Pool
	The Library Cache
	Identical Statements
	SGA: The Buffer Cache
	Query Transformation
	Query Blocks
	View Merging
	Subquery Unnesting
	Join Elimination
	ORDER BY Elimination
	Predicate Pushing
	Query Rewrite with Materialized Views

	Determining the Execution Plan
	Executing the Plan and Fetching Rows
	SQL Execution: Putting It All Together
	Summary

	Chapter 3: Access and Join Methods
	Full Scan Access Methods
	How Full Scan Operations Are Chosen
	Full Scans and Throwaway
	Full Scans and Multiblock Reads
	Full Scans and the High-Water Mark

	Index Scan Access Methods
	Index Structure
	Index Scan Types
	Index Unique Scan
	Index Range Scan
	Index Full Scan
	Index Skip Scan
	Index Fast Full Scan

	Join Methods
	Nested Loops Joins
	Sort–Merge Joins
	Hash Joins
	Cartesian Joins
	Outer Joins

	Summary

	Chapter 4: SQL Is about Sets
	Thinking in Sets
	Moving from Procedural to Set-Based Thinking
	Procedural vs. Set-Based Thinking: An Example

	Set Operations
	UNION and UNION ALL
	MINUS
	INTERSECT

	Sets and Nulls
	NULL s and Unintuitive Results
	NULL Behavior in Set Operations
	NULL s and GROUP BY and ORDER BY
	NULL s and Aggregate Functions

	Summary

	Chapter 5: It’s about the Question
	Asking Good Questions
	The Purpose of Questions
	Categories of Questions
	Questions about the Question
	Questions about Data
	Building Logical Expressions
	Summary

	Chapter 6: SQL Execution Plans
	Explain Plan
	Using Explain Plan
	The Plan Table
	Breaking Down the Plan
	Understanding How EXPLAIN PLAN Can Miss the Mark
	Reading the Plan
	Access and Filter Predicates
	Reading the Plan as a Narrative

	Execution Plans
	Viewing Recently Generated SQL
	Viewing the Associated Execution Plan
	Collecting the Plan Statistics
	Identifying SQL Statements for Later Plan Retrieval
	Understanding DBMS_XPLAN in Detail
	Using SQL Monitor Reports
	Using Plan Information for Solving Problems
	Determining Index Deficiencies
	Index Deficiencies Wrap-up
	Determining Stale Statistics


	Summary

	Chapter 7: Advanced Grouping
	Basic GROUP BY Usage
	HAVING Clause
	“New” GROUP BY Functionality
	CUBE Extension to GROUP BY
	Putting CUBE to Work
	Eliminate NULL s with the GROUPING() Function
	Extending Reports with GROUPING()
	Extending Reports with GROUPING_ID()
	GROUPING SETS () and ROLLUP()
	GROUP BY Restrictions
	Summary

	Chapter 8: Analytic Functions
	Overview
	Example Data
	Anatomy of Analytic Functions
	List of Functions
	Aggregation Functions
	Aggregate Function over an Entire Partition
	Granular Window Specifications
	Default Window Specification

	lead and lag
	Syntax and Ordering
	Example 1: Returning a Value from a Prior Row
	Understanding That Offset Is in Rows
	Example 2: Returning a Value from an Upcoming Row

	first_value and last_value
	Example: first_value to Calculate Maximum
	Example: last_value to Calculate Minimum

	Other Analytic Functions
	nth_value
	rank
	dense_rank
	row_number
	ratio_to_report
	percent_rank
	percentile_cont
	percentile_disc
	NTILE
	stddev
	listagg

	Performance Tuning
	Execution Plans
	Predicates
	Indexes

	Advanced Topics
	Dynamic SQL
	Nesting Analytic Functions
	Parallelism
	PGA Size

	Organizational Behavior
	Summary

	Chapter 9: The MODEL Clause
	Spreadsheets
	Interrow Referencing Via the MODEL Clause
	Example Data
	Anatomy of a MODEL Clause
	Rules

	Positional and Symbolic References
	Positional Notation
	Symbolic Notation
	FOR Loops

	Returning Updated Rows
	Evaluation Order
	Row Evaluation Order
	Rule Evaluation Order

	Aggregation
	Iteration
	An Example
	PRESENTV and NULLs

	Lookup Tables
	NULLs
	Performance Tuning with the MODEL Clause
	Execution Plans
	ACYCLIC
	ACYCLIC FAST
	CYCLIC
	Sequential

	Predicate Pushing
	Materialized Views
	Parallelism
	Partitioning in MODEL Clause Execution
	Indexes

	Subquery Factoring
	Summary

	Chapter 10: Subquery Factoring
	Standard Usage
	WITH Using a PL/SQL Function
	Optimizing SQL
	Testing Execution Plans
	Testing the Effects of Query Changes
	Seizing Other Optimization Opportunities
	Applying Subquery Factoring to PL/SQL

	Recursive Subqueries
	A CONNECT BY Example
	The Example Using an RSF
	Restrictions on RSF
	Differences from CONNECT BY

	Duplicating CONNECT BY Functionality
	The level Pseudocolumn
	The SYS_CONNECT_BY_PATH Function
	The CONNECT_BY_ROOT Operator
	The connect_by_iscycle Pseudocolumn and NOCYCLE Parameter
	The connect_by_isleaf Pseudocolumn

	Summary

	Chapter 11: Semijoins and Antijoins
	Semijoins
	Semijoin Plans
	Controlling Semijoin Plans
	Controlling Semijoin Plans Using Hints
	Controlling Semijoin Plans at the Instance Level

	Semijoin Restrictions
	Semijoin Requirements
	Antijoins
	Antijoin Plans
	Controlling Antijoin Plans
	Controlling Antijoin Plans Using Hints
	Controlling Antijoin Plans at the Instance Level

	Antijoin Restrictions
	Antijoin Requirements
	Summary

	Chapter 12: Indexes
	Understanding Indexes
	When to Use Indexes
	Choice of Columns
	The Null Issue

	Index Structural Types
	B-tree indexes
	Bitmap Indexes
	Index-Organized Tables

	Partitioned Indexes
	Local Indexes
	Global Indexes
	Hash Partitioning vs. Range Partitioning

	Solutions to Match Application Characteristics
	Compressed Indexes
	Function-Based Indexes
	Reverse Key Indexes
	Descending Indexes

	Solutions to Management Problems
	Invisible Indexes
	Virtual Indexes
	Bitmap Join Indexes

	Summary

	Chapter 13: Beyond the SELECT
	INSERT
	Direct Path Inserts
	Multitable Inserts
	Conditional Insert
	DML Error Logging
	Improving Insert Error Logging
	DML Error Logging Restrictions


	UPDATE
	Using CTAS vs. UPDATE
	Using INSERT APPEND vs. UPDATE

	DELETE
	MERGE
	Syntax and Usage
	Performance Comparison

	Summary

	Chapter 14: Transaction Processing
	What Is a Transaction?
	ACID Properties of a Transaction
	Transaction Isolation Levels
	Multiversion Read Consistency
	Transaction Control Statements
	Commit
	Savepoint
	Rollback
	Set Transaction
	Set Constraints

	Grouping Operations into Transactions
	The Order Entry Schema
	The Active Transaction
	Using Savepoints
	Serializing Transactions
	Isolating Transactions
	Autonomous Transactions
	Summary

	Chapter 15: Testing and Quality Assurance
	Test Cases
	Testing Methods
	Unit Tests
	Regression Tests
	Schema Changes
	Repeating the Unit Tests

	Execution Plan Comparison
	Instrumentation
	Adding Instrumentation to Code
	Testing for Performance

	Testing to Destruction
	Troubleshooting through Instrumentation
	Summary

	Chapter 16: Plan Stability
	Plan Instability: Understanding the Problem
	Changes to Statistics
	Changes to the Environment
	Changes to the SQL
	Bind Variable Peeking
	Adaptive Cursor Sharing

	Statistics Feedback
	About SQL Plan Directives

	Identifying Plan Instability
	Capturing Data on Currently Running Queries
	Reviewing the History of a Statement’s Performance
	Aggregating Statistics by Plan
	Looking for Statistical Variance by Plan
	Checking for Variations around a Point in Time

	Summary

	Chapter 17: Plan Control
	Plan Control: Solving the Problem
	Modifying Query Structure
	Making Appropriate Use of Literals
	Giving the Optimizer Some Hints

	Plan Control: Without Access to the Code
	Option 1: Change the Statistics
	Option 2: Change Database Parameters
	Option 3: Add or Remove Access Paths
	Option 4: Apply Hint-Based Plan Control Mechanisms
	Outlines
	SQL Profiles
	Creating SQL Profiles
	Creating a SQL Profile to “Lock in” a Plan
	Creating a SQL Profile Using AWR
	Creating a SQL Profile by Using Another SQL Plan
	Using FORCE_MATCHING with SQL Profiles
	SQL Profiles Wrap-up

	SQL Plan Baselines
	Creating SQL Baselines
	Creating SQL Baselines from AWR
	Evolving SQL Baselines
	Automatic Plan Evolution in 12c

	SQL Patches
	Hint-Based Plan Control Mechanisms Wrap-up

	Summary

	Chapter 18: Miscellaneous SQL Constructs
	Conditional Logic Constructs
	Using DECODE
	Using CASE
	Using NVL, NVL2, and COALESCE
	Using NULLIF

	PIVOT/UNPIVOT Queries
	Using PIVOT
	Using UNPIVOT

	SQL to Generate Test Data
	What to Watch out For
	Using CONNECT BY
	Using the MODEL Clause
	Using the Recursive WITH Clause
	Data Generator Wrap-up

	Summary

	Index




